
University of Toronto
ECE532 Digital Hardware
Module m06: Using ISE

Version for EDK 8.1i as of May 10 2006

Introduction

ISE is an integrated environment for developing your cores for the FPGA. The main GUI is Project Naviga-
tor and a number of other tools can be used in or launched from Project Navigator, such as CoreGen, HDL
Bencher, and ModelSim. You will probably do the initial development and debugging of your cores using
ISE before trying to connect them to a Microblaze in EDK (XPS).

Note that Xilinx tools dislike paths with spaces. Paths with spaces should be avoided like the plague
when deciding where to install Xilinx tools, third party tools, and where to put your project files.

For additional information on using ISE, please refer to the Xilinx documentation. Some pointers to the
documentation are given here.

Goals

• To gain a basic understanding of how to use ISE.

• To develop a simple core using ISE for use on the Xilinx Multimedia board.

• To use CoreGen IP in this design.

• To learn how to initialize memory.

• To use iMPACT to download the design to the board.

• To use the pushbuttons on the Multimedia board.

Requirements

Access to ISE 8.1i

Preparation

The documents linked here can be accessed online via the HTML Collection link:

http://www.xilinx.com/support/sw_manual/xilinx8/index.htm

and the pdf version is accessible via the following link:

http://toolbox.xilinx.com/docsan/xilinx8/books/manuals.pdf

available on the UofT EDK page under Xilinx Online Documentation. These tools are in the Design Imple-

mentation category.

1. Look through the link, ISE Help, in the Design Implementation tools list.

http://toolbox.xilinx.com/docsan/xilinx8/help/iseguide/iseguide.htm

2. Skim through the FPGA Design Flow Overview to get a basic understanding of the parts of the design
flow. The link to this is available on the ISE Help page described above:

http://toolbox.xilinx.com/docsan/xilinx8/help/iseguide/html/

ise fpga design flow overview.htm

1



University of Toronto
ECE532 Digital Hardware
Module m06: Using ISE

3. Skim through the ISE Quick Start tutorial to get an idea of the additional capabilities of ISE. Access
this through ISE Help menu in the ISE GUI or online at

http://toolbox.xilinx.com/docsan/xilinx8/books/data/docs/qst/qst0001_1.html

4. In the Multimedia Board Users Guide, read the section on User Input and Output. You will be using
the pushbuttons, User Input dip switches, and User LEDs in this lab.

Steps

1. Open Project Navigator.

2. Create a new project in a directory (without spaces!) by selecting File > New Project. When you
specify a Project Name, a subdirectory for it will automatically appear in the Project Location box.
In this document, we will call it “learn ise”. The top-level module type will be HDL. Click Next. The
Device Family should be Virtex2. The Device should be xc2v2000. The package should be ff896. The
speed grade should be -4. These correspond to the chip on the Multimedia board. The Top-Level
Module Type should be HDL. The Synthesis Tool should be XST. The Simulator should be Other or
ModelSim. The Generated Simulation Language should be Verilog. (This document assumes you are
using either an UGSPARC PC or you have installed MXE for Verilog.) Click Next, Next, Next, Finish.

3. Unzip the m06.zip file in your project directory to get the files for this module.

4. Go to the menu Project > Add Copy of Source. Select the Verilog files you just unzipped and add
them to the project. Choose Verilog Design File as the Source Type for each.

5. Go to the menu Project > Add Copy of Source. Select the learn ise.ucf file you unzipped and add it
to the project. Associate it with the learn ise module.

6. The mem init.coe file was created using Microsoft Excel and Memory Editor as described in the Xilinx
Answer Record #11744. Go to the menu Project > New Source. Select IP (CoreGen & Architecture
Wizard). Call it lookup table. Make sure the Add to Project checkbox is checked. Click Next.

7. The Select Core Type dialog box will pop up. Expand Memories & Storage Elements. Expand RAMs
& ROMs. Select Single Port Block Memory. Click Next. Click Finish.

8. A CoreGen GUI will pop up. Enter led lookup ip as the Component Name. Select Read Only as the
Port Configuration. Enter Width of 2 and Depth of 1024 for Memory Size. This will create a ROM
that has 1024 2-bit words. Click Next. Let CoreGen Optimize for Area in the Primitive Selection.
Click Next. Click Next. In the Initial Contents box, check the Load Init File checkbox. Click on
Load File and browse to and select the COE file that you copied. Click Generate. You should get the
message “Successfully generated <led lookup ip> (Single Port Block Memory 6.30)”.

Note that you have just initialized a very small block of memory so it did not take very long. If
you were to initialize something occupying > 50% of the on-chip block ram, expect that this could
take upward of 10-15 minutes.

9. In your project directory you should now have a number of generated files for led lookup ip. The MIF
file is the Memory Initialization File that can be used in behavioural simulations. The V and VHD files
are for compiling at simulation time. The VEO and VHO files are the instantiation templates for the
IP. (You could come up with that yourself, but copying and pasting from the template saves typing)

10. Next you will create a DCM for the module. The DCM in this module is mostly for demonstration
purposes. You would really want to use a DCM when you need phase shifting or clock division. The
feedback circuit works to line up or phase shift clock edges, as configured in CoreGen, and produces
a “locked” signal when the DCM output has settled. You should NOT just put a clock through a T

2



University of Toronto
ECE532 Digital Hardware
Module m06: Using ISE

flip-flop to generate another clock at half the frequency. That WILL cause timing headaches.

Create a DCM (Digital Clock Manager) IP in CoreGen by clicking on Project > New Source. Se-
lect IP (CoreGen & Architecture Wizard). Call it led dcm. Make sure the Add to Project checkbox is
checked. Click Next.

11. The Select Core Type dialog box pops up. Expand FPGA features & design, then Clocking. Choose
Single DCM. Click Next. Click Finish. The Xilinx Clocking Wizard dialog box pops up. Enter 27
MHz as the Input Clock Frequency (This is one of the available clock frequencies on the Multimedia
board). Ensure that RST, CLK0, CLKDV, and LOCKED are checked on the picture. Select 4 as the
Divide By Value. Click Next. The next window is for Clock Buffers. One of the important aspects of
the DCM is that all the DCM clock outputs get put through clock buffers. The default values should
be fine. Click Finish.

Another helpful tool for lazy typers: In the Project Navigator Sources for Project window, click
on led dcm. In the Processes for Source window, double click View HDL Instantiation Template. This
will generate a Verilog instantiation template to instantiate the DCM.

12. In the Sources in Project window you will see a collapsible listing of the source file hierarchy for the
project. Depending on which source you click on, the Processes for Source “<source file>” will change
to correspond to that source file. This allows you to compile and debug at various levels in your design.
Be sure that you have clicked on the source file you actually want before running one of the processes
for it.

13. In the Sources in Project window, click on learn ise. In the Processes for Source window, double click
on Synthesize - XST. You should get errors. In the Console window, scroll up until you reach the first
error from the top. It should be preceded by a little red WEB icon. Right click on the red WEB icon.
Notice that you could Goto Answer Record. This links to the online Xilinx Answers Database and
searches for any related answer records. Our problem is just a syntax error, so choose Goto Source.
This will open the source file and indicates the offending line by a yellow triangle. Scroll up in the file
to find the problem and fix it. Save led lookup.v. Re-run synthesis.

14. When Synthesis completes successfully, double click on Implement Design in the Processes for Source
window. You should get an error. The first error in the Console window will tell you what file to open.
Make the required modification and save the file. Re-run Implement Design.

15. When Implementation completes successfully, double click on Generate Programming File in the Pro-
cesses for Source window.

16. When the programming file has been generated, go to the Windows program folder where the Project
Navigator shortcut is located. Open the Accessories folder. Open iMPACT. You will use iMPACT to
download the .bit file to the board. Make sure your board is connected correctly, turned on, and with
the User Input switches on.

17. From the Flow window, double click Boundary Scan. Right click on the screen and choose “Cable Auto
Connect”. Once the Transcript window shows that the connection is successfully done, right click on
the screen and select “Add Xilinx Device”

18. Now you should get 2 devices in the boundary-scan chain shown on the screen.

19. Right click and select Assign New Configuration File for the XCCACE device; select Bypass. Then,
do the same assigning new configuration file process for the XC2V2000 device but browse to your
project directory and select learn ise.bit. If you get a warning saying Startup Clock has been changed
to JtagClk, click OK. If you want to repeat the initialization you just did (e.g. after making some
modifications to your project), right click on the window and choose Initialize Chain.

3



University of Toronto
ECE532 Digital Hardware
Module m06: Using ISE

20. Click on the xc2v2000 device so that it turns green. Go to the menu Operations > Program. DO NOT
CHECK Verify! Click OK. Your .bit file will be downloaded to the board. When it is done you should
get a message stating it is done and the DONE LED should light up on the board. If programming
fails because the DONE LED could not be driven, repeat the programming attempt.

You can then enter different combinations on the pushbuttons and hit Enter to get different combina-
tions of flashing User LEDs. Even though there are mappings in the memory for an address affected by
all 10 pushbuttons, why do only the 2 pushbuttons nearest the Enter key make any difference? Which
of the 2 User Input switches is the RESET switch?

Look at Next

Module 7: ModelSim Simulation
Module 9: Using and Modelling OPB Interfaces

4


