
University of Toronto
ECE532 Digital Hardware

Lab 3: Adding IP and Device Drivers That Use Interrupts

Version 1.3 for EDK 6.2i 8/15/2004

Acknowledgement

This lab is derived from a Xilinx lab given at the University of Toronto EDK
workshop in November 2003. Many thanks to Xilinx for allowing us to use and
modify their material.

Goals

• Use Xilinx tools to add to the Microblaze system that was built in Lab1
and Lab2. A primary goal of this lab is to understand the details of adding
IP and device drivers that use interrupts.

• IP cores including the General Purpose I/O (GPIO), Timer, and Interrupt
Controller are used in this lab together with the associated device drivers.
Many complex embedded systems use interrupt driven I/O rather than
polled I/O such that learning how to use interrupts is important.

• The Interrupt Controller and Timer will be added to the project and
used to create a periodic interrupt that can be used to schedule other
processing. The GPIO will be used to get input from switch User Input
0. This switch will control the flashing rate of User LED 0 from Lab2.

Requirements

Module 2 (Lab2) Adding drivers and IP - GPIO.

Preparation

1. Find the overviews of the OPB Timer/Counter and the OPB Interrupt
Controller (v1.00c) in the Processor IP Reference Guide. From there you
will find a link to the data sheets. Familiarize yourself with how these
blocks work. The data sheets will also be posted on the course web page.

2. In this lab you will be modifying the file lab2b.c, which should be in
the code directory of your Lab2 project. The file was copied from the
User Area when you started Lab1. Have a look at this file to understand
what it does. In this lab you will be filling in the <TO BE DONE xxx>

sections after XPS generates the header files to support the hardware.

3. You should look at the Xilinx Lecture slides starting at slide 119 for an
overview of the driver organization and conventions. You can get more
details in the EST Tools Guide in the Driver section.

1



University of Toronto
ECE532 Digital Hardware

Lab 3: Adding IP and Device Drivers That Use Interrupts

Background

This lab builds from Lab2 and assumes that the user has completed Lab2. A
basic understanding of adding IP and device drivers should have been gained
from Lab2.

Setup

1. Copy the XPS project directory (lab2 folder) of the previous lab and
rename the copy to “lab3”. This will be the working project directory for
this lab.

2. Start XPS by selecting Start->Programs->Xilinx Embedded Development
Kit 6.2->Xilinx Platform Studio from the Windows desktop.

3. Select the File menu, select Open Project, and browse to the system.xmp
file of lab3. Click Open to open the project. This is the project you
completed in Lab2.

Adding A Timer/Counter And Interrupt Controller

4. Using the Add/Edit Cores feature of XPS, add an OPB Timer (opb timer)
and an OPB Interrupt Controller (opb intc). Set the address range of the
timer to 0x80010400–0x800104ff and the range of the interrupt controller
to 0x80010500–0x8001051f. Attach both peripherals to the OPB bus as
slaves.

5. Select the Ports tab and add the Interrupt signal of the timer, the Intr and
Irq signals of the interrupt controller, and the INTERRUPT signal of the
Microblaze processor. The interrupt output signal of the timer should be
connected to the interrupt input (Intr) of the interrupt controller. The in-
terrupt output signal (Irq) of the interrupt controller should be connected
to the interrupt input of the processor. Connect the signals by selecting
the first signal, hold ctrl while clicking the second signal, and then click
the Connect button. Enter a new net name, select Internal, and click OK.

Note that the signals to be connected are all internal to the design, so be
sure these are specified as Internal scope in the Port Signal Assignment
table. You can also rename the Net Names of signals by clicking in the
white net name box. There are no parameters for each core that must be
set differently than the default value.

6. Rebuild the bitstream and download it to the board.

2



University of Toronto
ECE532 Digital Hardware

Lab 3: Adding IP and Device Drivers That Use Interrupts

Adding Software To Use The Timer And Interrupt Con-
troller

7. Remove the source file lab2a.c from the project and add lab2b.c, which
should be in the code directory of your project.

8. Make sure to have regenerated the Libraries. Why?

9. Using the source file lab2b.c, make the appropriate changes to the source
file such that it will compile. Reference xparameters.h and the device
driver documentation or header files for help.

10. Compile the program and download using GDB. Verify the code works
correctly.

11. If the bug with the Fast Download Methodology and GDB did not exist
in EDK 6.2i, if you were to you stop your program and run it a second
time, you would notice that it does not work and the message “Timer
counter initialization error” would be printed to the serial port. Why do
you think the initialization would fail? To find the answer, you would
have to step into the XTmrCtr Initialize function. However, first you
would have to recompile the drivers in debug mode. In XPS, double click
the microblaze 0 instance and go to the Processor and Driver Parameters
tab of the Software Platform Settings dialog box. Entering “-g -O0” in
the Extra Compiler Flags field would enable debug mode and turn off
optimizations for the libraries.

If you were able to step through the XTmrCtr Initialize function after
stopping and restarting the program in GDB, you would notice that it
fails because the timer is already running from the last time your program
was run and the function exits before completing the initialization. To fix
this, you should make sure the timer is not running at the start of your
program. However, you cannot call the XTmrCtr Stop function before
calling XTmrCtr Initialize so you must use the level 0 driver interface to
disable the timer. Look in microblaze 0/include/xtmrctr l.h to determine
how to do this and add it to the beginning of your program.

Similarly, you should disable interrupts for the interrupt controller at the
start of your program using its level 0 driver (xintc l.h). Otherwise, an
interrupt may occur before the drivers are initialized and your program
will freeze while trying to service the interrupt.

Using A Switch To Control The Flashing Rate Of The LED

12. Add an additional bit (as input) to the GPIO to read the value of SW0
on the User Input DIP switch on the board. In the Parameters tab of
Add/Edit Cores change the value of C GPIO WIDTH to 2. In the Ports
tab, change the range of the opb gpio 0 GPIO IO signal to [0:1]. Note the
bit order is [LB:UB] as stated at the top of the window. Add bit 1 of this

3



University of Toronto
ECE532 Digital Hardware

Lab 3: Adding IP and Device Drivers That Use Interrupts

signal to the system.ucf file and connect it to the pin for USER INPUT0.
Find the pin number in the Multimedia Board User Guide.

13. Rebuild the bitstream and download it to the board.

14. Use XMD to set bit 1 of the GPIO to be an input by writing to the
GPIO TRI register. Test the switch by reading from the GPIO DATA
register. Pay close attention to the order and position of the bits. The
system is big endian so the higher bit is on the right and because there are
only two bits they are shifted to the right as well. (Hint: You may need
to do some rearranging in the UCF file, or when you modify your lab2b.c
file.)

Question: What value is in the GPIO register when SW0 is on? View the
board schematic (page 25) to determine why this is true.

15. Edit lab2b.c to use SW0 to control the flashing rate of the LED such that
there are two obvious flashing rates, slow and fast. Flipping the switch
should change the rate.

16. Compile the program and download using GDB. Verify the code works
correctly.

Look At Next

Module 4: The EMAC (Ethernet MAC)

4


