
University of Toronto
Integrating a Verilog design into a MicroBlaze System

Version 0.01a For EDK 6.2i 24/06/2004

1 Goals

This document is intended for those who have a working design written in Verilog. The main principles can
be extended to other languages.

• Building an OPB interface.

• Using IBM’s OPB toolkit to simulate the design via OPB transactions.

• Adding the design to an EDK project.

2 Constructing the OPB interface1

2.1 What is the OPB?

The On-chip Peripheral Bus (OPB) is as bus specification designed by IBM used by Xilinx in MicroBlaze
systems to communicate with peripherals. Devices on the bus are can be either masters or slaves. This
document assumes that the design will be attached as a slave device.

2.2 The OPB protocol

The protocol described in this document is older than that used by Xilinx in the EDK, however, it allows for
the design to be tested with the OPB toolkit. Slight modifications can then be made to bring the interface
up to the new standard. This is addressed in section 6. An updated version of the OPB toolkit may be
available with the new standard.

A typical declaration of a slave device is:

module opbinterface(OPB_clk, OPB_select, OPB_RNW, OPB_hwXfer,

OPB_fwXfer, OPB_seqAddr, OPB_ABus, OPB_DBus,

Sln_xferAck, Sln_hwAck, Sln_fwAck, Sln_errAck,

Sln_toutSup, Sln_retry, Sln_DBusEn, Sln_DBus);

The ports beginning with OPB are inputs from the bus while the ports beginning with Sln are outputs
to the bus.

A typical transaction is shown in Figure 1.

OPB clk The clock at which the bus is run. Using the Xilinx Multimedia Boards, this is at 27MHz.

OPB select Driven high when OPB ABus and other bus signals are valid.

OPB RNW “Read-not-write” Low when the MicroBlaze is requesting a write. High when requesting a
read.

OPB hwXfer, OPB fwXfer Used to indicate the valid bits on a write. OPB hwXfer is high when a
halfword or a fullword is being sent. OPB fwXfer is high only when a fullword is being sent. These
signals are replace by the byte enable signal in the OPB standard used by Xilinx.

OPB seqAddr Indicates that the bus is requesting multiple reads or writes from sequential addresses. This
is ignored in this document’s treatment of the OPB protocol. If you wish to use its functionality see
[1].

OPB ABus The address for which a given read or write is requested.

1It is notable that a Xilinx core exists which can interface a design with the OPB. It is accessible through the Edit → Import

Peripheral Wizard command in EDK. However currently only VHDL is supported. Since, currently, mixed language designs

cannot be used as IPs in the EDK the simplest alternative is to design an interface from scratch.

1

University of Toronto
Integrating a Verilog design into a MicroBlaze System

Figure 1: A typical OPB transaction [1]

OPB DBus The data bus used for a write transaction.

Sln xferAck The response from the slave device once it has finished its part of the transaction (taking data
from or putting data on the bus).

Sln hwAck Acknowledging a halfword transfer. (Obsolete in the OPB standard used by Xilinx)

Sln fwAck Acknowledging a fullword transfer. (Obsolete in the OPB standard used by Xilinx).

Sln errAck Set when the slave encounters an error processing a request. It is set in addition to Sln xferAck.

Sln toutSup Set by the slave to that its operation will occur for an extended period of time. “Timeout
suppression”

Sln retry Set by the slave to request a retry of the transaction.

Sln DBusEn Set by the slave to indicate the data on Sln DBus is valid. (Obsolete in the OPB standard
used by Xilinx).

Sln DBus The port used by the slave to put data on the bus during a read operation.

As implemented by Xilinx, the bus consists of a 32bit Address signal and a 32bit Data signal. Detailed
descriptions of the bus signals and the transaction can be found in [1].

2.3 Coding the Interface

When writing the code for the interface include the parameters:

parameter C_BASEADDR = 32’hffffff00;

parameter C_HIGHADDR = 32’hffffffff;

to indicate the range of addresses that your device will respond to on the bus. These parameters will be
overridden by the EDK when the device is inserted into the system. The value set in the HDL code will be
useful during simulation.

3 Testing the OPB interface - Using IBM’s CoreConnect Toolkit

3.1 What is the CoreConnect Toolkit?

The CoreConnect toolkit consists of several sub-toolkits for verifying a design that uses any of various on-chip
bus standards created by IBM. Of interest in this document is the OPB toolkit.

2

University of Toronto
Integrating a Verilog design into a MicroBlaze System

The OPB toolkit is located in CoreConnect/tk/OPB TOOLKIT2X.
The toolkit consists of several models to mimic the behavior of devices on the bus. The types of de-

vices/models are Arbiter, Master and Slave. A device can be tested by connecting it to these models. The
instantiation of the models and controlling their behavior is done using scripts written in the toolkit specific
OPB Bus Functional Language that can be compiled with a compiler accompanying the toolkit.

3.2 Inserting the device into the toolkit

The various models used in the toolkit are found in CoreConnect/tk/OPB TOOLKIT2X/verilog. Two sets
of models exist in the directory: those with the “1x” suffix and those without. The “1x” suffix is the 32bit
OPB model and is the focus in this document. opb complex1x.v is the top-level module within which the
device under test can be inserted.

Before the device under test can be inserted, new signals must be created in the toolkit’s HDL to
accommodate the new device. Several lines must be changed to do this. Below is the output from diff
indicating the changes that were made in opb complex1x.v to create the new signals and instantiate the
device under test.

107a108,114

> wire sl3_xferack;

> wire sl3_hwack;

> wire sl3_fwack;

> wire sl3_errack;

> wire sl3_toutsup;

> wire sl3_retry;

> wire[0 : 31] sl_dbus_3;

270,273c278,281

< assign opb_xferack = ((sl0_xferack | sl1_xferack) | sl2_xferack);

< assign opb_hwack = ((sl0_hwack | sl1_hwack) | sl2_hwack);

< assign opb_fwack = ((sl0_fwack | sl1_fwack) | sl2_fwack);

< assign opb_errack = ((sl0_errack | sl1_errack) | sl2_errack);

> assign opb_xferack = ((sl0_xferack | sl1_xferack) | sl2_xferack | sl3_xferack);

> assign opb_hwack = ((sl0_hwack | sl1_hwack) | sl2_hwack | sl3_hwack);

> assign opb_fwack = ((sl0_fwack | sl1_fwack) | sl2_fwack | sl3_fwack);

> assign opb_errack = ((sl0_errack | sl1_errack) | sl2_errack |sl3_errack);

280,281c288,290

< assign opb_retry = ((sl0_retry | sl1_retry) | sl2_retry);

< assign opb_toutsup = ((sl0_toutsup | sl1_toutsup) | sl2_toutsup);

> assign opb_retry = ((sl0_retry | sl1_retry) | sl2_retry | sl3_retry);

> assign opb_toutsup = ((sl0_toutsup | sl1_toutsup) | sl2_toutsup | sl3_tousup);

>

286c295

< always @ (m_dbus_en or m_dbus[0] or m_dbus[1] or m_dbus[2] or

sl_dbus[0] or sl_dbus[1] or sl_dbus[2] or sl_dbus_en or opb_reset)

> always @ (m_dbus_en or m_dbus[0] or m_dbus[1] or m_dbus[2] or

sl_dbus[0] or sl_dbus[1] or sl_dbus[2] or sl_dbus[3] or sl_dbus_en or opb_reset)

379c388,392

< end

> end

> always @ (sl_dbus_3)

> begin

> sl_dbus [3] <= sl_dbus_3 [0 : 31];

> end

393a407,410

3

University of Toronto
Integrating a Verilog design into a MicroBlaze System

> opbinterface dut (.OPB_clk(opb_clk), .OPB_select(opb_select),

.OPB_RNW(opb_rnw), .OPB_hwXfer(opb_hwxfer),

> .OPB_fwXfer(opb_fwxfer), .OPB_seqAddr(opb_seqaddr),

.OPB_ABus(opb_abus), .OPB_DBus(opb_dbus),

> .Sln_xferAck(sl3_xferack), .Sln_hwAck(sl3_hwack),

.Sln_fwAck(sl3_fwack), .Sln_errAck(sl3_errack),

> .Sln_toutSup(sl3_toutsup), .Sln_retry(sl3_retry),

.Sln_DBusEn(sl_dbus_en [3]), .Sln_DBus(sl_dbus_3));

3.3 Creating a test

Creating a test consists of instantiating the bus models and controlling the models’ behavior. This is accomplished
by compiling files written in the bus functional language (bfl) with the bus functional compiler (BFC).

The toolkit comes with several sample bfl files in CoreConnect/tk/OPB TOOLKIT2X/SampleTest. Open sam-
ple.bfl in your favorite text editor. sample.bfl instantiates a bus arbiter, a master device and a slave device and
simulates communication between the master and the slave. Add communications to your device by adding read
and write commands below the set device instruction that instantiates the master. The commands below each
set device instruction are independent of the set of commands below other set device instructions. Each command
set is followed sequentially. A description of the bus functional language is given in [2] which can be found in
CoreConnect/tk/OPB TOOLKIT2X.

Note that you do not need to instantiate your own device in the bfl file.
Copy sample.bfl into it parent directory and type BFC sample.bfl to compile the file. Upon running BFC for

the first time, several questions will be asked. Set Verilog as the target (you can also explore the other options).
The default values for most options are fine. The location of the plb dcl, opb dcl and dcr dcl files is CoreCon-
nect/tk/TOOLKIT DCL.

After compiling, sample.v will be created. Open sample.v and add the line

‘include "opb_dcl.inc"

just below the module line so that it will compile properly with the correct definitions.

3.4 Running the simulation

Compile sample.v along with the *1x.v files and your design with a simulator of your choice (you may have to move
the .inc files into the appropriate directories). Load opb complex and sample as the two top-level modules for the
simulation.

4 Adding the design to a MicroBlaze system

4.1 Creating the base system

Open the Xilinx EDK and select File → New Project → Base System Builder and generate a MicroBlaze system2.
Locate directory of your new project. A subdirectory titled pcores will exist. Your design will be placed within

this directory. Build the directory tree shown in figure 2 where yourdesignname is replaced by the name with which

Figure 2: The pcore directory tree

your design will appear in the EDK.

2see the ECE532 labs if you unfamiliar with this process

4

University of Toronto
Integrating a Verilog design into a MicroBlaze System

Within the verilog directory place all your HDL files including any wrappers for black-box netlist files that may
be included in your design.

Within the netlist directory, place any netlist files that you are including in your design. These may include edn
files generated by CoreGen.

The data directory contains three text files that must be created: yourdesignname v2 1 0.bbd , yourdesignname v2 1 0.mpd ,
and yourdesignname v2 1 0.pao. The string “ v2 1 0” in the file names are indicative of the syntax version used in
the files and thus they are not free to be altered. The string “yourdesignname” in the file name must correspond to
the name given to the parent directory.

.pao “Peripheral Analyze Order” Contains references to your HDL files in an order to resolve all dependancies.

.bbd “Black-Box Definition” A look up file containing references to netlist files.

.mpd “Microprocessor Peripheral Description” Contains a description of the core to be important including port
connections and parameters.

Details regarding the syntax of these three files is given in [3]. Sample files are given below.

4.2 Peripheral Analyze Order

###

##

A Header section

##

##

##

##

Some Comments

##

###

lib yourdesignname sin_evaluator

lib yourdesignname add_19_19_20_bit

lib yourdesignname add_37_26_37_bit

lib yourdesignname c_k_shift

lib yourdesignname ClkGen

lib yourdesignname datamemory

lib yourdesignname genmult_7_21_22

lib yourdesignname genmult_16_18_20

lib yourdesignname genmult_20_7_28

lib yourdesignname mult_7_21_21

lib yourdesignname mult_16_18_19_bit

lib yourdesignname mult_20_7_27_bit

lib yourdesignname sub_19_19_20_bit

lib yourdesignname theta_shift

lib yourdesignname datafifo

lib yourdesignname Accumulator

lib yourdesignname DataSelector

lib yourdesignname InnerProduct

lib yourdesignname FunctionEvaluator

lib yourdesignname Pipeline

lib yourdesignname Controller

lib yourdesignname OpbInterface

The pao file contains references to all your HDL files including netlist wrappers. The order of the references
reflects the order required to resolve dependencies with the top-level design listed last. Note that the references do
not include the extension such as “.v”.

4.3 Black-Box Definition

##

5

University of Toronto
Integrating a Verilog design into a MicroBlaze System

##

Comments

##

##

##

##

##

Files

##

add_19_19_20_bit.edn, add_37_26_37_bit.edn, c_k_shift.edn, datamemory.edn,

genmult_16_18_20.edn, genmult_20_7_28.edn, genmult_7_21_22.edn, sin_evaluator.edn,

sub_19_19_20_bit.edn, theta_shift.edn

The bbd file includes references to all the netlist files used by your design that should be in the netlist directory.
The two required parts of the file are the line with the string “Files” followed by a comma delimited list of the netlist
files. Note that, unlike in the pao file, the file names listed include their extensions.

4.4 Microprocessor Peripheral Description

###

##

Comments

##

##

##

###

BEGIN OpbInterface

Peripheral Options

OPTION IMP_NETLIST = TRUE

OPTION HDL = VERILOG

OPTION CORE_STATE = ACTIVE

OPTION ARCH_SUPPORT = virtex2:virtex2p

OPTION IPTYPE = PERIPHERAL

OPTION STYLE = MIX

Bus Interfaces

BUS_INTERFACE BUS = SOPB, BUS_STD = OPB, BUS_TYPE = SLAVE

Generics for VHDL or Parameters for Verilog

PARAMETER C_BASEADDR = 0xFFFFFFFF, MIN_SIZE = 0x100, BUS = SOPB

PARAMETER C_HIGHADDR = 0x00000000, BUS = SOPB

PARAMETER OPB_WIDTH = 0x00000020

Ports

PORT OPB_clk = "", DIR = I, SIGIS = CLK, BUS = SOPB, DEFAULT =

PORT OPB_RNW = OPB_RNW, DIR = I, BUS = SOPB, DEFAULT = OPB_RNW

PORT OPB_select = OPB_select, DIR = I, BUS = SOPB, DEFAULT = OPB_select

PORT OPB_hwXfer = "", DIR = I, DEFAULT = net_vcc

PORT OPB_fwXfer = "", DIR = I, DEFAULT = net_vcc

PORT OPB_seqAddr = OPB_seqAddr, DIR = I, BUS = SOPB, DEFAULT = OPB_seqAddr

PORT OPB_ABus = OPB_ABus, DIR = I, VEC = [0:(OPB_WIDTH-1)], BUS = SOPB, DEFAULT = OPB_ABus

PORT OPB_DBus = OPB_DBus, DIR = I, VEC = [0:(OPB_WIDTH-1)], BUS = SOPB, DEFAULT = OPB_DBus

PORT Sln_errAck = Sl_errAck, DIR = O, BUS = SOPB, DEFAULT = Sl_errAck

PORT Sln_retry = Sl_retry, DIR = O, BUS = SOPB, DEFAULT = Sl_retry

PORT Sln_toutSup = Sl_toutSup, DIR = O, BUS = SOPB, DEFAULT = Sl_toutSup

PORT Sln_xferAck = Sl_xferAck, DIR = O, BUS = SOPB, DEFAULT = Sl_xferAck

6

University of Toronto
Integrating a Verilog design into a MicroBlaze System

PORT Sln_DBus = Sl_DBus, DIR = O, VEC = [0:(OPB_WIDTH-1)], BUS = SOPB, DEFAULT = Sl_DBus

PORT Sln_hwAck = "", DIR = O, DEFAULT =

PORT Sln_fwAck = "", DIR = O, DEFAULT =

END

The meaning of each part of the file can be found in [3], however, below is a brief description of some notable
lines.

The BEGIN line is used to indicate the file that includes the top-level module.
OPTION STYLE = MIX indicates that the design includes both HDL files and netlist files. If the design does

not include any netlist files, the option should be changed to OPTION STYLE = HDL.
The lines beginning with PARAMETER are used to give the EDK access to parameters within the top-level

module. The values given to the parameters within the mpd file are the default values. The parameters listed in the
file can be altered using the EDK’s GUI.

The Ports section of the file lists the ports of the top-level module and to what the ports should be connected
when the imported into the EDK. Listed ports can be left unconnected to be connected to a system net from within
the EDK as is the case with Sln hwAck and Sln fwAck in the above example.

4.5 Adding the core to the base system

If the EDK was open while you created the file in the data directory, the EDK will have to be restarted since it
refreshes its list of possible peripherals upon startup.

With the EDK project that was created earlier open, select the menu item Project → Add/Edit Cores. . . .
A dialog box will appear. In the right will be a listbox of available peripherals. Scroll through this list to find

the name given to your design in place of yourdesignname in the directory tree. Select your design and click the Add
button so that it appears in the table on the left of the dialog box.

Change the Base Address and High Address corresponding to your design. This will be the address range available
to your design in the memory addressable space. Changing values here alter the values of the C BASEADDR and
C HIGHADDR parameters in the top-level module of the design.

Click on Bus Connections to switch tabs. Locate your design in the table on the left. Click within the box
corresponding to the intersection between your design and mb opb so that an “s” appears in the box. This connects
your device to the MicroBlaze’s OPB as a slave device.

Click on Ports to switch tabs. Several of your designs ports were connected automatically due to what was done
in the Bus Connections tab. Additional ports must be connected. Locate your device and associated unconnected
ports in the listbox on the right of the dialog box. Select the signals you which to connect and add them to the table
on the left using the <<Add button. It is required that you add OPB clk. If you created the OPB interface based on
the older OPB specification used by the OPB toolkit the two signals OPB hwXfer and OPB fwXfer will need to be
added. After adding the signals, they will be listed in the table on the left of the dialog box. Change the net name to
which each is connected. OPB clk should be connected to sys clk s. Connecting both OPB hwXfer and OPB fwXfer
to net vcc sends the signal to your device that all data sent to it will be as full-word transfers (32 bits). If this is
inappropriate (that is, you desire data of different sizes will be sent), you may wish to alter your OPB interface to
use the Byte-Enable scheme implemented by Xilinx (see section 6).

Click on Parameters to switch tabs. Selecting your design from the drop-down list in the upper right of the
dialog box lists available parameters that were made available in the .mpd file. The values of these parameters can
be changed by selecting them and adding them to the table in the left of the dialog.

Click OK to finish adding the device to the system.

4.6 Adding Software to the system

Adding software to the system is cover well in the Lab guides. It is notable, however, to ensure that optimizations
are disabled for code communicating to your device.

5 System Level Simulation

The EDK can instantiate a model that includes the MicroBlaze which will run your software in simulation.
Before generating the system level simulation, ensure that the software on the generated system will work in

simulation. The software to be used in simulation should be in “Executable” mode rather than using the XmdStub
such that its execution begins immediately. It should be set to initialize the BRAMs as well.

7

University of Toronto
Integrating a Verilog design into a MicroBlaze System

The simulation does not include a model of the UART or the JTAG interface, so a program that interacts with
either will not work. Thus your software should not include calls to printf, for example.

Set the simulation options via Project Options which can be found in the Options menu. In the HDL and
Simulation tab, select Verilog as the HDL and ModelSim as the Simulator Compile Script. Set up the correct
paths to the Xilinx and EDK libraries. The Xilinx libraries usually come installed with ISE and are located in
Xilinx/verilog/mti se. The EDK library will need to be generated if they have not been already. Generating the
libraries is addressed in Xilinx’s answer database, record number: 18386.

Generate the simulation model wrappers by running the menu item Tools → Sim Model Generation. Running
the menu item Hardware Simulation will open up ModelSim in the correct environment to begin the simulation.

Once ModelSim is open, type do system.do to execute the generated script that compiles all the necessary HDL
files.

Type vsim -t ps work.system work.system conf work.glbl to start the simulation. work.system is the top-level
module, work.system conf is the module used to initialize the BRAMs with your software and work.glbl contains
required global signals. You may need to add options such as “-L XILINXCORELIB VER” if you use CoreGen
components.

You will need to drive the clock and the reset signal of the system yourself. This can be done with the following
commands which can be placed in a script for convenience.

force -freeze sim:/system/sys_rst 0 0

force -freeze sim:/system/sys_clk 1 0, 0 {50 ns} -r 100000

run 100 ns

force -freeze sim:/system/sys_rst 1 0

The simulation can then be run as long as desired.

6 Migrating to the Xilinx OPB standard

As mentioned earlier, Xilinx uses a slightly different OPB standard than the standard the IBM’s toolkit available
to connect. Xilinx calls devices that use the older OPB standar “legacy devices” in their documenation. The above
method of connecting a legacy device is acceptable if it can be assured that the software interacting with the device
will only send data in full word transfers. This may not always be the ideal. In this case, the OPB interface must be
adjusted to support the OPB standard implemented by Xilinx.

The Xilinx standard does away with the following output slave signals: Sln hwAck, Sln fwAck, Sln DBusEn
The Xilinx standard replaces the OPB hwXfer, OPB fwXfer signals with a single 4-bit wide OPB BE byte-enable

signal. The OPB BE signal extends the dynamic bus sizing available in the OPB standard. Each bit of OPB BE
corresponds to a “byte lane” in the data bus signals. A bit value of 1 corresponds to the byte lane having valid data.
Bit 0 of OPB BE corresponds to valid data in the bits 0:7 of OPB DBus, and so on. Thus a full-word transfer would
be indicated by OPB BE being equal to the binary value 1111. A visual presentation of valid OPB BE values can
be found in [4] within the section Specifications for OPB Usage in Xilinx-developed OPB Devices.

These changes can usually be made with relative ease. A new port entry must be added to connect the OPB BE
signal in the .mpd file.

References

[1] IBM. On-Chip Peripheral Bus Architecture Specifications Version 2.1.

[2] IBM. OPB Bus Functional Model Toolkit User’s Manual.

[3] Xilinx. Embedded System Tools Guide.

[4] Xilinx. MicroBlaze Hardware Reference Guide.

8

