
 University of Toronto
ECE532 Digital Hardware

LAB 4.5: Adding a User-Designed Peripheral

1

Version 1.1 2/1/2004 9:48 PM

This lab can be started during Lab 4 and completed during Lab 5, if necessary.

Goals

1. Add a user designed peripheral to a basic MicroBlaze system.
2. Demonstrate the required structure necessary for interfacing user-

designed cores to the Xilinx cores.

Preparation
1. Review the handout outlining the EDK project structure provided in Lab 1.

We will be focusing on the pcores subdirectory for this lab.
2. If you are unfamiliar with the profiling of code, read the manual page for

“gprof”, which is available on the ugsparcs with the “man” command.

Background
To this point, you have only been adding cores from the existing library. If you
cannot find a core with the required functionality, you will have to add your own.

This lab adds a simple core that can be used to profile the code running on a
MicroBlaze. This has similar functionality to the “gprof” utility for profiling that is
available in the GNU tools. However, it is much more accurate. You may find it
useful for your project.

Step-by-step

1. Copy your working lab1 project into a new directory.

2. Add a pcores subdirectory to your new project directory.

Using an ssh window, login to your ugsparc account. The files you will need
for this lab can be found in ~pc/labs/User_Area/lab4.5. Copy: 1) system.c to
the code directory of your project; 2) the snoopy_v1_00_a directory into the
pcores directory; and 3) the sst script and example_results.txt to the root of
the project directory. Note: You may find the “cp –r “ command useful.

3. Take time to look through the directory structure of the snoopy core. The

naming structure is essential for XPS to be able to detect a user’s peripheral.
All user cores must be located in the pcores subdirectory or in a globally
specified path to a peripheral repository. User cores can be defined using

 University of Toronto
ECE532 Digital Hardware

LAB 4.5: Adding a User-Designed Peripheral

2

either VHDL or Verilog, but the tools do not support simulation of mixed
designs. Therefore, it may be preferable to write the designs in VHDL

Along with the hdl files used to implement the core, the user must also include
a .pao file (Peripheral Analyze Order) and an .mpd file (Microprocessor
Peripheral Description). The .pao file lists the order in which files in your
design should be synthesized to resolve component architectures. The .mpd
file describes the external interface of the core to a system. For more
information on these files and their structure, go to the Embedded System
Tools Guide.

The easiest method for including user IP into an EDK project, is to follow an
example. When you develop your own cores for your project, you should use
this as a guide. The cores provided by Xilinx in the
EDK6.1\hw\\XilinxProcessorIPLib\pcores may also be used as a reference.
There is also a document describing how to add user cores to Embedded
Systems (the User Core Template Reference Guide) but it is meant for
relatively complex cores, providing the user an IP Interface (IPIF) to simplify
user core connections to system buses.

4. The snoopy core is a snooping profiler that is able to profile software running

on a softcore processor in real time. The counters calculate the exact
number of clock cycles spent executing contiguous address ranges. The user
specifies the number of counters and the lower and upper bounds for each
counter before synthesis. This information can be used by embedded system
designers to determine which, if any, sections of the software should be
moved to hardware to achieve the required design specifications.

5. Open the Add/Edit cores menu. The snoopy core should appear in the list of

peripherals you can add to your design. Add the snoopy core and connect it
to the slave opb bus. The core requires 0x100 bytes and a 0x100 byte
alignment. Since the tools resolve connections to the opb and lmb buses
based on the address of a peripheral, we suggest address range 0xffffff00 to
0xffffffff to guarantee the peripheral resides on the opb.

6. For the snoopy core to work, it must be interfaced with the system clock, and

the PC_EX and valid_instr ports on the Microblaze core. Connect the clock
from the snoopy core (OPB_Clk) to the system clock. Don’t forget to check
the net name and the scope under the Ports tab. Unfortunately, the PC_EX
and valid_instr ports on the snoopy core are not visible through the Add/Edit
core interface. Therefore, they will have to be added manually to the
hardware description.

7. Close the XPS GUI. Go to your project directory and open the system.mhs

file. You are going to edit this file by hand. It is important to remember that

 University of Toronto
ECE532 Digital Hardware

LAB 4.5: Adding a User-Designed Peripheral

3

this file contains the project description used by XPS to generate your
MicroBlaze system. Therefore, it is safest to only edit the mhs file when XPS
is not running.

8. You are going to add two lines of code to the MicroBlaze and snoopy module

descriptions. Each module description begins with a BEGIN <module_type>.
Look for the MicroBlaze core and the snoopy core and add the following two
lines just before both END statements:

PORT PC_EX = PC_EX
PORT valid_instr = valid_instr

9. Save and close the mhs file. Reopen XPS and your current project. Go to
the Add/Edit cores menu. If you look under the ports tab, you should now see
that the valid_instr and PC_EX ports of the processor have been connected
to snoopy.

10. The core lets you set a reset address for clearing the counters, the number of

counters you want to use (maximum of 16) and the upper and lower bounds
for the instruction addresses. Choose an address that is within the address
range assigned to the core. (Hints: if you used the suggested address range
for the core, the default reset address, 0xffffffe4, will be fine. Remember this
is found under the Parameters tab.)

11. Remove the old system source file and add the new source file you copied

into the code directory, system.c. Compile the source program without
optimizations and including debug flags to see the generated executable. If
you get an error, go to the compiler options menu and verify that the
executable is being placed in the appropriate directory. Disassemble your
executable into a file.

12. Open the disassembled file to determine the address ranges you will profile.

You will be selecting contiguous address ranges to profile based on function
calls. Edit the parameters for the snoopy core to profile the following
functions:

Counter Function
0 _start
1 exit
2 _crtinit
3 main
4 _exception_handler
5 _interrupt_handler
6 _program_clean
7 _program_init

 University of Toronto
ECE532 Digital Hardware

LAB 4.5: Adding a User-Designed Peripheral

4

8 print
9 putnum
10 outbyte
11 XUartLite_SendByte
12 XUartLite_RecvByte
13 All Functions (complete program)

The lowerbound should be the starting address of the function and the
upperbound should be the address of the last instruction in the function.
Change the default value for the NUM_COUNTERS parameter to 14

13. Now you can generate the bitstream to download onto the FPGA.

14. After the bitstream has been downloaded onto the FPGA, start up the XMD

window. Connect to the XMD stub and then download the executable onto
the board using the XMD download command dow (Remember that when
you start up the XMD window you will be in the project root directory and the
executable.elf file is in the ./microblaze_0/code/ subdirectory).

15. The sst script you copied to your project directory can be used to read the

counters. To reset them, use the memory write command in the XMD
window: mwr reset_address <value>, where the reset_address is one of the
core parameters. The counters are designed to reset independent of the
written value. Type “source sst” and a file res.out will be generated. Open
the file res.out to view the values stored in each of the 64-bit counters. The
most significant portion is stored in 0x00 and the least significant portion in
the 0x04 address. As you have just reset the counters, all the values should
be zero.

16. After you have run your application, you can check the new counter values

again using the sst script. Open res.out to see what the values for each
counter are. Are they all non-zero values? Why or why not? (Hint: look at the
disassembled code to understand the values.)

17. Now copy res.out to res.bak. Reset the counter values as previously

instructed and rerun the program. Run the sst script again and look at the
values of the counters. Are they all the same as the values in your res.bak
file. Why or why not? You should compare your results to those found in the
file example_results.txt to verify the counter values.

18. You can also use the counters to determine how many clock cycles are

required to execute a single instruction by setting both the upper and lower
bounds to the same address. If the instruction is executed only once, the
number of clock cycles should be the same as what is specified in the
MicroBlaze processor manual. You can use any remaining lab time to

 University of Toronto
ECE532 Digital Hardware

LAB 4.5: Adding a User-Designed Peripheral

5

familiarize yourself with the available XMD commands or change the core
parameters to better understand how your application runs on the MicroBlaze
processor.

