
University of Toronto
ECE532 Digital Hardware

Module m04: Adding the XPS EMAC Peripheral

Version for EDK 10.1.03 as of January 7, 2009

Acknowledgement

This lab is derived from a Xilinx lab given at the University of Toronto EDK workshop in November 2003.
Many thanks to Xilinx for allowing us to use and modify their material.

Goals

• Understand the procedure for adding more complex peripherals to an XPS project.

• Use XPS to manually add the XPS 10/100 EMAC Lite peripheral to the MicroBlaze system.

• Search through more documentation to see where to find various bits of information and examples.

Prerequisites

Module m03: Adding IP and Device Drivers — Timers and Interrupts

Preparation

• Read through this module first to get an idea of what you are about to do.

• Find the data sheet for the XPS Ethernet Lite Media Access Controller (EMACLite) and review it.

• In this lab you will be modifying an example program that can be found in the Processor IP drivers
library for the device. On the Microprocessor lab machines, look in:

%XILINX_EDK%\sw\XilinxProcessorIPLib\drivers\emaclite_v1_13_a\examples

On the ECF Linux machines, look in:

$XILINX_ED$XILINX_EDK/sw/XilinxProcessorIPLib/drivers/emaclite_v1_13_a/examples

• The first step is to copy the previous lab into a directory called lab4. If you like, you can delete the
lab3.c source file from your lab4/code/ directory.

You should, of course, check to see if you have enough space first! You may need to clean up some
files. You can do this using the XPS interface (i.e., via Project → Clean all generated files), using
the facilities provided by the system.make makefile (e.g., start by trying make -f system.make; you
might need to first use dos2unix on system.make if you’re running make on an UGSPARC or an
ECF Linux machine), or by simply deleting the implementation directory in your project (since it is
automatically generated and since it consumes the bulk of your project’s disk space).

• In this module, you will be working with the example called xemaclite intr tapp example.c. Copy
the file from the driver example directory.

You will be asked to modify it so that it will work with your system. You might want to try to
understand what it does so that you will not have to spend time during a lab period doing this. You
can also make some modifications or add some xil printf statements. Put the copied (and possibly
modified) xemaclite intr tapp example.c in lab4/code/.

1

University of Toronto
ECE532 Digital Hardware

Module m04: Adding the XPS EMAC Peripheral

Background

As peripherals become more complex, there are more signals to be brought out of the FPGA and possibly
more timing issues, including the need for timing constraints and Digital Clock Managers (DCMs). The
DCM is a block in the FPGA that contains functions like Delay-Locked Loops (DLLs) that can be used to
help synchronize internal logic and clocks with external logic and their clocks. You will not have to deal
with them in this lab. In this lab, you will be connecting the FPGA to an external Ethernet chip.

Ethernet is a widely used peripheral, so it is beneficial to learn how to properly include the XPS EMAC
into an XPS project.

Outside of the FPGA is the physical layer interface (PHY) chip that actually connects to the Ethernet
cable on one side, and the FPGA pins on the other side. The EMAC is the peripheral that is inside the
FPGA that connects from the FPGA pins to the PLB bus of the MicroBlaze allowing the processor to talk
to the Ethernet chip.

This module is built on top of Module m03. It expects a MicroBlaze system with an interrupt controller
and serial Uart device for standard I/O. If you didn’t successfully add the DIP switch in m03, you can build
onto the simpler design.

Note that the clock frequency must be greather than or equal to 65MHz for the Ethernet core to be
able to operate at 100MBps; as such, the design implemented in this lab can only be expected to operate at
10MBps (which requires a clock frequency of only 6.5MHz).

Using XPS Base System Builder

1. Copy the XPS project directory of the previous lab and rename the copy to lab4 if you have not done
so already. This will be the working project directory for this lab. You may need to clean the project
or delete the implementation directory of the previous module to free up disk space.

2. Open the lab4 project using XPS.

3. Add an xps ethernetlite peripheral to the system (use version 2.00.a). Define the base address of the
device to be aligned at a 8K boundary following the address of the last peripheral in the list. Attach
the EMAC as a slave to the PLB bus.

4. Make the PHY * ports of the xps ethernetlite 0 peripheral instance external, except for PHY rx en.
PHY rst n which should only be made external if you are using the XUPV2P board. Be careful
not to make both the bidirectional signal and the individual unidirectional components
of that signal external! For instance, make PHY Mii data external and leave PHY Mii data I,
PHY Mii data O, and PHY Mii data T as No Connection. Later, you will use the board user’s guide or
schematic for information on pin assignments for each signal.

5. There are two pins on the PHY that are connected to the FPGA but that do not have corresponding
ports in the EMAC device. These signals are inputs to the PHY and should be tied high (i.e., tied to
net vcc) in the design.

Click Add External Port in the Ports tab to create a system port. Name the port
xps ethernetlite 0 PHY slew0 pin, make it an output, and connect it to net vcc. Do the same for
xps ethernetlite 0 PHY slew1 pin.

6. Connect the IP2INTC Irpt signal of the xps ethernetlite 0 peripheral instance to a new net called
xps ethernetlite 0 IP2INTc Irpt.

Recall that the interrupt controller can handle a number of interrupt input request lines. The interrupt
input of the controller is really a vector of signals, not a single wire. Since there may be other interrupt
signals already connected to the interrupt input of the interrupt controller, the EMAC interrupt output
may need to be concatenated to those signals.

To add a new signal to the interrupt input of the controller, click on the entry in the Net column beside
the Intr input of the xps intc 0 peripheral instance. In the dialog that opens, select the interrupt signal

2

University of Toronto
ECE532 Digital Hardware

Module m04: Adding the XPS EMAC Peripheral

you wish to add. Click on the plus symbol to add signals, the scissors symbol to remove signals, and
the arrows to change the order of signals in the list on the right. Note that the order of the list reflects
the priority of the interrupt sources.

7. Add the following entries to the system.ucf file for the project. This configures the physical connec-
tions between the PHY device and the FPGA pins. Use the board user’s guide to find the correct pin
locations. (Hint: You can cut and paste the template below from the PDF into your system.ucf by
changing the select cursor in Acrobat to select text. Make sure the angle brackets appear as greater and
less than symbols after pasting.)

Net xps_ethernetlite_0_PHY_tx_data_pin<0> LOC=***; # TX_DATA0
Net xps_ethernetlite_0_PHY_tx_data_pin<1> LOC=***; # TX_DATA1
Net xps_ethernetlite_0_PHY_tx_data_pin<2> LOC=***; # TX_DATA2
Net xps_ethernetlite_0_PHY_tx_data_pin<3> LOC=***; # TX_DATA3
Net xps_ethernetlite_0_PHY_tx_en_pin LOC=***; # TX_ENABLE
Net xps_ethernetlite_0_PHY_tx_clk_pin LOC=***; # TX_CLOCK
Net xps_ethernetlite_0_PHY_rx_data_pin<0> LOC=***; # RX_DATA0
Net xps_ethernetlite_0_PHY_rx_data_pin<1> LOC=***; # RX_DATA1
Net xps_ethernetlite_0_PHY_rx_data_pin<2> LOC=***; # RX_DATA2
Net xps_ethernetlite_0_PHY_rx_data_pin<3> LOC=***; # RX_DATA3
Net xps_ethernetlite_0_PHY_rx_clk_pin LOC=***; # RX_CLOCK
Net xps_ethernetlite_0_PHY_dv_pin LOC=***; # RX_DATA_VALID
Net xps_ethernetlite_0_PHY_rx_er_pin LOC=***; # RX_ERROR
Net xps_ethernetlite_0_PHY_col_pin LOC=***; # COLLISION_DETECTED
Net xps_ethernetlite_0_PHY_crs_pin LOC=***; # CARRIER_SENSE
Net xps_ethernetlite_0_PHY_rst_n_pin LOC=***; # ENET_RESET_Z -- XUPV2P only

Building The Hardware

8. Select the Hardware menu and the Generate Bitstream submenu in XPS to start building the hardware
system. This will take about 10-15 minutes as the system is compiled, placed and routed for the FPGA.
During the build process, a lot of information will be displayed in the bottom window pane of XPS.
The first step of the software design may be done while the bitstream is being generated.

Look At Next

Module m05: Adding a User-Designed Peripheral
Module m06: Using ISE

3

