
SVGA Network Poker :
Group Report

 Project Title: SVGA Network Poker

Project Team
Members:

Lyndon Carvalho
Hin Chan

Names: Lyndon Carvalho (991007361)

Hin Chan (990953660)

Professor: Prof. Paul Chow

Course: ECE532 Digital Hardware

Date: March 28, 2005

Contents
Contents.. 2
Acknowledgements.. 4
Tables .. 5
Figures .. 5

1. Introduction ..6
2. Overview...8
2.1. Project Description...8
2.2. Goals ..8
2.3. Technical System Description ..9

2.3.1. System Topology ..9
2.3.2. High Level Description..10
2.3.3. Hardware IP Blocks..12

2.3.3.1. Processor ..12
2.3.3.2. Universal Asynchronous Receiver/Transmitter (UART)12
2.3.3.3. General Purpose I/O (GPIO)...12
2.3.3.4. Timer & Interrupt Controller...12
2.3.3.5. Ethernet ..13
2.3.3.6. Microblaze Debug Module (MDM)..13
2.3.3.7. ZBT External Memory Controller (EMC)13
2.3.3.8. SVGA ..14

2.3.4. Software Blocks...14
2.3.4.1. Ethernet ..15
2.3.4.2. Poker Gameplay..15
2.3.4.3. SVGA ..16

3. Outcome ..17
3.1. Results ...17
3.2. Improvements & Future Work...18

4. Description of Blocks...20
4.1. Hardware Blocks..20

4.1.1. Processor..23
4.1.2. Ethernet..24
4.1.3. PC to Board Communication..24
4.1.4. Timer ..24
4.1.5. Interrupt Controller..25
4.1.6. Debug Module ..25
4.1.7. GPIO...26

 2

4.1.8. ZBT Memory ...27
4.1.9. SVGA..28

4.1.9.1. Graphics Controller ..28
4.1.9.1.1 CHAR_MODE_SVGA_CTRL ...28
4.1.9.1.2 CHARACTER_MODE ...29
4.1.9.1.3 CHAR_GEN_ROM...29
4.1.9.1.4 CHAR_RAM..30
4.1.9.1.5 SVGA_TIMING_GENERATION......................................30
4.1.9.1.6 COLOR_RAM ...31
4.1.9.1.7 COLOR_PIPE ..31
4.1.9.1.8 CLUT ..31
4.1.9.1.9 DRIVE_DAC_DATA ..32

4.1.9.2. OPB_BRAM_IF_CNTRL ..32
4.1.9.3. Video DAC...33

4.2. Software Blocks ..33
4.2.1. Ethernet..34

4.2.1.1. Ethernet Drivers ..34
4.2.1.2. Ethernet Control Protocol ..35
4.2.1.3. Poker Gameplay Protocol ..36

4.2.2. Poker Gameplay ...39
4.2.2.1. Server ..39
4.2.2.2. Client...40

4.2.3. SVGA Drivers ...40
4.2.3.1. display.h ...40
4.2.3.2. display.c..40

5. Design Tree ...42
6. System Setup ..44
6.1. Equipment Needed..44
6.2. Hardware Setup Procedure..44
6.3. Software Setup Procedure ..45

7. Conclusion ..46
Appendix... 47
References.. 51

 3

Acknowledgements
We would like to thank our course instructor, Professor Paul Chow, for

the opportunity to participate in this project and to gain exposure to full

system design with Xilinx technology and tools. His lectures and

guidance in labs were invaluable to the completion of this project.

We would also like to thank the course teaching assistants, Chris Comis

and Lesley Shannon, who helped a lot inside and outside of labs with

advice, knowledge and equipment whenever needed. In addition, we

want to thank Patrick Akl from the American University of Beirut for his

summer project on a reliable Ethernet communication system for Xilinx

MicroBlaze FPGA systems. His professional work gave us a strong base

to adapt and build upon. His prompt suggestions to problems were also

very helpful in troubleshooting.

Finally, we would like to acknowledge our Texas Hold’em poker group

(Nigel, Justin, Eric, Hattie, Chris, John, Simon and Ajay) for the inspiration

and support for this project.

 4

Tables

Table 2-1 Milestones 9

Table 4-1 SVGA Colours 32

Table 4-2 Layer 1 Ethernet Frame 36

Table 4-3 Layer 2 Ethernet Frame 36

Table 4-4 Layer 2 Frame Types 36

Table 4-5 Layer 3 Frame Types 38

Table 4-6 Layer 3 Turn Type 38

Table 4-7 Layer 3 Status Message Type 38

Table 5-1 Design Tree Description 43

Figures

Figure 2-1 System Block Diagram 11

Figure 3-1 SVGA Display 17

Figure 4-1 Hardware IP Cores 20

Figure 4-2 Hardware Bus Connections 21

Figure 4-3 Hardware Memory Map 22

Figure 4-4 MicroBlaze Processor Core 23

Figure 4-5 Microblaze MDM Target 26

Figure 4-6 GPIO Block Diagram 27

Figure 4-7 Character Mode SVGA Block Diagram 28

Figure 4-8 Compiler Options 34

Figure 5-1 Design Tree 42

Figure 6-1 Hardware Setup 44

 5

1. Introduction

Computer systems are used everywhere in the world for many different

applications. Each system ranges in size, type, power and performance.

Three key factors that must be considered in designing such complex

systems involve performance, cost and application. Any computer that

needs to process large amounts of data at fast speeds must have

exceptional performance but comes at a higher cost. Supercomputers are

well known in this area to provide highly reliable and fast computing

power for applications such as nuclear simulations, computer aided

design and even video gaming.

The personal computer is the low cost, general application counterpart to

the supercomputer and can be found in almost every home in North

America these days. While these systems are lower in cost, they still need

to be designed with a general application in mind for different

computations dealing with simulation, graphics, gaming, networking and

etc.

There are many specific applications that do not need high performance

computing or generality in design. Processors are now found in cellular

phones, digital cameras, cars, toys, appliances, houses…the list goes on.

Each of these applications is very specific in task and demand. They do

not require high performance but need low cost, low power and highly

reliable components. This need has led to the evolution of systems on

chip. These systems include a microprocessor, I/O interfaces, memory,

timers, and controllers embedded onto a single device. Such systems are

referred to as embedded systems. They have been made more easily

 6

deployable with the reduction of CMOS technology nodes used to

fabricate silicon devices.

This technology has been adapted to FPGAs that allow the designer to

create systems on a programmable chip. The topic of embedded systems

and the FPGA to create an application specific system on a programmable

chip is the main focus of this project.

 7

2. Overview

2.1. Project Description

This report outlines a two-player network poker card game implemented

on the Xilinx Multimedia Board1 with a Xilinx Virtex-II FPGA2. Each

running game communicates over an Ethernet connection to a duplicate

system running the same hardware on another Xilinx Multimedia Board.

In addition, each system displays the game status for each player onto an

SVGA monitor and takes input from a keyboard.

The interaction between different players or systems proceeds on a

server/client protocol where one system hosts the game while the other

system connects to it over the Ethernet. The server side system controls

and keeps track of the entire game-play, including the cards dealt, the

winner of each hand and each player’s cash. The other system functions

as a client that connects to the server system and runs its own copy of the

game communicating over the Ethernet.

The variant of poker played in this project is Texas Hold’em.3

2.2. Goals

The main goals of this project were as follows:

 Develop exposure to full hardware and software embedded system
design using state of the art technology and tools from Xilinx

 Gain exposure to EDA design tools and FPGAs to implement
complex designs, specifically in the approaches for large digital
systems encompassing a lot of gates and a lot of software

 8

 Use good design practices for modular design while adhering to
the EDA design flow with everything from design specification to
synthesis to programming

 Follow a good modular design process to divide and develop tasks
between the team members and integrate the full system
successfully

 Propose and meet a strict design schedule with milestones for each
week (see Table 2-1)

Table 2-1 Milestones

2005 Dates Expected Milestones

February 23
 Ethernet driver software complete
 Base hardware system design complete

March 2
 Ethernet control software complete
 Ethernet game-play protocol complete

March 9
 Poker game-play complete
 SVGA hardware custom core complete

March 16

 SVGA Video drivers and software core
complete

 Network poker game-play implementation on
FPGA using UART for I/O

March 23
 System integration of Ethernet, poker game-

play and SVGA display complete
 Project demo

2.3. Technical System Description

2.3.1. System Topology

This project consists of a fully embedded hardware and software system

for playing SVGA Texas Hold’em poker between two players across an

Ethernet network. The system has two Xilinx Multimedia Boards that

connect through a 10 Mbps Ethernet hub using two RJ45 Ethernet cables.

The hub works as a simple repeater transmitting received frames to all

ports connected to it. Each board connects to a PC via the JTAG parallel

 9

port (for programming and debugging) and the RS232 serial port (for user

input and output debugging statements). An SVGA monitor connects to

the SVGA output of each board to display the game onto the screen in a

user-friendly and aesthetic GUI.

2.3.2. High Level Description

The heart of the system consists of the Xilinx Virtex-II FPGA. The FPGA is

programmed with the core system to control other hardware devices on

the board for I/O, memory, display and communication functions. The

full system block diagram is shown in Figure 2-1. The MicroBlaze4 soft

processor core is central to the embedded system and connects to all the

other on chip IP blocks via various buses and software interfaces. The

MicroBlaze also runs all the custom designed software for the embedded

system. This includes the Ethernet control and communication software

as well as the poker game-play functions.

 10

Figure 2-1 System Block Diagram

M
ic

ro
bl

az
e

Pr
oc

es
so

r

Et
he

rn
et

 d
riv

er

(X
ili

nx
 d

riv
er

)

E
th

er
ne

t M
A

C

(X
ili

nx
 IP

)

S
VG

A
 m

on
ito

r

S
VG

A
 In

te
rfa

ce

(D
A

C
)

G
ra

ph
ic

s
br

id
ge

/
co

nt
ro

lle
r

(c
us

to
m

)

Ex
te

rn
al

M

em
or

y
C

on
tro

lle
r

(X
ilin

x
IP

)

ZB
T

Ex
te

rn
al

 M
em

or
y

U
AR

T
(X

ili
nx

 IP
)

M
B

 D
eb

ug

m
od

ul
e

(X
ili

nx
 I

P
)

R
S2

32
 S

er
ia

l I
/O

(B

oa
rd

 H
ar

dw
ar

e)

Et
he

rn
et

 P
H

Y

(B
oa

rd

H
ar

dw
ar

e)

O
P

B

O
P

B

O
P

B

OPB

I/O
 fr

om
 s

er
ia

l p
or

t o
f P

C

T o
 o

th
er

 M
ul

t im
ed

ia

B
oa

rd

Xi
lin

x
V

irt
ex

-II
 F

PG
A

M
ul

tim
ed

ia
 B

oa
rd

BR
AM

In

te
rfa

ce
/

C
on

tro
lle

r
(X

ili
nx

 IP
)

ILMB

2x
 B

R
A

M

In
te

rfa
ce

/
C

on
tro

lle
r

(X
ili

nx
 IP

)

OPB
X

M
D

 B
R

AM

Bl
oc

k
(F

P
G

A

H
ar

dw
ar

e)

C
ha

ra
ct

er

B
R

A
M

 B
lo

ck

(F
P

G
A

H

ar
dw

ar
e)

G
P

IO
 (X

ili
nx

IP

)

OPB

In
te

rru
pt

C

on
tro

lle
r

(X
ili

nx
 IP

)

Ti
m

er

(X
ilin

x
IP

)

OPB

E
th

er
ne

t S
en

d/
R

ec
v

P
ro

to
co

l
(c

us
to

m
 s

of
tw

ar
e)

Et
he

rn
et

 c
on

tro
l

(c
us

to
m

 s
of

tw
ar

e)

Po
ke

r G
am

ep
la

y
(c

us
to

m
 s

of
tw

ar
e)

OPB

XMDStubBR
AM

In

te
rfa

ce
/

C
on

tro
lle

r
(X

ili
nx

 IP
)

D
at

a
BR

A
M

B

lo
ck

 (F
P

G
A

H

ar
dw

ar
e)

D
LM

B

 11

2.3.3. Hardware IP Blocks

2.3.3.1. Processor

The MicroBlaze (Xilinx IP) is a standard 32-bit RISC Harvard-style soft

processor that is especially developed for the Virtex FPGA architecture. It

can be used with Xilinx EDK 6.35 software to develop a base system on the

Xilinx Multimedia Board. It is the brains of the system controlling each IP

block through software embedded in memory. The core can be

instantiated in Xilinx Platform Studio by following the tutorial in module

m016 on the ECE532 course website.

2.3.3.2. Universal Asynchronous Receiver/Transmitter (UART)

The UART (Xilinx IP) core handles I/O to and from the system for user

input and debugging. It connects to an off chip RS232 serial port. This

port directly connects to the serial interface of a PC. The core can be

instantiated along with a MicroBlaze base system by following module

m01 from the previous section.

2.3.3.3. General Purpose I/O (GPIO)

The GPIO (Xilinx IP) core controls general purpose input and output

signals from switches or LED’s on the board. The system uses the GPIO

with on board switches to manually reset the processor and the SVGA

monitor. The core can be added to the base system by following module

m027 from the ECE532 course website.

2.3.3.4. Timer & Interrupt Controller

The Timer (Xilinx IP) and Interrupt Controller (Xilinx IP) cores are used by

the system for timing events and interrupting processor operation to

service requests from other connected peripherals such as the EMAC. The

 12

cores can be added to the base system by following module m038 from the

ECE532 course website.

2.3.3.5. Ethernet

Communication between server and client boards is controlled with the

help of the Ethernet Media Access Controller (EMAC) IP core which

connects to an on board Ethernet physical transceiver chip. This EMAC

(Xilinx IP) core is responsible for all sending and receiving of Ethernet

frames. It can be added to the base MicroBlaze system by following the

tutorial in module m049 on the ECE532 course website.

2.3.3.6. Microblaze Debug Module (MDM)

The MicroBlaze Debug Module (Xilinx IP) core performs debugging on

the hardware and software system during run time. It can be instantiated

with the MicroBlaze base system by following module m01.

2.3.3.7. ZBT External Memory Controller (EMC)

The ZBT External Memory Controller (Xilinx IP) core controls the on-

board ZBT memory chip to store/load instructions and data that require

larger capacity than what is available from the on-chip BRAM. The core

can be instantiated with the base system by ensuring that ZBT_512Kx32 is

selected with the UARTLITE option in the Configure Additional IO

Interfaces screen of the Xilinx Platform Studio Base System Builder

Wizard used in module m01. After instantiating the core, add the

relevant LOC constraints for the ZBT memory chip in the system.ucf file.

The constraints file for the system is shown in the appendix.

 13

2.3.3.8. SVGA

The SVGA controller is based on the reference design from Xilinx10. The

particular type of controller used in this project is the character mode

SVGA with colour support.

Instead of specifying the state of each pixel as in a bitmap mode, the

screen is broken down into areas of 8x8 pixels. In each area, a previously

defined character can be drawn. The defined characters are stored in a

read-only memory block. The character to be drawn in each location is

indicated by writing a value to the corresponding location in the character

ram.

With the colour support, the active pixels in each character area can be

assigned a colour; this colour is the same for all the pixels in the area. The

colour of each area can be set by writing the appropriate value to the

location in the colour video memory.

In our system, the SVGA controller is attached to the OPB bus. The video

memory is mapped to an address range and thus is always accessible for

writing.

The output of the controller drives the pins of the FPGA that are

connected to a triple 8-bit video DAC on the Multimedia Board. The pin

connections are specified in the system.ucf file found in the appendix.

2.3.4. Software Blocks

All the hardware IP blocks are controlled by the designer using software

embedded on the MicroBlaze processor. Xilinx provides low level

software drivers that the designer can use to code the higher level

software of the system. Complete documentation of these low level

 14

functions, data structures and software components can be found in the

Xilinx Device Driver Documentation11.

2.3.4.1. Ethernet

The EMAC interfaces with the MicroBlaze by means of low level software

drivers provided by Xilinx. These Ethernet drivers provide functions to

control the EMAC using software programmed by the designer. The

description of these drivers can be found in the EMAC section of the

Xilinx Device Driver Documentation. These drivers facilitate the software

coding needed to control the sending and receiving of Ethernet frames

from board to board in a reliable and timely fashion. The control software

was adapted from a project completed by Patrick Akl from the American

University of Beirut for A Reliable Communication System for Xilinx

MicroBlaze FPGA Systems12. Finally, the software system contains a

custom designed protocol to standardize communication between each

board. This protocol identifies frame types before sending and after

receiving to ensure correct processing of data communicated between

server and client machines.

2.3.4.2. Poker Gameplay

The game in our system proceeds upon a server/client protocol. One

server board is responsible for all the administrative aspects of the poker

game while the other board acts as a client and solely relies on the server

for the necessary information, such as the cards dealt for the hand. All the

intelligence for the game is run on the server side and communicated to

the client machine via the Ethernet.

 15

2.3.4.3. SVGA

To facilitate the ease of drawing characters onto the SVGA monitor,

several custom functions were created. These functions draw characters

by writing directly to the video memory of the SVGA controller.

 16

3. Outcome

3.1. Results

Figure 3-1 SVGA Display

 17

The results of the project were excellent. The hardware and software

systems were built and tested separately and integrated successfully to

create a fun and interactive network poker game with graphics similar to

the figure above.

Players start with $100 each and can raise a maximum of $9 each round.

Randomization is achieved through a counter that runs upon server

startup and stops when a client connection is received. This counter value

is used as the seed for the random number generator for the game. The

opposing player’s cards are face down to maintain ambiguity and the

board cards are displayed in the centre of the screen to both players.

Players can call, check, raise or fold each round by entering the

appropriate letter when prompted at the XILINXPORT window as well as

in the GUI. Player bets are shown with chip stacks in front of their cards

and the current pot is displayed with a chip stack to the right side of the

board cards. The program quits when one player ends a game with $0

cash and cannot meet the $1/$2 blinds.

The network communication of 10Mbps with error checking and recovery

was adequate for the game and provided reliable and fast enough data

transfer to support all the gaming needs. The character mode SVGA was

sufficient for drawing cards and chips since the graphics do not need great

detail and speed. Cards and chips are easier to draw and do not require

external memory for storage of each pixel.

3.2. Improvements & Future Work

Some suggested enhancements to this system are as follows:

1. Greater than two network players/boards

 18

 Connect more than two boards to the hub and modify server to
receive and deal multiple clients with different MAC addresses

2. Keyboard Input

 Completely isolate system with keyboard input directly into
board PS2 port

3. Sound

 Introduce sound effects of shuffling, dealing, betting

4. Higher Stakes

 Allow no limit betting

 Have a larger pot and player cash

5. Faster Communication

 Increase speed of Ethernet communications from 10Mbps to
100Mbps

6. Player Interaction

 WebCam over the network to view poker faces, will require
faster communication

 Allow text messages or speech across network, will require
faster communication

7. Better Graphics

 Less blinking between turns because of redrawing entire screen

 Use bitmapped SVGA over character mode SVGA for better
graphics

8. Save Games

 Use ZBT memory to save game states for retrieval later

 19

4. Description of Blocks

4.1. Hardware Blocks

Figure 4-1 Hardware IP Cores

 20

Figure 4-2 Hardware Bus Connections

 21

Figure 4-3 Hardware Memory Map

 22

4.1.1. Processor

The Xilinx MicroBlaze soft processor IP core is central to the SVGA

Network Poker system. It is a 32-bit RISC processor clocked by the

27MHz clock crystal on the Xilinx Multimedia Board. The MicroBlaze

includes the following features13:

 Thirty-two 32-bit general purpose RAM based registers with
separate instructions for data and memory access

 Separate instruction (ILMB) and data (DLMB) local memory buses

 Built-in interfaces to fast on-chip memory and to IBM’s industry-
standard On-chip Peripheral Bus (OPB)

 Support for both on-chip BRAM and external memory

The MicroBlaze core is shown in the figure below. It controls the game-

play, I/O and communication over the Ethernet with embedded software

and Xilinx drivers stored in its instruction/data memory. This software

controls the hardware cores in the system.

Figure 4-4 MicroBlaze Processor Core

 23

4.1.2. Ethernet

An Ethernet interface is established using the Ethernet Medium Access

Controller (EMAC) provided as a Xilinx IP core14. This core can support

32-bit master or slave interfaces on the OPB. The connection speed is 10

Mbps. It supports the IEEE Std. 802.3 Media Independent Interface (MII)

to industry standard Physical Layer (PHY) devices. The MII of the EMAC

connects to an external 10/100 physical interface (PHY) transceiver. The

physical interface is created using a LevelOne LXT972 3.3 Volt PHY15. It is

an IEEE-compliant Fast Ethernet transceiver that directly supports both

100BASE-TX and 10BASE-T applications.

4.1.3. PC to Board Communication

I/O of the system consists of serial communication with the processor

using a Xilinx IP Universal Asynchronous Receiver/Transmitter (UART)

core16 interfaced on the OPB. This core controls the off chip RS232 serial

port directly connected to the serial interface of a PC. This can be used as

the main communication for game play and game display (using ASCII

characters).

4.1.4. Timer

The TC (Timer/Counter) is a 32-bit timer module that attaches to the OPB

with byte-enable support17. It has two programmable interval timers with

interrupt generation capabilities and configurable counter width. The

timer is used to timeout acknowledge frames not received by the EMAC

after a frame has been sent out across the network. This interrupt causes

the interrupt controller to resend the frame until an acknowledge message

is received. If no acknowledge message is received after 10 unsuccessful

attempts the system will notify the user of a send error.

 24

4.1.5. Interrupt Controller

The Interrupt Controller core is a simple, parameterized interrupt

controller that attaches to the OPB (On-chip Peripheral Bus)18. The

controller connects to the Timer and EMAC IP cores for interrupt driven

event handling. The timer interrupts with acknowledge timeouts

indicating Ethernet frame error and the need for retransmission. The

EMAC interrupts with incoming Ethernet frames that require processing

for game-play.

4.1.6. Debug Module

A MicroBlaze Debug Module (MDM) is included as a slave peripheral on

the OPB. This is a Xilinx IP used to access the internal structure of the

processor for debugging and troubleshooting during the design and

testing phase. The MDM interfaces with the Xilinx MicroBlaze Debugger

(XMD) software debug stub stored in the FPGA BRAM. The XMD

interface can be used for command line control and debugging of the

MicroBlaze as well as for running complex verification test scripts to test

the complete system. This MDM can be interfaced with GNU debugger

(GDB) for efficient debugging of software embedded onto the processor.

 25

Figure 4-5 Microblaze MDM Target19

4.1.7. GPIO

The General Purpose Input/Output (GPIO) core is connected to the

OPB20. It has two input signals controlled by DIP switches on the

Multimedia Board. SW0 is the manual active low reset for the MicroBlaze

processor. SW1 is the manual active low reset for the SVGA monitor. The

GPIO is a simple peripheral consisting of two registers and a multiplexer

for reading register contents and the GPIO I/O signals.

 26

Figure 4-6 GPIO Block Diagram

4.1.8. ZBT Memory

The External Memory Controller IP module supports data transfers

between the On-chip Peripheral Bus (OPB) and external synchronous and

asynchronous memory devices21. The EMC on the board connects to a

Samsung K7N163601A 512Kx36 Pipelined NtRAM22 for storage of all the

software assembly code compiled by EDK for executing the Ethernet

communications and poker gameplay. The pin-out from the FPGA to the

memory bank can be found in the Multimedia Board User Guide. The

LOC constraints are added to the system.ucf file shown in the appendix.

 27

4.1.9. SVGA

Figure 4-7 Character Mode SVGA Block Diagram

4.1.9.1. Graphics Controller

The graphics controller in our project is adapted from the Xilinx example

available referenced at the end of this document. The design comes in a

Verilog format, thus the “Import Peripheral Wizard” was used to convert

it to a core suitable for EDK. The outputs of the design are connected to

the pins of the FPGA to allow it to drive the video DAC. See appendix for

LOC constraints applied in the system.ucf file.

Modelsim simulations were used to test this module.

4.1.9.1.1 CHAR_MODE_SVGA_CTRL

This Verilog module comes from COLOR_CHAR_MODE_SVGA_CTRL.v

in the original Xilinx example. The name was shortened because the

 28

“Import Peripheral Wizard” of EDK limits the length of the name of cores.

This module is the top level module for the controller. It instantiates all

the following modules and makes the appropriate connections.

To connect it with the OPB, all address and data lines were increased to a

width of 32 bits to match the bus. Only the least significant lines are

connected to the relevant sub-modules. Also, to reduce the number of

connections, the colour RAM write clock and the character RAM write

clock are connected together.

The last change to this module was to disable the composite sync on

green. The composite sync signal is intended for older analog monitors

without separate vertical and horizontal sync inputs. However, we found

that this feature caused some problems with our monitors and caused all

black areas to be displayed as light green.

4.1.9.1.2 CHARACTER_MODE

This module comes directly from CHARACTER_MODE.v in the Xilinx

example. Its purpose is to generate serial pixel data to drive the DAC. It

also instantiates the character ROM module that contains the definition of

available characters and the character video RAM module.

No changes were made from the original.

4.1.9.1.3 CHAR_GEN_ROM

This module is adapted from CHAR_GEN_ROM.v in the Xilinx reference

design. It instantiates a 2k x 8 ROM using the Virtex-II’s block RAM. This

ROM stores all the characters that are available to be drawn. The ROM

contents are specified inside the Verilog file using “defparam” statements.

 29

For our project, the initial contents of the ROM were modified to include

our own custom characters and graphics. Our characters are actually

made up of 2x2 arrays of regular-sized characters put together to make

larger, more visible characters. Also, the “//synthesis translate_off”

command was removed to make XST properly process the “defparam”

statements. Finally, the black-box module declaration for RAMB16_S9

was removed.

4.1.9.1.4 CHAR_RAM

This module is adapted from CHAR_RAM.v of the Xilinx design. It

creates an 8k x 8 character video RAM from the block RAMs of the Virtex-

II. The character to be drawn at each character location is determined by

writing the address of the character in the character ROM to the

corresponding memory location inside the video RAM.

Compared to the original module from Xilinx, the initial state of the RAM

was changed to the different blank character address we had from

changing the character ROM. Also, the “//synthesis translate_off”

command was removed to make XST properly process the “defparam”

statements. Finally, the black-box module declaration for RAMB16_S2_S2

was removed.

4.1.9.1.5 SVGA_TIMING_GENERATION

This module is derived from SVGA_TIMING_GENERATION.v of the

Xilinx design example. This module is responsible for generating the

correct timing information and control signals for the SVGA outputs.

In our project, the only revision we made is to directly include the timing

parameters needed as opposed to including “svga_defines.v” like the

 30

original version. The parameters the project uses generate a resolution of

800x600 with a refresh rate of 72MHz.

4.1.9.1.6 COLOR_RAM

This module is from COLOR_RAM.v of the original Xilinx design. Its

purpose is to create an 8k x 4 colour RAM from the Virtex-II block RAM’s.

The colour RAM stores the colour information for each character. Since

each address location addresses 4 bits, only 16 colours can be used. All

the active pixels in a character have the colour that is specified in the

colour RAM. The initial default colour is white.

The “//synthesis translate_off” command was removed to make XST

properly process the “defparam” statements. Also, the black-box module

declaration for RAMB16_S4_S4 was removed.

4.1.9.1.7 COLOR_PIPE

This module is copied from COLOR_PIPE.v of the reference character

mode design. It delays the colour data information to synchronize the

character data information.

No changes were made to this module from the original.

4.1.9.1.8 CLUT

This module is based on CLUT.v of the Xilinx example. This module

generates the colour information that drives the DAC based on the 4 bits

from the colour RAM. The 16 colours implemented are based on the DOS

16 colour palette.

The only change made to this module from the original is to make all

“inactive” pixels green. The reason for this was to create a green

background to simulate a card table.

 31

Table 4-1 SVGA Colours

Color Index

Black 0
Navy 1
Green 2
Teal 3

Maroon 4
Purple 5
Olive 6
Silver 7
Gray 8
Blue 9

Lime Green 10
Cyan 11
Red 12

Magenta 13
Yellow 14
White 15

4.1.9.1.9 DRIVE_DAC_DATA

This module is duplicated from DRIVE_DAC_DATA.v of the Xilinx

reference design. This module is used to pass the correct data to the DAC.

No changes were made to this module from the original.

4.1.9.2. OPB_BRAM_IF_CNTRL

To interface the graphics controller to the MicroBlaze processor, the

opb_bram_if_cntrl, ver 1.00.a, is used. This allows the MicroBlaze access

to the video RAM of the controller through the OPB. Since only the least

significant bits of the data and address lines are used inside the SVGA

controller, byte operations must be used.

 32

In our system, two BRAM controllers are used: one to write to the

character video RAM and one to write to the colour video RAM.

4.1.9.3. Video DAC

The Xilinx MicroBlaze Multimedia board contains a triple 8-bit video DAC

for driving an SVGA monitor. The DAC converts the 8 bits of green, red

and blue colour information into analog signals. It also provides the

ability for composite sync on green for older monitors that require it.

4.2. Software Blocks

The XMDstub is used to download the software application into ZBT

memory with the command: dow mb0_default/executable.elf

The software application must be built and compiled with the start

address set to the first address of the ZBT bank (MEM0) in the hardware

memory map. This can be done from the compiler options window in the

applications tab of EDK. The software project in the applications tab must

also not be marked to initialize BRAMs since the software code will be

stored in external ZBT memory.

 33

Figure 4-8 Compiler Options

4.2.1. Ethernet

The Ethernet drivers embedded into the processor along with the game

communication functions will define and initialize each system as a server

or client depending on the software downloaded on each machine.

A network protocol analyzer called Ethereal23 was used to monitor

network traffic and Ethernet frames between each board. Ethereal can be

installed on any PC and must be connected to the hub between each

board. This analyzer can help to debug frame contents in transit.

4.2.1.1. Ethernet Drivers

The Ethernet drivers for the EMAC come as part of Xilinx embedded

drivers for software application involving network communications. A

 34

detailed description of these drivers can be found in the Xilinx Device

Driver Documentation.

Each board contains a unique 48-bit serial number that can be used as the

MAC address for the board. The EMAC also contains a hard coded MAC

Address in a register and can be obtained with a special procedure.

However, the controller also has a configurable MAC Address that is used

for user convenience. The MAC address for each board can be set in the

SingleMB_MACAddresses.h file by changing the LocalAddress variable to

the desired MAC address. The EMAC is initialized with low level drivers

in the SingleMB_IntializationFunctions.c file. It is configured for

automatic insertion of some Ethernet Header and Trailer fields such as the

CRC and the source MAC Address. The MAC address is also configured

here by running the driver function XEmac_SetMacAddress(EmacPtr,

LocalAddress).

4.2.1.2. Ethernet Control Protocol

The sending and receiving of frames using the layer 0 Xilinx drivers are

not enough to ensure successful transmission of data from one board to

the next. In case a frame is lost, the lower level protocol does not

retransmit or inform of an errors. In addition, the receiver cannot

distinguish between duplicate frames or frames which are received out of

order. The layer 0 drivers can only support Ethernet frames of maximum

1500 bytes in size so there is a need for fragmentation and reassembly for

messages larger than this limit. The need for flow control and higher

payload size requires the use of a higher layers (layer 1 and 2) Ethernet

protocol in the system. These layers are responsible for full control over

sending and receiving frames correctly and in order. Tables 4-1 to 4-3

outline the structure of Ethernet frames at these higher layers. These

layers are directly adapted from the project completed by Patrick Akl for a

 35

simple reliable communication system for Xilinx FPGAs. Detailed

descriptions of the layer 1 and 2 control protocol can be found in his user

guide referenced at the end of this report.

Table 4-2 Layer 1 Ethernet Frame

Destination

Address
Source

Address
Frame
Length

Payload Frame Check Sequence

6 bytes 6 bytes 2 bytes 46 to 1500 bytes
(auto padding)

4 bytes (auto
insertion by EMAC)

Table 4-3 Layer 2 Ethernet Frame

Frame Type Sequence

Number
Message
Length

Fragment Payload

2 bytes 4 bytes 4 bytes Any size less
than 232 bytes

Table 4-4 Layer 2 Frame Types

Frame Type Meaning

0 Non Fragmented Message
1 ACK Message
2 First Fragment
3 Internal Fragment
4 Last Fragment

4.2.1.3. Poker Gameplay Protocol

The poker game communication needs another protocol on top of the

lower level layers to establish a standard between server and client. This

layer 3 protocol is custom designed for the purposes of game

 36

coordination. Table 4-4 outlines the basic types of poker frames sent from

server to client and vice versa.

 Cards Frame: sent from server to client that holds each players
cards in hand as well as the 5 board cards

 Cash Frame: sent from server to client that holds the cash balance
of each player and pot amount during each round

 Turn Frame: specifies to client the game status (pre-flop, flop, turn,
river and etc.)

 DoBet Frame: sent by server to client to request a bet from the
client machine for the current round, hold value of maximum
current bet on the table to indicate whether the client can just check
or must call to stay in the game

 BetValue Frame: sent from client to server to establish what bet the
client made after getting a DoBet frame from the server

 Status Frame: sent from server to client to inform client user of
choices and outcomes made by server machine

 Connect Frame: sent from client to server to establish a connection
and deal the first hand of poker

The SingleMB_HandlerFunctions.c file contains the FifoRecvHandler

function that is the interrupt service routine run when the EMAC

interrupts the processor with a received frame. User code has been added

here in the form of a case statement to determine the poker protocol frame

type and process it accordingly.

The file send.c contains the corresponding send functions for each poker

protocol frame type.

 37

Table 4-5 Layer 3 Frame Types

Fram

e
Type

1st element 2nd element 3rd element Frame Type

1 Player1 cards Player2 cards Board
Cards

Cards Frame

2 Player1 cash Player2 cash Pot Value Cash Frame
3 Turn Integer - - Turn Frame
4 Maximum

Current Bet
- - DoBet Frame

5 Player2 Bet
Amount

- - BetValue
Frame

6 Status Message Player Number Amount Status Frame
7 - - - Connect

Frame

Table 4-6 Layer 3 Turn Type

Frame Type Meaning

0 Pre Flop
1 Flop
2 Turn
3 River
4 Round over, show all cards

Table 4-7 Layer 3 Status Message Type

Frame Type Meaning

0 Player Calls/Checks
1 Player Raises
2 Player Wins
3 Player Folds

 38

4.2.2. Poker Gameplay

The entire game is controlled by a custom created C code. Since the game

operates on a server/client connection, the server is responsible for

managing all the various aspects of the game-play, while the client simply

displays the appropriate information as instructed by the server.

4.2.2.1. Server

 server_main.c: This file contains the main function for running the
game. It first initializes the Ethernet connection by calling the
appropriate Ethernet driver functions. It runs the game by
continuously looping through dealing the cards, getting bets,
showing more cards and determining a winner. It also calls upon
the functions in send.c for sending the appropriate information to
the client at the correct times.

 dealholdem.c, shuffle.c, fastran2.c: Together, these files deal the
cards for a single round. The cards are shuffled by calling on the
functions in shuffle.c and dealholdem.c assigns random cards to
each player and as community cards. Randomization is done by
calling fastran2.c.

 betting.c: This file contains functions related to betting, such as
removing the blinds from the two players left of the button, and
prompting for a bet from the player.

 getCombos.c, getf.c, getstr7s.c: These files contain the functions
necessary for evaluating hands to determine the type of hand each
player has made.

 printHands.c: This file contains functions for displaying the status
of the game. It uses the SVGA drivers to draw information on the
SVGA monitor as well as displaying information to the terminal.

 winners.c: This file contains functions for determining the winner
or winners and then assigning the cash properly.

 39

4.2.2.2. Client

 client_main.c: This file contains the main() function for running the
client side of the game. It simply waits in a while loop and displays
new information using printHands.c whenever information is
received from the server.

4.2.3. SVGA Drivers

4.2.3.1. display.h

This header file contains define statements and other initialization

statements that contains the following information:

 the height and width of the screen in terms of characters of 8x8
pixels,

 the starting address as defined in the character ROM of each
character,

 the index of the colours, and

 the location on the screen to draw the cards, chip stacks, names and
amounts.

4.2.3.2. display.c

This file contains functions to draw characters onto the screen by writing

into the memory RAM. At the lower level, the drawChar() and

drawBigChar functions simply draws a 1x1 character or a 2x2 character

onto the screen at the specified row and column with the specified colour

by writing to memory. The other functions call on these two functions to

draw more sophisticated items:

 drawBlankScreen() clears the screen by drawing a blank character
at all locations.

 drawCard() draws a card at the specified row and column given a
card value and a card suit.

 40

 drawChipStack() uses the stack characters to draw a single stack of

chips at the specified location with the specified value and colour.

 drawStacks() takes an integer value and draws three stacks of chips
of different values at the specified location using drawChipStack().

 drawText() draws a “\n” terminated string at the specified location
with the specified colour. For our project, only capital letters and
numbers are implemented in the character ROM so only these can
be drawn.

 drawInt() is similar to drawText() except it takes an integer as its
input.

 41

42

5. Design Tree

Figure 5-1 Design Tree

Table 5-1 Design Tree Description

Directory/File Description

./_xps Option files for bitinit, libgen, simgen and
platgen

./code/client Software code for client system

./code/server Software code for server system

./code/rcs Backup of original Ethernet code

./data Constraints file located here

./doc Documentation files

./etc Option files for bitgen and downloading

./hdl Verilog and VHDL files for the hardware
system

./implementation Synthesis, NGD, Map, PAR files directory

./mb0_default Software executable.elf file to be downloaded
to ZBT memory located here

./microblaze_0 Software libraries and drivers

./pcores Custom core directory containing the
character mode SVGA hardware IP core

./rcs Archives of original Ethernet communication
hardware system

./synthesis Intermediary include files, scripts, logs and
project files for synthesis

./system.xmp XPS project file

./system.mhs Microblaze Hardware Specification file

./system.mss Microblaze Software Specification file
 ./readme Contains description of design tree
./system.make System Makefile
./data/system.ucf System Constraints File

 43

6. System Setup

6.1. Equipment Needed

 2 Xilinx Multimedia Boards

 1 10Mbps Ethernet hub with at least 2 ports

 2 SVGA Monitors

 2 PC workstations with EDK6.3 installed

 2 RJ45 Ethernet cables

HUB

6.2. Hardware Setup Procedure

Figure 6-1 Hardware Setup

 44

6.3. Software Setup Procedure

 Open system.xmp in EDK on the two different PC workstations

 Download each system onto its respective board

 Go to applications tab and change source file in Project:

mb0_default to the server or client directory server_main.c or

client_main.c file depending on which system will be the client and

which system will be the server

 Build and compile the software for each system (ignore warnings)

 Run XMD

 Download software onto each board with command:

dow mb0_default/executable.elf

 Open XILINXPORT window on each machine and connect to

COM1

 Run server machine first and then run client machine next

 Game will commence

 45

7. Conclusion

With silicon technologies shrinking every two years as predicted by

Moore’s Law, more and more hardware can be packed into a single FPGA.

Large-scale systems on a programmable chip can be used for many

embedded applications with the flexibility to change the design in the

field. Having good EDA tools is key to ensuring the success of a fully

embedded hardware and software system. Xilinx EDK and ISE are

examples of such tools and were used extensively to create the SVGA

Network Poker system. Following good modular design practices and

flows the system was built and integrated successfully to produce a fun

network game. Like all systems there is much room for future work and

improvements. However, this project provides a solid base and

background into developing large complex applications and hardware

composed of high-density logic.

 46

Appendix

System.ucf

Net sys_clk PERIOD = 37037 ps;

Net RS232_RX LOC=C8;
Net RS232_TX LOC=C9;
Net RS232_req_to_send LOC=B8;

Net sys_clk LOC=AH15;
Net sys_rst LOC=AH7;
Net sys_rst TIG;

Net opb_gpio_0_GPIO_IO<1> LOC=B27;
Net opb_gpio_0_GPIO_IO<0> LOC=D10;

Net PHY_slew1 LOC=G16;
Net PHY_slew2 LOC=C16;
Net opb_ethernet_0_PHY_crs LOC=F20;
Net opb_ethernet_0_PHY_col LOC=C23;

Net opb_ethernet_0_PHY_tx_data<3> LOC=C22;
Net opb_ethernet_0_PHY_tx_data<2> LOC=B20;
Net opb_ethernet_0_PHY_tx_data<1> LOC=B21;
Net opb_ethernet_0_PHY_tx_data<0> LOC=G20;

Net opb_ethernet_0_PHY_tx_en LOC=G19;
Net opb_ethernet_0_PHY_tx_clk LOC=H16;
Net opb_ethernet_0_PHY_tx_er LOC=D21;
Net opb_ethernet_0_PHY_rx_er LOC=D22;
Net opb_ethernet_0_PHY_rx_clk LOC=C17;
Net opb_ethernet_0_PHY_dv LOC=B17;

Net opb_ethernet_0_PHY_rx_data<0> LOC=B16;
Net opb_ethernet_0_PHY_rx_data<1> LOC=F17;
Net opb_ethernet_0_PHY_rx_data<2> LOC=F16;
Net opb_ethernet_0_PHY_rx_data<3> LOC=D16;

Net opb_ethernet_0_PHY_Mii_clk LOC=D17;
Net opb_ethernet_0_PHY_Mii_data LOC=A17;

Net ZBT_512Kx32_Mem_A<29> LOC=T23;
Net ZBT_512Kx32_Mem_A<29> FAST;
Net ZBT_512Kx32_Mem_A<28> LOC=U23;
Net ZBT_512Kx32_Mem_A<28> FAST;
Net ZBT_512Kx32_Mem_A<27> LOC=AB29;

 47

Net ZBT_512Kx32_Mem_A<27> FAST;
Net ZBT_512Kx32_Mem_A<26> LOC=AA29;
Net ZBT_512Kx32_Mem_A<26> FAST;
Net ZBT_512Kx32_Mem_A<25> LOC=AA27;
Net ZBT_512Kx32_Mem_A<25> FAST;
Net ZBT_512Kx32_Mem_A<24> LOC=AB27;
Net ZBT_512Kx32_Mem_A<24> FAST;
Net ZBT_512Kx32_Mem_A<23> LOC=H25;
Net ZBT_512Kx32_Mem_A<23> FAST;
Net ZBT_512Kx32_Mem_A<22> LOC=G25;
Net ZBT_512Kx32_Mem_A<22> FAST;
Net ZBT_512Kx32_Mem_A<21> LOC=G28;
Net ZBT_512Kx32_Mem_A<21> FAST;
Net ZBT_512Kx32_Mem_A<20> LOC=H29;
Net ZBT_512Kx32_Mem_A<20> FAST;
Net ZBT_512Kx32_Mem_A<19> LOC=U27;
Net ZBT_512Kx32_Mem_A<19> FAST;
Net ZBT_512Kx32_Mem_A<18> LOC=T27;
Net ZBT_512Kx32_Mem_A<18> FAST;
Net ZBT_512Kx32_Mem_A<17> LOC=V29;
Net ZBT_512Kx32_Mem_A<17> FAST;
Net ZBT_512Kx32_Mem_A<16> LOC=U29;
Net ZBT_512Kx32_Mem_A<16> FAST;
Net ZBT_512Kx32_Mem_A<15> LOC=T24;
Net ZBT_512Kx32_Mem_A<15> FAST;
Net ZBT_512Kx32_Mem_A<14> LOC=T25;
Net ZBT_512Kx32_Mem_A<14> FAST;
Net ZBT_512Kx32_Mem_A<13> LOC=U28;
Net ZBT_512Kx32_Mem_A<13> FAST;
Net ZBT_512Kx32_Mem_A<12> LOC=F28;
Net ZBT_512Kx32_Mem_A<12> FAST;
Net ZBT_512Kx32_Mem_A<11> LOC=L23;
Net ZBT_512Kx32_Mem_A<11> FAST;
Net ZBT_512Kx32_Mem_DQ<31> LOC=T30;
Net ZBT_512Kx32_Mem_DQ<31> FAST;
Net ZBT_512Kx32_Mem_DQ<30> LOC=P28;
Net ZBT_512Kx32_Mem_DQ<30> FAST;
Net ZBT_512Kx32_Mem_DQ<29> LOC=R25;
Net ZBT_512Kx32_Mem_DQ<29> FAST;
Net ZBT_512Kx32_Mem_DQ<28> LOC=R29;
Net ZBT_512Kx32_Mem_DQ<28> FAST;
Net ZBT_512Kx32_Mem_DQ<27> LOC=R27;
Net ZBT_512Kx32_Mem_DQ<27> FAST;
Net ZBT_512Kx32_Mem_DQ<26> LOC=R23;
Net ZBT_512Kx32_Mem_DQ<26> FAST;
Net ZBT_512Kx32_Mem_DQ<25> LOC=N30;
Net ZBT_512Kx32_Mem_DQ<25> FAST;
Net ZBT_512Kx32_Mem_DQ<24> LOC=K26;
Net ZBT_512Kx32_Mem_DQ<24> FAST;
Net ZBT_512Kx32_Mem_DQ<23> LOC=M25;
Net ZBT_512Kx32_Mem_DQ<23> FAST;
Net ZBT_512Kx32_Mem_DQ<22> LOC=J29;

 48

Net ZBT_512Kx32_Mem_DQ<22> FAST;
Net ZBT_512Kx32_Mem_DQ<21> LOC=K27;
Net ZBT_512Kx32_Mem_DQ<21> FAST;
Net ZBT_512Kx32_Mem_DQ<20> LOC=L24;
Net ZBT_512Kx32_Mem_DQ<20> FAST;
Net ZBT_512Kx32_Mem_DQ<19> LOC=H27;
Net ZBT_512Kx32_Mem_DQ<19> FAST;
Net ZBT_512Kx32_Mem_DQ<18> LOC=H26;
Net ZBT_512Kx32_Mem_DQ<18> FAST;
Net ZBT_512Kx32_Mem_DQ<17> LOC=K25;
Net ZBT_512Kx32_Mem_DQ<17> FAST;
Net ZBT_512Kx32_Mem_DQ<16> LOC=H28;
Net ZBT_512Kx32_Mem_DQ<16> FAST;
Net ZBT_512Kx32_Mem_DQ<15> LOC=J25;
Net ZBT_512Kx32_Mem_DQ<15> FAST;
Net ZBT_512Kx32_Mem_DQ<14> LOC=J26;
Net ZBT_512Kx32_Mem_DQ<14> FAST;
Net ZBT_512Kx32_Mem_DQ<13> LOC=J28;
Net ZBT_512Kx32_Mem_DQ<13> FAST;
Net ZBT_512Kx32_Mem_DQ<12> LOC=K24;
Net ZBT_512Kx32_Mem_DQ<12> FAST;
Net ZBT_512Kx32_Mem_DQ<11> LOC=J27;
Net ZBT_512Kx32_Mem_DQ<11> FAST;
Net ZBT_512Kx32_Mem_DQ<10> LOC=K29;
Net ZBT_512Kx32_Mem_DQ<10> FAST;
Net ZBT_512Kx32_Mem_DQ<9> LOC=L25;
Net ZBT_512Kx32_Mem_DQ<9> FAST;
Net ZBT_512Kx32_Mem_DQ<8> LOC=L26;
Net ZBT_512Kx32_Mem_DQ<8> FAST;
Net ZBT_512Kx32_Mem_DQ<7> LOC=P30;
Net ZBT_512Kx32_Mem_DQ<7> FAST;
Net ZBT_512Kx32_Mem_DQ<6> LOC=P23;
Net ZBT_512Kx32_Mem_DQ<6> FAST;
Net ZBT_512Kx32_Mem_DQ<5> LOC=P27;
Net ZBT_512Kx32_Mem_DQ<5> FAST;
Net ZBT_512Kx32_Mem_DQ<4> LOC=T29;
Net ZBT_512Kx32_Mem_DQ<4> FAST;
Net ZBT_512Kx32_Mem_DQ<3> LOC=R24;
Net ZBT_512Kx32_Mem_DQ<3> FAST;
Net ZBT_512Kx32_Mem_DQ<2> LOC=R28;
Net ZBT_512Kx32_Mem_DQ<2> FAST;
Net ZBT_512Kx32_Mem_DQ<1> LOC=U30;
Net ZBT_512Kx32_Mem_DQ<1> FAST;
Net ZBT_512Kx32_Mem_DQ<0> LOC=T28;
Net ZBT_512Kx32_Mem_DQ<0> FAST;
Net ZBT_512Kx32_Mem_BEN<0> LOC=G29;
Net ZBT_512Kx32_Mem_BEN<0> FAST;
Net ZBT_512Kx32_Mem_BEN<1> LOC=F29;
Net ZBT_512Kx32_Mem_BEN<1> FAST;
Net ZBT_512Kx32_Mem_BEN<2> LOC=H24;
Net ZBT_512Kx32_Mem_BEN<2> FAST;
Net ZBT_512Kx32_Mem_BEN<3> LOC=J24;

 49

Net ZBT_512Kx32_Mem_BEN<3> FAST;
Net ZBT_512Kx32_Mem_WEN LOC=F26;
Net ZBT_512Kx32_Mem_WEN FAST;
Net ZBT_512Kx32_Mem_OEN<0> LOC=F30;
Net ZBT_512Kx32_Mem_OEN<0> FAST;
Net ZBT_512Kx32_Mem_CEN<0> LOC=G26;
Net ZBT_512Kx32_Mem_CEN<0> FAST;
Net ZBT_512Kx32_Mem_CKEN LOC=G30;
Net ZBT_512Kx32_Mem_CKEN FAST;
Net ZBT_512Kx32_Mem_ADV_LDN LOC=K23;
Net ZBT_512Kx32_Mem_ADV_LDN FAST;
Net ZBT_CLOCK LOC=G27;
Net ZBT_CLOCK FAST;

NET "CHAR_MODE_SVGA_CTRL_0_pixel_clock" LOC = "AD16" ;
NET "CHAR_MODE_SVGA_CTRL_0_reset" LOC = "F14" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_COMP_SYNCH_N" LOC = "A26" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_HSYNCH_N" LOC = "F24" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_BLANK_N" LOC = "A25" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_BLUE_P<0>" LOC = "C30" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_BLUE_P<1>" LOC = "B30" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_BLUE_P<2>" LOC = "G23" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_BLUE_P<3>" LOC = "H23" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_BLUE_P<4>" LOC = "D28" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_BLUE_P<5>" LOC = "E28" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_BLUE_P<6>" LOC = "D29" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_BLUE_P<7>" LOC = "C29" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_GREEN_P<0>" LOC = "G21" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_GREEN_P<1>" LOC = "G22" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_GREEN_P<2>" LOC = "B25" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_GREEN_P<3>" LOC = "A24" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_GREEN_P<4>" LOC = "D25" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_GREEN_P<5>" LOC = "C24" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_GREEN_P<6>" LOC = "F22" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_GREEN_P<7>" LOC = "F23" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_PIXEL_CLOCK_P" LOC = "A27" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_RED_P<0>" LOC = "E23" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_RED_P<1>" LOC = "E22" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_RED_P<2>" LOC = "H20" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_RED_P<3>" LOC = "H21" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_RED_P<4>" LOC = "B24" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_RED_P<5>" LOC = "B23" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_RED_P<6>" LOC = "D23" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_OUT_RED_P<7>" LOC = "D24" ;
NET "CHAR_MODE_SVGA_CTRL_0_VGA_VSYNCH_N" LOC = "E24" ;

 50

References

1 Multimedia Board User Guide: ../references/Multimedia_UserGuide.pdf
2 Virtex-II Datasheet: ../datasheets/VirtexII.pdf
3 Texas Hold’em Rule: http://www.pokertips.org/rules/texas.php
4 Microblaze Datasheet: ../datasheets/MicroBlaze.pdf
5 EDK Documentation: http://www.xilinx.com/ise/embedded/edk_docs.htm
6 Module m01: ../references/m01.pdf
7 Module m02: ../references/m02.pdf
8 Module m03: ../references/m03.pdf
9 Module m04: ../references/m04.pdf
10 SVGA Reference Design: ../references/COLOR_CHAR_MODE.zip
11 Device Drivers Documentation: ../references/xilinx_drivers.pdf
12 Simple Reliable Communication for Xilinx FPGAs:
../references/Simple_Reliable_Communication_for_Xilinx_FPGAs.pdf
13 MicroBlaze Processor Reference Guide: ../references/mb_ref_guide.pdf
14 EMAC Datasheet: ../datasheets/opb_emac.pdf
15 LXT972 Datasheet: ../datasheets/LXT972.pdf
16 UARTLITE Datasheet: ../datasheets/opb_uartlite.pdf
17 Timer/Counter Datasheet: ../datasheets/opb_timer.pdf
18 Interrupt Controller Datasheet: ../datasheets/opb_intc.pdf
19 EST Guide: ../references/est_guide.pdf
20 GPIO Datasheet: ../datasheets/opb_gpio.pdf
21 EMC Datacheet: ../datasheets/opb_emc.pdf
22 ZBT Datasheet: ../datasheets/ZBT_k7n163601a.pdf
23 Ethereal: http://www.ethereal.com

 51

http://www.pokertips.org/rules/texas.php
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.ethereal.com/

	Introduction
	Overview
	Project Description
	Goals
	Technical System Description
	System Topology
	High Level Description
	Hardware IP Blocks
	Software Blocks

	Outcome
	Results
	Improvements & Future Work

	Description of Blocks
	Hardware Blocks
	Processor
	Ethernet
	PC to Board Communication
	Timer
	Interrupt Controller
	Debug Module
	GPIO
	ZBT Memory
	SVGA
	CHAR_MODE_SVGA_CTRL
	CHARACTER_MODE
	CHAR_GEN_ROM
	CHAR_RAM
	SVGA_TIMING_GENERATION
	COLOR_RAM
	COLOR_PIPE
	CLUT
	DRIVE_DAC_DATA

	Software Blocks
	Ethernet
	Poker Gameplay
	SVGA Drivers

	Design Tree
	System Setup
	Equipment Needed
	Hardware Setup Procedure
	Software Setup Procedure

	Conclusion

