University of Toronto
ECEb532 Digital Hardware
Module 10: Fast Simplex Link (FSL) Interfaces

Version 1.1 For EDK 6.2i 12/1/2004

Goals

e To learn about the Xilinx Fast Simplex Link (FSL) Interface

e To become familiar with the documentation you will need to refer to when
designing your own systems with FSLs.

Introduction

This module will differ from the more step-by-step modules, as there is a Xil-
inx application that covers how to connect user IP to the Microblaze FSL bus
system. This module is more of a guide through that example.

Background

The FSL is a uni-directional point-to-point connection between 2 devices that
Xilinx considers to be a bus. It is essentially an abstracted, glorified FIFO with
a standardized interface. The implementation differs depending on if the user
needs it to be synchronous (Both devices run on the same clock) or asynchronous
(the master and slave run on different clocks), on the size, and on some other
parameters that the user can specify.

A single FSL can connect only 1 master device to 1 slave device. The mas-
ter writes into the FSL and the slave reads from it. Since we typically want to
be able to communicate in both directions, FSLs are often used in pairs where
each of the 2 connected devices is a master on one of the FSLs and a slave on
the other.

Requirements

e Access to ISE 6.2.03i, EDK 6.2.2i, and the Xilinx Multimedia development
board.

e Modules 1-6 so that you have a good working knowledge of EDK, pcores,
and ISE

Preparation

e Read the FSL datasheet: <EDK-installation-dir>\hw'\XilinxProcessorIPLib\

peores\fsl_v20_v2_00_a\doc\ fsl_v20.pdf



University of Toronto
ECEb532 Digital Hardware
Module 10: Fast Simplex Link (FSL) Interfaces

e Read the FSL Application Note (XAPP529) http://www.xilinx.com/bvdocs/
appnotes/xapp529.pdf. If you are short on time, start reading at the mid-
dle of page 6 where they begin to describe the FSL interface in detail.

Guiding You Through XAPP529

e Download the reference design for XAPP529 at www.xilinx.com/bvdocs/
appnotes,/xapp529_6_2.zip

e Open the project and open the Add/Edit Cores dialog. Notice that, in
the Peripherals tab, EDK has included the XAPP529 core xil_idct but not
the FSLs. The FSLs are considered to be buses in EDK.

e Go to the Bus Connections tab. This is where you add instances of the
FSL and connect the devices to the FSLs. Do not use fsl.v20_v1_00_b
- it only includes the synchronous SRL_FIFO version of the FSL, which
can only be exactly 32 bits wide and 16 words deep. The fsl_v20_v2_00_a
version includes the SRL_FIFO version, but also can be used in with other
depths, other physical resources, and asynchronously if needed.

e In this tab you can see the FSL bus interfaces for the XAPP529 core and
2 pairs of FSL bus interfaces for Microblaze. You connect them to the
FSLs here.

e Go to the Parameters tab. Select the MicroBlaze instance in the drop-
down box. The parameter C_FSL_LINKS dictates how many pairs of FSL
connections are available in the Bus Connections tab. In this design, it is
set to 2 even though only 1 FSL link is needed. If you select one of the
FSL instances, you can set its parameters. The XAPP529 design uses the
older version of the FSL so less parameters are available to customize.

Important Notes

e Note that you can only have 1 master and 1 slave on a single FSL.

e Note that 1 FSL link is composed of 1 pair of FSLs. If the FSL link
connects devices A and B, one of the FSLs has device A as the master and
B as the slave. The other FSL has B as the master and A as the slave.

e Do not write to the FSL when the Full signal is high. Doing so will cause
the FSL data to be corrupted. In the asynchronous FSL, doing so will
overwrite the word in FSL_S_Data with the latest data word. This is not
a concern when doing writes in C code, because the MicroBlaze functions
take care of checking the FSL Full and Exists lines.



