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Abstract

Accelerating an Analytical Approach to Collateralized Debt Obligation Pricing
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Graduate Department of Electrical and Computer Engineering

University of Toronto

2009

In recent years, financial simulations have gotten computationally intensive due to larger

portfolio sizes, and an increased demand to perform real-time risk analysis. Many hardware

implementations have exploited the parallelism present in Monte Carlo based Financial models

to achieve a significant acceleration.

In this paper, we propose a hardware implementation that uses a recursive analytical method

to price the Collateralized Debt Obligations. A novel convolution approach based on FIFOs for

storage is implemented for the recursive convolution. It is also used to address one of the main

drawbacks of the analytical approach. The FIFO-based convolution approach is compared

against two different convolution approaches based on the Fast Fourier Transform and the

Output Side Algorithm. The FIFO-based convolution outperforms the other two approaches

and also results in significant reduction in memory usage.

The CDO core designed with the FIFO-based convolution method is implemented and

tested on a Virtex-5 FPGA. An analysis of design space exploration is presented. The CDO

core is compared against a C implementation, running on a 2.8GHz Intel Processor, resulting in

a 39-fold speed up. A brief comparison against a Monte Carlo based hardware implementation

for structured instruments yields mixed results. The CDO core performs well against high

accuracy Monte Carlo models but gets outperformed when fewer scenarios are considered for

the Monte Carlo model.
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Chapter 1

Introduction

1.1 Motivation

According to the ”High-Performance Computing Capital Markets Survey 2008” [1] , the re-

cent financial crisis has caused an increased demand in performing real-time risk analysis on

Wall Street. The real-time risk analysis allows for portfolios to react quickly to the market

conditions, which can often be the difference between a profit or a loss. In addition, the size

of the portfolios have been constantly increasing over the last few years, which has resulted in

financial simulations getting computationally intensive. The old models designed for smaller

portfolios are incapable of handling such a large increase in data, therefore new more complex

models are developed to handle the portfolios which has necessitated the need to require High

Performance computing for financial simulations.

The financial simulation models are highly parallel, which makes them an ideal candidate

for acceleration on Field Programmable Gate Arrays (FPGAs). For real-time analysis, FPGAs

serve as an ideal platform as they are capable of running all the portfolios concurrently, which

means that all the portfolios can react to market conditions quickly.

This thesis explores the acceleration of an analytical approach to pricing Collateralized

Debt Obligations (CDOs), a group of structured instruments. Structured instruments have been

1



2 CHAPTER 1. INTRODUCTION

the fastest growing sector of asset-based securities in the last decade. Collateralized Debt

Obligations have been among the group that has experienced the highest growth. CDOs are

collateral pools of the debts created by financial institutions and sold to investors in return for

interest payments. The CDOs have been popular among investors as they offer higher interest

and are rated as secure as bonds (AAA rating for the most secure tranche). Part of this increase

was driven by the introduction of the Gaussian Copula Model in 2001 by Li [2], which made

rapid pricing of CDOs possible.

The global issuance of CDOs grew five fold between 2003-2007 from US$87 Billion to

US$481 Billion [3]. It is hard to approximate the total value of all CDOs in the world as most

of them are privately traded, but it is estimated that the CDO losses could reach US$18 trillion

from the recent financial crisis [4]. Even though, the issuance of CDOs has dropped recently

due to the financial crisis, they are expected to make a strong comeback after the recession.

The pricing of CDOs is a critical problem, as even a small inaccuracy can result in signif-

icant monetary losses. In the wake of recent financial crisis, it is also important to price the

CDOs quickly so they can be priced more often.

1.2 Contributions

In this paper, we propose a hardware implementation of the analytical method for pricing

CDOs. Our main contributions are :

• A scalable hardware architecture capable of pricing the CDOs accurately;

• A fixed-point implementation of the architecture, exploiting coarse grain parallelism;

• A novel convolution approach based on FIFOs that also addresses one of the main draw-

backs of the analytical approach;

• A comparison of three convolution approaches to implement recursive convolutions;
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• A detailed comparison of the hardware implementation against an optimized software

implementation, written in C, running on a 2.8 GHz Pentium 4 Processor

1.3 Overview

The remainder of the thesis is organized as follows. Chapter 2 provides a brief explanation

of CDOs, describes the CDO pricing equations and looks at related work. Chapter 3 details

the hardware implementation of the architecture, and presents the three convolution methods.

Chapter 4 presents the on-chip testbenches and discusses the precision requirements. Chapter

5 explores the design space and provides performance results against an optimized C imple-

mentation and a MATLAB implementation. Chapter 6 discusses future work and concludes.
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Chapter 2

Background

2.1 CDOs

CDOs are securities backed by a pool of debts, such as Mortagages, Loans, Bonds, CDS (credit

default swaps) and other structured products (mortgage-backed securities, asset-based securi-

ties and other CDOs).

The CDOs are created by a financial institution such as banks, or non-financial institutions

and asset management companies, normally called sponsors.

The reasons for a sponsor to create a CDO are:

1. Generate income by the difference in selling part of the CDOs and interest payments.

2. Meet regulations that constrain them from owning too many risky assets.

3. Reduce risk by transferring it to the investors in return for interest payments.

After creating CDOs, the sponsors create a Special Purpose Vehicle (SPV), an independent

entity. The purpose of the SPV is to isolate investors from the risk of sponsors. The SPV

is responsible for administration of the CDO. In the case of a cash CDO, the SPV of the

CDO actually owns the underlying assets. If the CDO consists entirely of CDS, it is called a

5



6 CHAPTER 2. BACKGROUND

Figure 2.1: Structure of a sample CDO

synthetic CDO. In the case of a synthetic CDO, the assets stay with the sponsor and only the

risk associated with them is transferred to the SPV through CDS.

The SPV pools the CDO’s together in a collateral pool, and organizes them into tranches

based on the risk associated with them. The tranches are then sold to investors in return for

interest payments.

In the literature, the tranches of CDOs are classified as Equity, Mezzanine and Senior

tranches according to their risk factor. Each tranche has an attachment and detachment point

associated to it. Figure 2.1 shows the the structure of a typical synthetic CDO. The synthetic

CDO is divided into four tranches, and the typical attachment points of the tranches is shown.

The Equity tranche with an attachment point of 0% is the riskiest, and the senior tranche is the

safest with an attachment point of 15%.

The investors receive their payments until there are losses in the pool. When assets in the

pool start defaulting, the losses start accumulating. When the losses reach the attachment point

of a tranche, the tranche starts to lose its principal. The tranche absorbs all the losses upto
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its detachment point, after that the losses start to affect the next tranche. The payments on the

tranche are determined by the risk factor, the riskiest tranche receives the highest payments and

the safest tranche receives lowest. The payments are first made to the safest tranche, and then

the rest of the tranches receive their payments.

For example, assume a pool of $1000 with the tranche structure presented in Figure 2.1.

The Equity tranche with an attachment point of 0% and a detachment point of 3% is responsible

for the loss of the first $30. The Mezzanine Jr. tranche will cover losses for the next $50. If the

pool losses reach $40, the equity tranche will lose all of its value, and Mezzanine Jr. tranche

will lose $10 out of its principal of $50. Investors in the Mezzanine Jr. tranche will continue

to receive their interest payments on their remaining balance of $40. Any further losses will be

absorbed by the Mezzanine Jr. tranche.

Pricing these CDOs is important from both the sponsor and investor point of view. While

investors are looking for higher interest payments, sponsors are looking for a higher profit from

the sale of the CDOs.

2.2 CDO Pricing Methods

The models developed to price the CDOs can be divided into two categories, Monte Carlo and

analytical methods.

2.2.1 Monte Carlo Method

Earlier models developed to price the CDO’s using Gaussian Capola method were Monte Carlo

based. Monte Carlo based approaches use repeated random sampling to compute the result.

The main drawback of the Monte Carlo based method is that a large number of samples are

required to price the CDO’s with a reasonable accuracy. Calculating all the samples is compute

intensive and takes a long time in software.

Monte Carlo calculates the price of the CDO by using a random number generator to create
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an indicator function, which is used to determine which instruments default in the pool. The

simulation is run for thousands of scenarios, and results are averaged to determine the tranche

losses. The Monte Carlo method allows for the freedom to price any dataset, as it not dependent

on the actual composition of the dataset.

2.2.2 Analytical Method

The analytical model allows for a faster computation of CDO pricing models as it only needs

to consider the market conditions affecting the CDO at the moment. Unlike Monte Carlo

where a large number of samples (100,000 or more) are required to get an accurate answer, the

analytical model only considers the few market conditions acting on the portfolio to calculate

the loss distribution.

The reason to seek analytical models is obviously performance, as performance plays a

major role in financial risk management. There has been much work done in the literature

since the introduction of Li’s Gaussian Copula method that has explored multiple methods for

pricing the CDOs semi-analytically [5], which produces an approximate answer, and analyti-

cally [6] [7], which produces an exact answer.

Anderson et al. [6] allows the default probability of time-steps to be completed indepen-

dently, which means that the CDO’s can be priced for different time-steps independently. An-

other advantage of the approach is that once the initial loss distribution has been calculated, the

effect of adding or removing a single instrument on a portfolio can be easily analyzed.

Pricing Equations

Let us define the following variables:

• E: Expected value

• D(t): Discount factor at timestep t

• Lt: Commulative losses during timestep t
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• T : Maturity of the tranche T, with multiple timesteps t in between

• Pt: Interest payment at timestep t

The main pricing equation for a tranche of a CDO can be defined as (2.1).

E
(∫ T

0

(D(t)dLt)

)
= E

(∫ T

0

(D(t)Ptdt)

)
(2.1)

The left side of the equation defines the losses incurred by the tranche Lt, over a period T .

In a discrete model, there are multiple time steps between 0 and T . The interest payments Pt

are made at the end of these time steps. The interest payments are determined by the cumulative

loss Lt, therefore the cumulative loss distribution is calculated for every time step.

The most generic way of calculating the loss distribution is by permuting all possible losses

and multiplying probabilities associated with them. In a pool of n instruments, if the probability

of loss l of k−1 instruments on some market condition X = x is defined as Pk−1[L = l|X = x].

Then, the probability for k instruments can be defined as :

P (L = l |X = x ) = Pk−1[L = l |X = x ] · (1− πk)

+Pk−1[L = l −Nk|X = x ] · πk

(2.2)

where πk is the default probability of instrument k and Nk is the monetary amount of the

instrument, called a notional.

Eqn. (2.2) is the probability that the losses after k − 1 instruments are l and the kth instru-

ment does not default, plus the probability that the losses after k−1 instruments are l−Nk and

the kth instrument defaults. The equation is recursive and assumes that the loss distribution is

known for a pool of k − 1 instruments and calculates the new loss distribution when the kth

instrument is added to the pool.
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Label Nk πk

a 2 0.4
b 3 0.7
c 2 0.5

Table 2.1: Sample portfolio

The recursion can be solved using convolution defined in Eqn. (2.3), where x[n] and h[n]

are the input signals, and y[n] is the resulting signal of the convolution.

y[n] =
n∑

k=0

x[k]h[n− k] for 0 ≤ k, n ≤ N − 1 (2.3)

The pool starts empty and instruments are added one by one to the pool. When instru-

ments are added, they convolve with the existing pool loss distribution, convolution is used

to determine the correlation between the existing pool loss distribution and the newly added

instrument. The result of the convolution is the updated loss distribution.

For example, assume the portfolio shown in Table 2.1. Each instrument can be represented

on a plot by two points: one at zero with the probability of the instrument not going into default

(1− πk), and the other at its notional, the instrument’s monetary value, with the probability of

its default (πk). Figure 2.2(a) shows the plot for the first instrument and Figure 2.2(b) for the

second instrument of the sample portfolio Table 2.1.

When the first instrument is added, the pool is empty, so the loss distribution after the ad-

dition of the first instrument is simply, its own plot Figure 2.2(a). As the second instrument is

added, the plot of the second instrument Figure 2.2(b) convolves with the existing loss distri-

bution to compute the new loss distribution, displayed in Figure 2.2(d). The next instrument

Figure 2.2(c) is added to the pool and convolves with the existing loss distribution Figure 2.2(d)

to compute the final loss distribution Figure 2.2(e). In general, after all the instruments have

been added to the pool, we are left with the final pool loss distribution.

The final pool loss distribution contains all the losses that can occur in the pool, and the

probability of each of these losses. For example, using the final loss distribution for the sample
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Figure 2.2: Convolution example for the sample portfolio. a) First instrument’s plot, initial loss
distribution b) Second instrument’s plot c) Third instrument’s plot d) Result of first convolution,
intermediate loss distribution e) Result of second convolution, final loss distribution

portfolio Table 2.2 it can be seen that the probability of the pool losing all of its value $7 is 0.14

and probability of the pool not losing any money $0 is 0.09. It should be noted the probability

for $1 and $6 is zero as no permutation of notionals adds to that exact value.

Once the pool loss distribution has been computed, the expected tranche losses can be

calculated. Expected tranche loss is the monetary amount a tranche is expected to lose in the

time step.

The tranche losses can be related to pool losses by:

Tr(L) = min(S, max((l − A), 0)) (2.4)
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l P (L = l)
0 0.09
1 0.00
2 0.15
3 0.21
4 0.06
5 0.35
6 0.00
7 0.14

Table 2.2: Final loss distribution for the sample portfolio
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s

Figure 2.3: Tranche loss step function

where S is the total value of the tranche, and A is the attachment point of the tranche. Figure 2.3

shows the step function of the pool losses. When the losses of the tranche are below the

attachment point of the tranche, the tranche is unaffected. As the losses exceed the detachment

point, the maximum loss a tranche can suffer is its full value, represented by S.

Using Eqn. (2.4) and summing over all losses, the expected loss of a tranche can be repre-

sented as :

E (Tr(L)) =
l=D∑

l=A

(l − A) · P (L = l) +
l=MaxLoss∑

l=D

S · P (L = l) (2.5)

where E represents the expected value, A and D are attachment and detachment points respec-

tively and S is the tranche value, MaxLoss is the maximum loss the pool can suffer, which is

equal to the sum of all notionals.

The first term sums up all the losses when the total losses in the pool are between the at-

tachment and detachment point. As the pool losses exceed the detachment point of the tranche,
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the tranche loses all of its value, represented by the second term. Once the tranche losses are

computed the CDO pricing problem is solved, and the interest payments can be determined for

the individual tranches.

2.3 Related Work

Inherent parallelism in financial simulation models have made them a target for acceleration

using hardware. A significant amount of work has been done in acceleration of Monte Carlo

based simulation models.

Xiang et al. [8] implemented a Black-Scholes option pricing model on Maxwell, a FPGA-

based supercomputer, consisting of 32 CPU clusters augmented with 64 Virtex-4 FPGAs;

achieving a 750-fold speed-up over a software implementation. They compare their imple-

mentation to other similar work presented in [9] which reports a speedup of 85X and they beat

the demonstration application on Maxwell [10], by a factor of 2.

Thomas et al. [11] perform credit risk modeling using Monte-Carlo simulation on a Virtex-

4 device running at 233 MHz. They analyze three different hardware architectures to get a

speedup between 60 and 100 times over a software implementation.

Bower et al. [12] evaluated portfolio risk on an FPGA, achieving a speedup of 77-fold over

a C++ implementation and 8-fold over a SSE vectorized implementation. Five different MC

simulation types were implemented by [13] for option pricing and portfolio valuation, resulting

on an average speedup of 80-fold over a software implementation. Interest rates and Value at

risk simulation were explored for acceleration by [14] [15].

It should be noted that all of these approaches focus on single option pricing and portfolio

evaluation. Pricing of structured instruments uses a completely different model.

Kaganov et al. [16] looked at Monte Carlo based Credit Derivative Pricing, one of the first

papers to look at accelerating the pricing of structured instruments. They describe a hardware

architecture for pricing CDOs using the One-Factor Gaussian Copula Model [2]. The fine
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grain parallelism available in the model was exploited to achieve a 63-fold acceleration over a

software implementation.

There has been much work in acceleration of Monte Carlo models, to our best knowledge

we are the first to accelerate an analytical approach to a financial simulation problem.



Chapter 3

Hardware Implementation

3.1 Design Goals

The requirements and the design goals of the hardware implementation are described below in

the order of importance:

Performance Performance is the ultimate goal, and the hardware implementation must run

significantly faster than the software implementation. The design must be pipelined for

a high throughput. The amount of work done in each cycle must be minimized so the

design can run at high frequencies (200 MHz).

Accuracy The final tranche losses must not exceed 0.5% error, a requirement provided to us by

an industry contact. A fixed-point implementation is chosen for the design, as the design

does not require a large dynamic range. The most sensitive part of the design is when the

loss distribution is being calculated. Since the probabilities are always between [0-1] a

high resolution over a small range is required, which can be achieved by the fixed-point

implementation by dedicating many bits for the fractional part. The choice of fixed-point

implementation also has performance implications as it allows for single-cycle additions

and subtractions, and results in a lower resource utilization.

15
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Scalability The design must be scalable in terms of performance. Increasing the number of

hardware cores should directly result in an approximate linear increase in performance.

Area The design with the lowest resource utilization must be given preference. Low resource

utilization will result in more replications, and thus higher performance.

3.2 Top Level Architecture

Figure 3.1 shows the top-level architecture of the hardware design. The time steps in the CDO

pricing problem are independent. In addition, market conditions acting on a problem, called

scenarios, are completely independent, resulting in an abundance of coarse-grain parallelism

in the problem. The hardware architecture exploits the coarse-grain parallelism by running as

many CDO cores in parallel as possible, only constrained by resources available on the chip.

The host sends the data to the CDO cores through the In FIFO, in round-robin fashion.

Instead of sending the whole portfolio, the data is sent instrument by instrument to each CDO

core. This ensures that the idling time of the CDO cores is minimized, and allows each CDO

core to start computation as early as possible. If there are many CDO cores in the system, it is

possible that a CDO core is finished computing the first instrument and the next instrument is

not available. In that scenario, the core idles and when the next instrument is available, resumes

calculation.

As shown in Figure 3.1, there are multiple CDO cores working in parallel. Each core is

working on one time step of the CDO pricing problem. Each time step consists of multiple

scenarios. Each CDO core computes all the scenarios of a time step and then moves to the

next time step. The CDO core consists of a Convolution module, Conv, a Tranche module and

an Accum module. Since the CDOs have multiple tranches, each CDO core contains multiple

tranches, which can all be calculated independently. Figure 3.1 shows a sample CDO core,

with one Conv module providing data to multiple Tranche modules.

Each scenario has a weight, the tranche losses are multiplied by the weighted sum of the
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Figure 3.1: A top-level diagram of the hardware Architecture

scenario and accumulated for all scenarios to produce the final tranche losses for the time step.

The tranche losses are written to the Out FIFO, where it can be read by the host.

3.3 Tranche Module

The Tranche module shown in Figure 3.2 is the hardware implementation of Eqn. (2.5). The

input for the tranche module is the completed loss distribution, stored in the BRAM, attachment

point, shown as A, and the total tranche value, displayed as S. The pool losses are introduced

by the loss counter that counts up to the maximum pool loss. The shift register, Shift Reg, is

initialized to match the latency of the datapath shown on the left. The output of tranche module

is the monetary loss incurred by the tranche for the specific scenario.
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Figure 3.2: Detailed diagram of Tranche Module (Tr.)

Each CDO core contains multiple Tranche modules. The only differences in the inputs

between the Tranche modules are their attachment and detachment points, which allows all the

tranche losses to be computed in parallel.

3.4 Convolution Module

The recursive convolution is the most compute intensive part of the CDO pricing algorithm.

Convolution has been well explored in the literature, but we found that none of the presented

convolution approaches was optimal for our problem. First we present a conventional convolu-

tion approach based on the Fast Fourier Transform (FFT), and then we present a more standard
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convolution approach for FPGAs based on the output side algorithm [17]. Finally, we present

our novel FIFO-based convolution algorithm.

3.4.1 FFT-based Convolution

The FFT is a common way of implementing convolution on an FPGA. The FFT transforms

a time domain signal into the frequency domain where the convolution defined in Eqn. (2.3)

becomes a set of simple multiplications. The frequency domain signal can then be transformed

back to the time domain by the inverse FFT to get the convolved signal.

Any instrument added to the pool can be represented on a plot by two points. However, the

points cannot be transformed to the frequency domain directly as the length of the plot for each

instrument is different.

For example, consider the example presented in Figure 2.2. The plot for the first instrument,

Figure 2.2 (a), has only two points while the next instrument’s plot, Figure 2.2 (b), has three

points. The final loss distribution Figure 2.2 (e) has seven points.

The FFT requires all inputs plots to be of the same length, so they can be multiplied directly

in the frequency domain. In this example, the plots for the first two instruments will be padded

with zeros to make them of maximum length N, which is seven in this case as the final loss

distribution has seven points.

The maximum length N is the length of the final loss distribution table, which is always

equal to the sum of all notionals.

Figure 3.3 shows the high level view of the convolution based FFT approach and Figure 3.4

provides a MATLAB like pseudocode of the approach.

First the individual plots for the instruments are padded with zeros to make them of equal

length, N. The plots are then transformed to the frequency domain one by one. In the frequency

domain, the transformed plot is multiplied with Product, which is the multiplication of all the

transformed plots so far. Each multiplication in the frequency domain is equal to one convolu-

tion in the time domain. After all the plots have been transformed and multiplied, the product



20 CHAPTER 3. HARDWARE IMPLEMENTATION

X

0.5 0.5

20
Notional

P
ro
b
a
b
ili
ty

FFT

IFFT

Product

F
re

q
u
e
n
c
y
 D

o
m

a
in

Individual Plot: Length N 

30 52

0.09
0.15

0.21

0.35

Loss  

P
ro
b
a
b
ili
ty

0.06

4 7

0.14

Final Loss Distribution: Length N

0.5 0.5

20
Notional

P
ro
b
a
b
ili
ty

7

Individual Plot

 Padded with Zeros

Figure 3.3: FFT-based convolution method

can be transformed back to the time domain by an inverse FFT. The inverse transformation will

produce the final loss distribution, which is the result of all convolutions.

For evaluation of the FFT-based convolution method, Xilinx CoreGen 10.1.03, which is a

part of the Xilinx ISE toolset [18], is used to generate an FFT module. Since throughput is

the most important, the pipelined version of FFT module is generated, which has the highest

performance of all the available options.

Due to the limited resources available on the FPGA, all the points for a plot of an instrument

cannot be input in parallel to the FFT. The points of a plot are input serially to the FFT. The

pipelined FFT allows the individual plots of the instruments to be input back to back, without



3.4. CONVOLUTION MODULE 21

//N is the length of the final loss distribution
N = Maximum length;
n = total instruments;

//pi k array stores the default probability
//N k array stores the notionals for all instruments

for i = 1: n

plot = zeros(N);
plot(0) = 1 - pi k(i);
plot(N_k(i)) = pi_k;

FF = FFT(plot)
Product = Product * FF;

end

Final_loss = IFFT(Product);

Figure 3.4: MATLAB like pseudocode of the FFT-based convolution approach

any delay. In a pipelined approach, the latency to produce the FFT transform can be ignored,

and the total computation time will be equal to the time it takes to input all the plots to the FFT.

For example, assume a pool of 20 instruments where the notionals are between 1-100. In

the case that all of them are 100, the final loss distribution has (20 × 100) + 1 (entry for zero)

entries. Since the FFT only operates on sizes of powers of two, the minimum length N must be

of size 2048. All the plots must be padded with zeros to length 2048.

The time to compute the final loss distribution would be the time it takes to input plots of 20

instruments back to back. Since each plot has 2048 points, the total time is 20×2048 = 40, 960

cycles.

3.4.2 Output Side Algorithm Based Convolution Module

In the FFT-based convolution approach, the requirement of padding the samples with zero re-

sults in wasting many computation cycles. In every plot there are only two non-zero points

and this property can be leveraged to implement an algorithm based on the Output Side Algo-

rithm [17]. The Output Side Algorithm calculates each point in the output by finding all the

contributing points from the input.

Since for each convolution, one of the inputs always has two points, at maximum we can
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have contributions from only those two points. This algorithm is much more efficient, com-

pared to the FFT-based approach, as it only requires some very simple arithmetic operations

implemented using a small number of multipliers and adders.

//notional_k is the notional for the instrument being calculated
N_k = notional_k

//orig_loss_distrib is the old loss distribution
old_totalpoints = length(orig_loss_distrib)
new_totalpoints = old_total_points + notional_k

//pi_k is the default probability of the current instrument

//CASE A
for i = 0 to (N_k - 1)
new_loss_distrib[i] = old_loss_distrib[i] * (1 - pi_k)

//CASE B
for i = N_k to (old_totalpoints - 1)
new_loss_distrib[i] = old_loss_distrib[i] * (1 - pi_k)

+ old_loss_distrib[i - N_k] * (pi_k)

//CASE C
for i = old_totalpoints to new_totalpoints
new_loss_distrib[i] = old_loss_distrib[i - N_k] * (pi_k)

Figure 3.5: Pseudocode of the Output Side Algorithm for convolution.

The convolution algorithm based on the Output Side Algorithm is shown in Figure 3.5.

The input to the algorithm is the previous loss distribution and the new instrument added to the

pool. First the length of the previous loss distribution and new loss distribution is calculated.

This is done so the computation of the output points can be divided into three cases:

• CASE A: Calculates the output points only influenced by the point at zero.

• CASE B: Calculates the output points influenced by both input points.

• CASE C: Calculates the output points only influenced by the point at Nk.

At the end of one iteration, one convolution has completed and the intermediate loss distri-

bution has been calculated. The iterations continue until all the instruments have been added

to the pool. After all the instruments have been added to the pool, the new loss distrib will

contain the final loss distribution.
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Figure 3.6 shows the hardware implementation of the algorithm presented in Figure 3.5. It

convolves each new instrument added to the pool with the existing pool loss distribution. Block

RAM (BRAM) is the internal memory available on the FPGA. The core uses two BRAMs, one

to read the current loss distribution, and the other to store the updated one. The BRAMs are

configured in the true dual-port configuration, which means each BRAM has two independent

read/write ports. The core is designed to sustain a throughput of one output point per cycle.

Therefore, both ports of the BRAM are used to access the two points, and the two multiplica-

tions are calculated in parallel.

The points A, B and C match the cases presented in the pseudocode of the algorithm in

Figure 3.5. After each convolution, the BRAM roles are reversed, i.e., after the first convolu-

tion data is read from BRAM B, as it contains the latest loss distribution, and the results are

written to BRAM A. After all iterations, the final loss distribution stored in the final BRAM is

forwarded to the Tranche module.

The pipelined approach of the convolution module allows for the efficient calculation of

the multiple convolutions involved in computing the final loss distribution. Unlike the FFT

approach, no computation cycles are being wasted and the convolution module only calculates

the exact number of points required for the particular convolution. For example, if the output

of a convolution contains 512 points, then the optimized convolution block will only use 512

cycles to complete the convolution.

3.4.3 FIFO-based Convolution Approach

One of the main drawbacks of the analytical approach is its inability to handle data that is not

uniform. Uniform datasets comprise of values that are approximately similar to each other.

For example, datasets containing values between 1-100 or $1 Million to $10 Million would

be considered uniform datasets. A non-uniform dataset would contain values that are very

different from each other, for example a dataset containing (1, 1 Million, 1 Billion) would

be considered a non-uniform dataset. The inability of the analytical approach to handle non-
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uniform datasets is due to the way the final loss distribution table is stored.

For example, consider the portfolio presented in Table 3.4.3 a). Table 3.4.3 b) represents

the final loss distribution for the table. The values between 6-999 have the probability of zero,

as there are no permutations of notionals that will amount to that. These values are referred to

as zero entries. Since there is space assigned for them in the loss distribution table, the size

of the loss distribution grows with most of the space wasted for storing the zero entries. In

addition, this also results in wasted computation time, because each of those points are still

calculated in both of the convolution algorithms presented earlier.

The problem of a large loss distribution table restricts the analytical approach to uniform
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(a)

Label Nk πk

a 2 0.4
b 3 0.7
c 1000 0.5

(b)

l P (L = l)
0 0.09
1 0.00
2 0.15
3 0.21
4 0.06
5 0.35
6 0.00
7 0.00

... ...

... 0.00

... ...

998 0.00
999 0.00

1000 0.09
1001 0.00
1002 0.06
1003 0.21
1004 0.00
1005 0.14

data sets only, with no tolerance for any notionals outside the dataset.

The problem can be solved if we can calculate ahead of time what resulting values can

be generated and only assign space for them in the final loss distribution. However, calculat-

ing what values can exist in the table, or vice versa, what values will not exist is of O(2n)

complexity, hence it cannot be calculated in a reasonable time.

To address the storage problem we created an algorithm, which is based on using a First In

First Out (FIFO) memory to store only the values that are computed. Since the rows with zeros

are never calculated, they will not be stored in the FIFOs.

The FIFO-based convolution algorithm makes the analytical method applicable to some

non-uniform datasets, such as the one presented in Table 3.4.3.

It should be noted that the FIFO-based convolution approach does not make the analytical

method applicable to all non-uniform data sets. The analytical method is dependent on having

a large overlap in the resulting output points, which happens very often in a uniform dataset. In

a non-uniform dataset, the addition of every new instrument can result in the number of output
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points being doubled due to the convolution. In such a case, the storage space as well as calcu-

lation time will be growing asymptotically with O(2n), resulting in a significant computation

time for large values of n.

Algorithm

Figure 3.7 presents the sketch of the algorithm. There are two FIFO’s to store the loss distri-

bution. The points in the loss distribution will be used twice, once each for the two points of

the incoming plot, therefore two FIFO’s are used to store two copies of the loss distribution.

The FIFO’s are divided into two parts: one to store the notional, and the other to store the

probability.

As a new instrument is added to the pool it creates two points on a plot. The registers on

the left and right contain the two created points for the instrument. Similar to the Output Side

Algorithm, the output points are calculated in an increasing order. In each cycle, the notional

of the registers is added to the notional of their respective FIFOs. The result of the additions

are then compared to determine which one is smaller, as that is the output point that should

be calculated first. The probability is dequeued from the FIFO with the smaller addition and

multiplied by the probability of the respective register. The notional for the output point is the

result of the addition. The new output point consisting of the new notional (sum of the addition)

and the new probability (multiplication of the probabilities) will be written to the back of the

FIFO.

For the example in Figure 3.7, the following steps take place:

1. The results of the adders are compared. The result of the left adder (0 + 0) is lower than

the result of the right adder (2 + 0).

2. The left adder has a lower sum (0). Therefore the probability in left FIFO (0.3) gets

dequeued, and multiplied with the probability of register 0 (0.25).

3. The newly calculated output point has a notional 0 with the probability (0.3 × 0.25 =
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Figure 3.7: FIFO-based storage algorithm

0.08). The new output point is written to the back of both FIFOs.

Figure 3.8 shows the values of the FIFOs after the first cycle.
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Figure 3.8: FIFO-based storage algorithm cycle 1

In the next cycle, the steps are repeated again :

1. The results of the adders are compared. The result of the left adder (0 + 2) is equal to the

result of the right adder (2 + 0).

2. Since the result of addition is equal (2), both FIFOs get dequequed and multiplied with

their respective registers. This case is similar to the case B of the output side convolution

algorithm presented in Figure 3.5, where the output point is influenced by two points.
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3. The output point will have a notional of 2, and the probability of (0.25×0.4+0.75×0.3 =

0.32). The new output point is written to the back of both FIFOs.

Figure 3.9 shows the state of the FIFO after the first two cycles. The “end” displayed in the

FIFOs is used to mark the end of the current loss distribution. The iteration continues through

all the values until “end” has been de-queued from both FIFOs. At the end of the iteration both

FIFOs contain a copy of the intermediate loss distribution.

At the beginning of next iteration, the points for the next instrument are copied to the

registers. The iterations continue until all the instruments have been added to the pool. At the

end of all iterations, the FIFOs contain the final loss distribution.

Since the algorithm produces a new result every cycle, it can be pipelined for a throughput

of one.

Implementation

The FIFOs in the module are implemented using Xilinx Coregen. To achieve maximum perfor-

mance, the design needs to be completely pipelined. In this algorithm it means that an output

point needs to be calculated every cycle.

As shown in Figure 3.7 for a fully pipelined design, in every cycle the following sequence

of events need to happen:

1. The notionals must be added,

2. the results of the addition needs to be compared,
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3. the correct value needs to be dequeued from the respective FIFO.

It is important that all of these operations complete within the cycle, otherwise the input for

the next cycle would not be valid.

At high frequencies, performing all three operations in one cycle becomes impossible. To

overcome this we divided the operations; the add and compare are calculated in first cycle,

while the dequeue will complete in the next cycle.

A lookahead double-buffer is implemented to overcome the requirement that all operations

must finish in one cycle. Using the double-buffer the latency of the dequeue can be hidden, and

even though the operations take two cycles to complete, the pipeline will not stall.

Figure 3.10 shows the final hardware implementation of the FIFO-based convolution algo-

rithm. The top half of the figure shows the FIFOs and the double buffers. The double buffers,

buf a and buf b, are implemented with registers at the output of the FIFOs.

A read from the FIFO’s is served by one of the buffers. If the rd en for a FIFO is asserted at

the end of the cycle, then the buffer flips and the next read would be served by the other buffer.

For example, using the values present in the buffer for Figure 3.10, in the first cycle the

value will be read from buf a. After the read, the buffer flips and the next read would be served

by buf b. Whenever the rd en is asserted. the value from the FIFO is dequeued and registered

in one of the buffers. In this case, the value would be registered in buf a, since the existing

value in buf a has been read already. The lookahead double-buffers allow the pipeline of the

algorithm to run at full bandwidth without stalling.

The bottom half of Figure 3.10 shows the arithmetic pipeline of the algorithm. The no-

tionals from the double buffers are sent to the adder, shown in the middle, for addition and

comparison. The probabilities from the double buffers are sent to the multiplier, shown on the

outer edges, for multiplication.

All the multiplexors and de-multiplexors are controlled by the “switch”, the result of the

comparison. Once the multiplication is completed, the output point will be written back to the

back of both the FIFOs. The end of the loss distribution is marked by storing “FFFF”.
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Figure 3.10: Hardware Implementation of the FIFO-based Convolution Algorithm

The probabilities are represented using fixed-point representation. After each multiplica-

tion the probability gets smaller and smaller. After numerous multiplications, some of the

probabilities become so small that they cannot be represented using the fractional part of the

fixed-point representation. At this point, the probabilities are too small to make any relevant

contribution to the final tranche losses.

At the end of each cycle, the probability of the output point is compared to zero. If the

probability is zero, then the output point is discarded completely. By discarding points dy-

namically, the storage required for the final loss distribution can be kept in check. Normally,

with addition of a new instrument the storage required for the result grows, but in this case the

increase in growth is reduced by discarding points dynamically.
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Table 3.1: Area Comparison of Convolution methods
Output Side Alg. FIFO-based Alg. FFT2048 FFT4096 FFT8192

LUTs 967(3%) 854(2%) 5788(17%) 6355(19%) 6965(21%)
Flip-Flops 427(2%) 739(2%) 7142(21%) 7933(24%) 8660(26%)

DSPs 10(4%) 7(2%) 40(13%) 40(13%) 48(16%)
BRAMs 4-16(3%-12%) 2-8(1%-7%) 6(4%) 10(7%) 19(14%)

This approach is referred to as dynamic point dropping. Dynamic point dropping also

results in a direct performance improvement. As the points are being discarded, the future

cycles spent on calculating the output points from the discarded point are being saved.

The other benefit is that it makes the algorithm more flexible in terms of performance and

accuracy. The number of fractional bits can be adjusted for either greater accuracy, at the cost

of performance, or greater performance, at the cost of accuracy.

Conclusion

The FIFO-based algorithm addresses the main drawback of the analytical method by efficiently

storing the results. The analytical method is restricted to a uniform dataset, however the algo-

rithm makes it tolerant to datasets with some non-uniform values.

The FIFO-based algorithm only stores the necessary points for the final loss distribution.

The algorithm also results in a performance improvement as none of the cycles are wasted

computing the zero points, and by discarding points that are too small to contribute further.

3.4.4 An Area Comparison

Area comparison is perhaps as important as the performance comparison due to the limited

resources of the FPGA. A low resource utilization is important as running many modules in

parallel is highly desirable.

The percentages in brackets shown in Table 3.1 indicate the resource utilization of the three

convolution approaches on a Virtex-5 XC5VSX50T, the FPGA available on our test platform.

For the FFT-based convolution approach shown in Figure 3.3, only the resource utilization
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Table 3.2: Complexity Comparison of Convolution Methods
Convolution Method Input Computation Performance

Improvement
Cycles Complexity Complexity

FFT-based N × n O(n2) O(n log n) 1
(c× n)× n

Output Side Algorithm 2× n O(n2) O(n2) 4
FIFO-based 2× n O(n2) O(n2) >4

of the FFT block is displayed as it has the highest resource utilization of all the blocks in

the system. For the FFT-based convolution approach, the length of the loss distribution table

determines the point size so three different point sizes are shown.

The resource utilization of the Output Side Algorithm based convolution algorithm and

the FIFO-based convolution algorithm is significantly lower than the FFT-based convolution

approach in terms of LUTs and FFs (2-3% vs 17-26%). The resource utilization stays the

same for different problem sizes for the output-side convolution algorithm and the FIFO-based

algorithm, only the storage required to store the results increases. The resource utilization of

the FIFO-based approach is the lowest among all three convolution approaches.

3.4.5 Complexity Analysis

Table 3.2 summarizes the complexity analysis of the three hardware approaches. N is the

length of the final loss distribution table, n is the total number of instruments in the pool and c

is the maximum notional size. The performance improvement over the FFT-based convolution

approach is also displayed.

FFT based Convolution The complexity to input all the points to the FFT (O(2n)) is always

higher than the actual complexity of the computation (O(2n)). Therefore, further op-

timization of FFT block will not be beneficial and the execution time will always be

dominated by the time to input the plots of all the instruments.

Output Side Algorithm The execution time will be dominated by the computation time (O(n2)).
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The complexity of the Output Side Algorithm is the same as the FFT-based convolution

approach. However, since cycles are not wasted in padding, the actual execution time is

much lower. Appendix A shows a detailed comparison of the convolution blocks. The

Output Side Algorithm based convolution module is approximately four-fold faster than

the FFT-based convolution approach for the average case.

FIFO-based Algorithm The complexity of the FIFO-based Convolution is the same as the

Output Side Algorithm, however the execution time will always be lower as none of the

cycles are wasted computing zero entries. The relative speedup cannot be determined

analytically and will vary significantly depending on the dataset.

In general, the Output Side Algorithm convolution approach is up to four-fold faster than

the FFT-based convolution algorithm for the average case. As none of the cycles are wasted

computing the zero entries in the FIFO-based approach, it will always perform better than the

other approaches.

Since the FFT-based convolution approach had the highest resource utilization with the

lowest performance it was not implemented on the hardware. The results of the Output Side

Algorithm based convolution approach and FIFO-based convolution approach are presented

and contrasted in Chapter 5.
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Chapter 4

Test Methodology

4.1 Design Implementation

The hardware platform shown in Figure 3.1 is implemented and tested on a Xilinx ML506

Evaluation Platform, which has a Virtex-5 XC5VSX50T (SX50T) FPGA; and on the XUPV5-

LX110T Development System, which contains a Virtex-5 XC5VLX110T (LX110T) FPGA.

The design is tested on multiple platforms to ensure portability. The initial development was

done on the LX110T, and then ported to the SX50T to take advantage of the extra DSP units

available on the chip.

All the modules are written in Verilog and synthesized using Xilinx ISE 10.1.03. The CDO

cores are running at the frequency of 200 MHz. All the results presented in the next chapter

are synthesized and tested on the SX50T, with the exception of Figure 5.8. For Figure 5.8, the

design is synthesized for a XC5VSX240T (SX240T), a larger FPGA of the same family as the

SX50T, and the first 10 points are validated on the SX50T.

4.2 Test Platform

Xilinx EDK 10.1.03 is used to create the on-chip testbench. Figure 4.1 shows the schematic of

the testbench, with the relevant components.
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The testbench uses MicroBlaze, a soft-processor, to send and receive data to the hardware

CDO cores. The hardware CDO cores are connected to the processor using the Xilinx Fast

Simplex Link (FSL). The FSL is a uni-directional point-to-point fast communication channel

with a FIFO like behaviour. The MicroBlaze allows upto 16 pairs of FSL links, so multiple

CDO cores are connected directly to the MicroBlaze.

100Mhz

200Mhz

Microblaze

On Chip

Memory UART

Timer

CDO

core

CDO

core

... 

Legend

FSL Link

Figure 4.1: On-chip Testbench

The CDO cores are running at 200MHz, while the rest of the system is running at 100MHz.

The FSLs are used in Asynchronous mode for the clock-crossing boundary.

The test data is stored in the on-chip memory, connected through the PLB bus. The data is

read by the MicroBlaze, and sent over the FSL links to the CDO cores. The UART attached to

the bus is used to print the final result and for debugging purposes.

The timer connected to the bus is used to measure the time for calculation. The timer is

implemented using the Xilinx XPS Timer, an IP available in the EDK platform to measure

time. The timer is started before sending the first data byte to the CDO core, and stopped after

the final result is received.
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The time for data transfer is included in the measured time. To hide the data transfer time,

the cores start calculation as soon as the first instrument arrives. This way, the cores are busy

calculating while the rest of the portfolio is still being transferred.

4.3 MPI-based System

The Message Passing Interface (MPI) is a language-independent communication protocol used

to program parallel computers. It is the most widely used protocol when programming for

high performance supercomputers. A MPI-based test platform is built for the hardware imple-

mentation using TMD-MPI [19], which implements a subset of the MPI standard for FPGAs.

TMD-MPI provides a programming model capable of using multiple-FPGAs and a Network-

on-Chip for communication.

4.3.1 Motivation

The motivation behind an MPI based implementation is outlined below:

• Scalability: Due to limited resources on a single FPGA, we are limited to how many

cores we can add to the system. TMD-MPI enables usage of multiple FPGAs, so more

hardware cores can be added to the system. The extra hardware cores allows more port-

folios to run concurrently.

• Performance: Performance is the direct result of better scalability. Adding more cores

directly results in a higher speedup.

• Complexity: TMD-MPI provides a direct programming model, which abstracts the com-

plexity of managing a multi-FPGA system away from the user.

• Price: From a price perspective, a SX240T FPGA, with a cost of USD$13,454.00, is

significantly more expensive than a SX50T FPGA, price USD$836.40 [20]. The prices

mentioned are “list” prices and most consumers will not pay that price, however these
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prices do give a sense of the relative costs. In our design, we replicated the CDO cores

up to 10 times for the SX50T FPGA, and 32 times for the SX240T FPGA. In this case,

using multiple SX50Ts instead of a single SX240T will result in a higher performance

for a lower price with a better performance to price ratio.

• Portability: The TMD-MPI allows the design to be easily ported to any system that sup-

ports the TMD-MPI infrastructure. Some examples of these include Berkeley Emulation

Engine 2 [21], Berkeley Emulation Engine 3 [22], and Xilinx Accelerated Computing

Platform [23].

4.3.2 Test platform

Figure 4.2 displays the TMD-MPI based test platform. The platform is similar to the test

platform presented in Figure 4.1, with the TMD-MPI Infrastructure added for communication.

100Mhz

200Mhz

Microblaze

On Chip

Memory UART

Timer

CDO

core

CDO

core
... 

Legend

FSL Link

MPE MPE... 

NetIF

T
M

D
-M

P
I 

In
fr
a
s
tr
u
c
tu
re

Figure 4.2: MPI-based On-chip Testbench

The TMD-MPI infrastructure consists of two components: a message passing engine (MPE)
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and network interfaces(NetIFs). The function of the NetIF is to route the packet it receives,

based on the routing information along different channels. The MPE implements the a subset

of MPI functions including send and receive in hardware.

TMD-MPI software library handles the MPI protocol in software for the MicroBlaze. MPI

uses a rank based system, where each computing node is assigned a rank. Rank 0 is assigned

to the MicroBlaze, as it will initiate the communication and each CDO core is assigned an

individual rank.

The data is read from the on-chip memory and sent to the NetIF using an MPI Send com-

mand by the processor. The NetIF forwards the packet to the appropriate rank, where it is read

by the respective CDO core by issuing an MPI Recv command to the attached MPE.

The computation time is measured using MPI Wtime, which uses the timer connected to

the PLB bus to measure the time between subsequent calls.

4.4 Test Cases

Unfortunately there are no publicly available benchmarks for the structured instruments, and

all financial transactions are kept confidential. The data for the test cases are created randomly

by MATLAB, and used as input for the hardware and software implementations.

The design is tested with various parameters using the following as default parameters:

• Portfolio Size: 100 instruments

• Scaled Notionals: Randomly generated between [1, 50]

• Tranches: 6

• Default Probability: Randomly generated between [0 1]

• Scenarios: 64
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These parameters are modified in the design exploration section to see their effect on the

CDO pricing problem. It is assumed that there are enough time steps and scenarios in the

problem to keep the CDO cores active all the time.

4.5 Testing and Verification

A MATLAB model, provided to us by an industry contact, is used as the base case for verifi-

cation of algorithms. The MATLAB results are used as the golden reference, and all hardware

and software results are verified and compared against it for accuracy.

MATLAB is a popular tool among the financial community. It is used widely for developing

and testing algorithms, but is also used to run many financial simulations. The MATLAB model

is compiled using a MATLAB compiler to create a standalone executable, which is executed

on a Pentium 4 processor running at 2.8Ghz with 2 GB of DDR RAM. The results against the

MATLAB model are only presented as reference.

For performance testing, a C implementation of the CDO pricing problem is written, which

is used as a baseline reference. The C implementation is referred to as the software implemen-

tation, and the MATLAB software implementation will be referred to as MATLAB implemen-

tation. The software implementation is compiled with gcc using -O2 and -msse flags. Using

higher optimization and SSE flags does not improve performance. The software is executed on

a Pentium 4 processor running at 2.8 GHz with 2GB of DDR RAM. Cache optimizations are

not considered as the program is small enough to fit in the processor L2 cache.

For debugging, if there was a problem in the hardware, a full system level simulation run-

ning in Modelsim was used as the first resource. All the models and algorithms were tested

thoroughly in MATLAB before being implemented in hardware.
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4.6 Precision

For the output side convolution algorithm, BRAMs are used for storage. The BRAM is in-

herently 36 bits wide, so 32 bits are used to represent the fractional bits, which results in a

resolution of 1/232. The fractional part is 32 bits only for the most sensitive part of the de-

sign, when intermediate loss distribution is being calculated. The choice of 32 bits matches the

width of the buses in the design, allowing the buses to transfer all the fractional bits without

losing any accuracy.

The error is measured as the absolute distance from the MATLAB golden reference. Exper-

imentally, the maximum error is found to be less than 8.10E-4% for all datasets, which exceeds

the requirement of less than 0.5%. Since the precision is significantly better than required, the

width of the datapath could be reduced, resulting in a lower resource utilization.

The FIFO-based approach uses FIFOs for storage. Since 32-bits resulted in significantly

better accuracy, the width of the fractional bits was reduced to 24-bits. The reduced width

increases the error to 0.1%, which is still lower than our requirement of 0.5%. One of the

advantages of using the FIFO-based approach is that reducing the fractional width results in

improving the performance directly. The storage based approach discards the probabilities

when they approach zero, and fractional bits are not sufficient to display them. So using a 24

bits for the fractional parts means that probabilities would trail off quicker and they will be

discarded quicker resulting in fewer calculations.

In the Output Side Algorithm based convolution approach, adjusting the data width will

result in varying accuracy but will not have any direct affect on the performance. The FIFO-

based approach allows for the tradeoff between precision and performance. If more precision

is required, more bits can be dedicated to the fractional parts. The length of the fractional bits

can be reduced for higher performance.

Since the move to the analytical method is due to performance, having the freedom to adjust

for accuracy and performance is very useful. For example, due to volatile market if the situation

demands that the CDOs need to be priced more often at the expense of some precision, then
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the reduction in width for the fractional part allows for that to happen.



Chapter 5

Results and Analysis

5.1 Design Exploration

In this section, we vary the default parameters to observe any trends between the hardware im-

plementations based on the two convolution approaches, the Output Side Algorithm approach

and the FIFO-based approach, and the software implementation. The on-chip testbench dis-

played in Figure 4.1 is used for testing, and the parameters to test are varied. The CDO core

using Output Side Algorithm based convolution approach is referred to as the Output-side CDO

core, while the CDO core using FIFO-based convolution approach is simply referred to as the

FIFO-based CDO core. The C implementation is used as the base case and referred to as the

software implementation.

5.1.1 Maximum Notional Size

The analytical approach is dependent on the dataset, and depending on the dataset the execution

time can vary significantly. The most important factor to consider from the dataset is the size

of the notionals in the dataset. The size of the loss distribution table is directly determined by

the notionals, the larger the notionals the longer the loss distribution table, resulting in longer

execution time.
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The notionals entered in the analytical approach are scaled down from their original values.

For example, if a portfolio contains notionals between $1 Million and $100 Million, then the

scaled down version of the notionals will vary between 1 and 100.

Table 5.1 shows the effect of increasing maximum size of the notionals on the execution

time. The execution time increases as the maximum notional size is increased, both in hardware

and software. Due to larger notional sizes, the individual convolutions are taking longer to

compute, resulting in the increase. For instance, as the notional size doubles from 20 to 40,

the result of a convolution which only had 20 points before has twice as many points now, 40,

which results in execution time being doubled as well.

This pattern can be observed in the execution time of both the hardware implementations

and the software implementation, the execution time scales approximately linearly relative

to the size of the notionals. For example, the execution time for the FIFO-based CDO core

roughly doubles when notional size is increased from 50 to 100 and approximately quadruples

when notional size is increased from 50 to 200.

Table 5.1: Comparison of execution time for four hardware cores against the software imple-
mentation for different notional sizes

Maximum Software Output-side FIFO-based
Notional Implementation CDO Core CDO Core

Size
Exec. Time Speedup Exec. Time Speedup Exec. Time Speedup

(ms) (ms) (ms)
20 125 1 16.7 7.5 8.3 14.9
50 313 1 42.7 7.3 22.6 13.8
75 469 1 64.8 7.2 34.0 13.8

100 703 1 106.2 6.6 46.7 15.1
150 985 1 134.0 7.4 66.1 14.9
200 1219 1 164.2 7.4 88.4 13.8

The software implementation is considered the base case, and the speedup relative to the

basecase is displayed besides the execution time. The speedup is reported for four Output-

side CDO cores and four FIFO-based CDO cores against the software implementation. The

speedup of the hardware cores relative to the software implementations remains the same as
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the maximum notional size is being increased.

The speedup of the FIFO-based CDO core is twice as much as the Output-side CDO core.

It can be attributed to the fact that the FIFO-based CDO core is not wasting any cycles comput-

ing the zero entries. The number of convolutions, and the number of multiplications, remain

constant as the notional sizes are being varied, therefore dynamic point dropping does not play

much of a role in the additional speedup.
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Figure 5.1: Memory Requirement as number of notionals is increased.

The main reason the FIFO-based convolution approach was developed was to store the final

loss distribution more efficiently in memory. The presence of zero values in the table resulted

in the table growing large with much of the space wasted storing the zero values.

Figure 5.1 shows the memory needed to store the final loss distribution for the Output-side

CDO core and the FIFO-based CDO core. The plot shows the number of entries present in the

final loss distribution of the respective CDO core.

For the Output-side CDO core the memory usage grows linearly as the maximum notional
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size is increased. The increase in notional size causes the loss distribution table to grow, hence

more memory is needed to store the loss distribution table.

In the FIFO-based CDO core there is an approximate three-fold reduction in the memory

usage. The reduction is due to the efficient storage of only the computed values. The zero

entries are never stored in the FIFOs. Since the number of multiplications remains constant,

there is no further reduction in the number of points due to the dynamic point dropping, and

the memory usage for the FIFO-based CDO core also grows linearly. The reduction ratio stays

the same around three-fold as the notional size is increased.

The reduction in memory usage allows the FIFO-based CDO core to compute much larger

notional sizes than the Output-side CDO core for the same amount of memory.

5.1.2 Pool Size

Pool size is the most important parameter in the CDO pricing problem. It has the biggest effect

on the execution time of the problem.
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Figure 5.2: Execution time as the number of instruments in the pool is increased
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Figure 5.2 displays the effect of increasing the pool size on the execution time. The number

of instruments in the pool are varied from 25 to 250, and the time is displayed for four Output-

side CDO cores, four FIFO-based CDO cores and the software implementation. The increase

in the pool size results in an increase in the number of convolutions. Unlike the result of

varying maximum notional size, the increase in execution time in not linear. As the instruments

are being added to the pool, they convolve with the existing loss distribution. However the

number of cycles required for performing a convolution is not the same for all convolutions,

for example, the 100th convolution is much larger than the 20th convolution.
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Figure 5.3: Comparison of the execution times relative to the pool size for the two hardware
cores

The increase in execution time is not as large as the other two cases for the FIFO-based

CDO core. Figure 5.3 shows the execution time of the hardware cores. As shown, the execution

time of the Output-side CDO core is increasing at a higher rate than the FIFO-based CDO core.

This is due to the dynamic point dropping. As more instruments are added, the probabilities get

multiplied more often and get smaller and smaller. The FIFO-based CDO core keeps dropping
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the points with probabilities too small to represent in the fractional part of the fixed-point

representation, thus saving valuable computation time for the rest of the convolutions.

The software implementation follows a similar pattern as the Output-side CDO core. There-

fore, the speedup of the FIFO-based CDO core, relative to the software implementation, in-

creases as the pool size is increased. Table 5.2 presents the execution time of the FIFO-based

CDO core and the software implementation along with relative speed up. The speedup starts

at 11-fold for the smaller pool size and increases up to 15-fold for the larger pool sizes.

Table 5.2: Relative speedup of the FIFO-based CDO core against the software implementation
Number of Software FIFO-based Relative
Instruments Implementation (ms) CDO Core (ms) Speedup

25 31 2.8 11.0
50 110 9.3 11.7
75 219 17.6 12.4

100 328 27.1 12.1
125 469 37.7 12.4
150 641 49.2 13.0
175 828 61.5 13.5
200 1031 74.5 13.8
225 1375 88.1 15.6
250 1563 102.3 15.3

Figure 5.4 shows the memory requirement for the two CDO cores as the pool size is in-

creased. The memory requirement for the Output-side CDO core is growing linearly. The

trend is expected as doubling the pool size means that twice as much memory will be required

to store the final loss distribution table.

The FIFO-based CDO core is showing an interesting pattern. Initially, as the pool size

increases there is a linear increase. However, as the pool size keeps growing the increase in

memory keeps getting smaller, and eventually starts to level off.

The number of points in the loss distribution table increases due to the pool size growth.

However, the increase in points also results in additional multiplications, causing the probabili-

ties of some points to become too small. These points are discarded by dynamic point dropping

thus offsetting the increase in memory usage due to increase in the number of points.
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Figure 5.4: Memory Requirement as the pool size is increased.

As the pool size grows, the memory reduction ratio between the two convolution ap-

proaches increases. Table 5.3 shows the memory requirement for the Output-side CDO core

and the FIFO-based CDO core. The memory requirement of the software implementation is

the same as the Output-side CDO core.

The reduction in memory usage for the FIFO-based approach starts at approximately one,

which means that there is no reduction, and increases to four-fold for a pool size of 250. The

four-fold reduction implies that since only 1
4

of the memory is required to save the final loss

distribution table, much larger pool sizes can be run on the FIFO-based CDO core.

5.1.3 Tranches

Each CDO contains multiple tranches. Once the loss distribution is completed all the tranches

can compute their tranche losses in parallel. CDOs can have a minimum of three tranches and

a reported maximum of 28 Tranches [24]. A typical CDO usually consists of 5-10 tranches.



50 CHAPTER 5. RESULTS AND ANALYSIS

Table 5.3: Comparison of memory requirements for the Output-side CDO core and the FIFO-
based CDO core. As the number of instruments increase, the reduction ratio gets higher for the
FIFO-based CDO core

Number of Output-side FIFO-based Reduction in
Instruments CDO core CDO Core Memory (ratio)

25 718 634 1.1
50 1436 894 1.6
75 2154 1073 2.0
100 2872 1217 2.4
125 3590 1337 2.7
150 4308 1444 3.0
175 5026 1538 3.3
200 5744 1623 3.5
225 6462 1701 3.8
250 7180 1774 4.0

The CDO cores in our implementation is capable of modeling up to 20 tranches, which should

be sufficient for the majority of CDOs. If there are more tranches in a CDO, then another CDO

core can be initialized to calculate the remaining tranches. By default six tranches are modelled

for each problem.

Since the tranches are calculated in parallel, the problems with a higher number of tranches

exhibit a higher speedup. Figure 5.5 shows the performance of four FIFO-based CDO cores

against the software implementation as the number of tranches are increased. There is an

increase in the speedup until 20 tranches, the maximum number of tranches the CDO cores can

model. After 20 tranches, there is a sudden drop in the performance, as there are only half as

many cores as before calculating unique loss distributions. The maximum limit of 20 tranches

is an artificial limit that will handle the majority of cases, the CDO core can be expanded to

include as many tranches as required by the problem.

5.2 MPI Testbench

The testbench presented in Figure 4.1 will be referred to as the on-chip testbench, while the

MPI based testbench presented in Figure 4.2 will be referred to as the MPI testbench.
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Figure 5.5: Effect of an increase in number of tranches on the performance

To test the MPI based CDO cores, the testcases that were executed on the on-chip testbench

were ran on the MPI testbench. The execution time on the two platforms were similar, with a

slight overhead for the MPI testbench.

The same testcases were run on both platforms and the execution time was unaffected by

change in notional size and pool size. Figure 5.6 shows the execution time of a FIFO-based

CDO core for a testcase with 100 instruments tested on both platforms. As the number of

scenarios is increased, the execution time of MPI testbench keeps increasing by few microsec-

onds.

The increase in execution time is due to the overhead in communication using the MPI

network. The overhead is measured to be 15.5 microseconds for one scenario. As the number

of scenarios increases, the overhead increases linearly and for 8 scenarios, the overhead is 124

microseconds.
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Figure 5.6: Execution time for the two test platforms relative to number of iterations. The
execution time for MPI platform increases slighly more that the other test platform due to the
overhead in synchronous MPI protocol

The overhead is the result of using a synchronous protocol in MPI called rendezvous. In

the rendezvous protocol, a process only sends data when it has received an acknowledgement

from the receiver. The transfer is initiated by the sender by sending a request to send packet

to the receiver, the receiver responds by sending a clear to send packet. After the sender has

received the packet from the receiver, it can proceed with sending data. In a single scenario,

there are two MPI Send commands, once by the Microblaze to send the initial data, and the

other by the CDO core to send back the result. The two MPI Send commands are responsible

for the overhead.

The overhead can be removed by using an asynchronous MPI protocol such as the Eager

protocol. In the Eager protocol the sender assumes that the receiver is always ready to receive

data and proceeds with the send without consulting the receiver. In an asynchronous multi-

FPGA system, this can be hard to ensure, so the synchronous protocol was chosen for MPI
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LUTs FFs DSPs BRAMs
CDO core 1720 (5%) 1869 (6%) 19 (7%) 9 (7%)

FIFO-based Conv 729 854 7 9
Tranches 849 816 12 0

communication.

The MPI test platform does not have any other overhead besides the one encountered during

the data transfer initiation. The amount of data sent is different depending on the number of

instruments, however it does not result in any extra time. The results presented in Sections 5.1.1

and 5.1.2 assume 64 instruments. For 64 instruments the overhead is around 1 millisecond.

For the execution times presented in Sections 5.1.1 and 5.1.2, the overhead is insignificant for

larger testcases, where the execution time is in hundreds of milliseconds. The small overhead

in communication is insignificant when compared to the benefits of an MPI based system such

as better scalability and portability.

The MPI system was tested with various datasets, to ensure for functionality and perfor-

mance. The MPI implementation of the CDO cores is ready to be implemented in a multi-

FPGA system. The implementation of a multi-FPGA CDO pricing system has been left as a

future work.

5.3 Scalability

Table 5.3 shows the resource utilization (in brackets) of the FIFO-based CDO core synthesized

on a Xilinx SX50T FPGA. The small resource utilization of the CDO core allows multiple

replications. For performance comparison, only the FIFO-based CDO core is considered as it

has the highest performance. The FIFO-based CDO core is replicated 10 times on SX50T, and

tested using the on-chip test platform.

Figure 5.7 shows the speedup of the ten FIFO-based CDO cores against the software imple-

mentation. The speedup is presented for three different pool sizes: 50, 100 and 200, as different

pool sizes exhibit different speedups. The speedup is linear in all cases. The CDO cores are
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Figure 5.7: Speedup as the number of hardware cores are increased

loaded with data in a round-robin fashion, so adding extra CDO cores causes a small overhead.

However the overhead is in microseconds while the performance is measured in milliseconds,

thus it is negligible.

The highest observed speedup is 41-fold for a pool size of 200 for the CDO cores. The

highest speedup up for the other sizes are 32-fold for a pool size of 50, and 36-fold for a pool

size of 100 respectively.

From an industry point of view, higher speedup for large pool sizes is encouraging. As

outlined in the motivation, the pool sizes are constantly increasing, thus the trend of higher

speedup for larger portfolios will prove beneficial.

As a final scalability test, we synthesized 32 CDO cores for the SX240T, a much larger

FPGA of the same family. Figure 5.8 shows the expected speed for a pool size of 100. The

first 10 points are validated on a SX50T, and the rest are interpolated from it. The speedup for
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32 CDO cores running concurrently is expected to be around 120-fold.
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Figure 5.8: Expected speedup on a Xilinx SX240T FPGA

For reference, we compared our our hardware implementation against the MATLAB stan-

dalone executable. On average, one CDO core outperforms the MATLAB implementation by

50-fold. On the SX50T platform, with 10 CDO cores running in parallel, we were able to get a

speedup of about 500-fold over the MATLAB model. These results indicate that for individuals

using MATLAB models for financial simulation, porting to a C implementation or a hardware

implementation can result in a significant performance improvement.
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5.4 Comparison with Monte Carlo Based Hardware Imple-

mentation

In this section, we try to compare the presented hardware implementation against a Monte carlo

based hardware implementation for pricing structured instruments presented in [16].

However it is extremely difficult to compare two different models for structured instru-

ments. Each model has a its own error associated with it, so they will not necessarily produce

the same result. In addition the variances present in the model themselves makes it even harder

to compare their results.

For instance, the Monte Carlo based CDO pricing model uses thousands of scenarios to

calculate the result, all of which are randomly generated and equally weighted. In contrast, the

analytical approach uses a very few scenarios, generally around 30. The scenarios are typically

predetermined to only account for certain market conditions of interest. Each market condition

has a weight associated with it. For example, if a housing market crash is likely to happen, the

scenario corresponding to that will have a much higher weight. In addition, for the analytical

model the default probabilities of the portfolio for each scenario is different, as opposed to

Monte Carlo where all the scenarios use the same default probability.

In Monte Carlo the accuracy determines the run time, and to get a more accurate answer

more scenarios must be run. However, due to the variances in the model it was not possible

to determine the accuracy relationship between the two models. The MATLAB models of the

two approaches produced significantly different results. Without the accuracy, it is difficult to

determine the number of scenarios to run for the Monte Carlo approach.

Since the performance of Monte Carlo is determined by the number of scenarios, it would

be difficult to do a performance comparison. Instead we try to present a picture of where

our FIFO-based hardware implementation of the analytical approach stands with respect to the

Monte Carlo hardware implementation. It is assumed that both models will produce acceptable

results.
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Figure 5.9: Execution time for two approaches relative to the size of the notionals

The results presented in [16] are for the Xilinx SX50T, the same FPGA we used for our

implementation. The resource utilization of our CDO core is smaller than the Monte Carlo

implementation, therefore we were able to replicate twice as many CDO cores on the same

platform.

The analytical method is dependent on its dataset, it is restricted on what notional sizes it

can compute. The larger notional sizes would result in a large loss distribution table, resulting

in a significantly longer execution time. Therefore it would be of interest to determine what

range of notionals would be good to compute using an analytical method, before the Monte

Carlo approach, which can compute any size of notionals in constant time, becomes more

attractive.

Figure 5.9 presents the execution time as the maximum notional size is increased. The hor-

izontal line at 50ms is the execution time of the Monte Carlo hardware implementation with

100,000 scenarios, which was used as a default case by the author of [16]. The horizontal line
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at the top of the graph at 500ms is the execution time of the Monte Carlo hardware implemen-

tation with one million scenarios. Appendix B details how the execution time was calculated

for the Monte Carlo model. The plot shows the execution time for one time step.

Since we were able to replicate twice as many cores as the Monte Carlo implementation, the

number of scenarios running on a the CDO cores can be halved with the added extra CDO cores

running the other half. Therefore the execution time will be halved as well. The “Analytical

method 2X” line represents this case and is referred to as analytical method with two-fold

speedup. The “Analytical method” line presents the execution time if all the scenarios were

run on a single CDO core, thus comparing the execution time of one CDO core against one

Monte Carlo hardware core. This is treated as the default case and referred to as simply the

analytical implementation.

For notional sizes up to 250 the execution time of the analytical implementation is lower

than both Monte Carlo lines. For notional sizes larger than 250, the Monte Carlo implementa-

tion running 100,000 iterations will compute the results faster than the analytical implementa-

tion. The execution time for the analytical implementation is still lower than the Monte Carlo

implementation with 1 million iterations. The execution time for the analytical method with

two-fold speedup is lower than both Monte Carlo lines for all notionals tested.

The Monte Carlo hardware implementation is most efficient when the time-steps are a

factor of eight. Figure 5.9 is the worst case for the Monte Carlo implementation.

Figure 5.10 shows the best case for the Monte Carlo implementation, it shows the exe-

cution time for eight time steps. The Monte Carlo implementation with 100,000 iterations

outperforms the analytical implementation for all notional sizes, except the smallest. The ana-

lytical implementation still has a lower execution time than Monte Carlo running one million

iterations for notional sizes up to 300. The analytical model with two-fold speedup has a lower

execution time for all notional sizes against the Monte Carlo implementation with 1 Million

scenarios.

Since the analytical approaches are much faster in software than the Monte Carlo ap-
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Figure 5.10: Execution time as the number of notionals is increased, time steps =8, best case
for Monte Carlo approach

proaches, it was surprising to see that the performance of the Monte Carlo method was close,

and even better, to the analytical implementation. For example, if the accuracy associated with

100,000 iterations for Monte Carlo is acceptable, then in hardware the Monte Carlo approach

would outperform the analytical method consistently. The analytical implementation can com-

pete with the Monte Carlo implementations requiring higher accuracy.

The performance of the Monte Carlo based implementation is better in hardware as it takes

advantage of both fine and coarse grain parallelism available in the model. In our model,

only the coarse grain parallelism could be taken advantage of, and the recursive convolutions

were still computed sequentially. Unless an approach can be found to exploit the fine-grain

parallelism the acceleration of the approach will always be limited by the computation time of

the recursive convolutions.

Since convolution is associative, the convolutions can be divided into smaller convolutions
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which then convolve to complete the final convolution. The FIFO-based CDO core can be

used in that case to perform the smaller convolutions, and an FFT can then be used to perform

the final large convolution. However, in that case we would not be able to take advantage of

the FIFO-based approach to store the result, and the final loss distribution table can grow very

large. A hardware core designed specifically to perform the large convolution could be used to

fix the problem. If further acceleration from the analytical model is required, this is something

that can be explored in the future.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The goal of this research was to develop a hardware architecture for an analytical model to

price Collateralized Debt Obligations (CDOs), a group of structured instruments.

The analytical model presented in [6] was analyzed for implementation on the FPGA. The

analytical model calculates the CDO price by using recursive convolutions to compute tranche

losses. Three different convolution approaches were considered; a generic FFT based ap-

proach, a standard FPGA approach based on the Output Side Algorithm, and a novel approach

based on using FIFOs for storage. In the analytical approach, the loss distribution table has en-

tries for all the points, even if their probability is zero, which results in wasted storage resources

and more importantly wasted computation time spent on calculating those points. The FIFO-

based convolution approach addresses the problem by storing only the non-zero entries in the

FIFO. The FIFO-based convolution method also improves performance by dropping points dy-

namically when their probability becomes too small to be represented in the fractional part of

the fixed point representation.

CDO cores based on Output Side Algorithm and FIFO-based algorithm were implemented

on a Xilinx SX50T FPGA. The low resource utilization of the CDO cores resulted in 10 repli-
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cations on the SX50T FPGA. The CDO cores were extensively compared against a software

implementation written in C, executed on a 2.8 GHz Pentium 4 processor with 2GB DDR

RAM. The speedup is consistent as the size of the notionals is varied, and the speedup of the

FIFO-based CDO core increases as larger pool sizes are considered. The highest performance

CDO core, FIFO-based, exceeds the performance of the software implementation by 41-fold

for the largest pool size tested.

An MPI-based version of the CDO core was built for better scalability and portability. The

MPI-based system has a small overhead of only few milliseconds and can be used to extend

the system to multi-FPGA platforms.

Comparison against a Monte Carlo based hardware implementation achieved mixed results.

The analytical implementation is competitive against high accuracy Monte Carlo implementa-

tions, but Monte Carlo implementation with fewer scenarios than 100,000 outperforms the an-

alytical model. The lack of fine grain parallelism available in the analytical model contributed

to the limited performance gain.

In the literature, the acceleration of financial simulation applications has been limited to

Monte Carlo based models so far. This thesis demonstrates that an analytical model for a finan-

cial simulation application can also be significantly accelerated using reconfigurable hardware.

The acceleration of the analytical model is non-trivial, and novel design techniques were used

to address specific shortcomings of the model, resulting in a low memory usage in addition to

the performance improvements.

6.2 Future Work

Following are some natural extensions to the work:

Multi-FPGA system The work for MPI implementation of CDO cores is completed and it is

ready to be integrated into a multi-FPGA system. Some candidates for the multi-FPGA

systems include BEE2, BEE3 and ACP. In ACP the processors and the FPGAs are tightly
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coupled together and capable of communicating over MPI protocol.

Implementing the MPI CDO core on the ACP system will make it easy to for the CDO

core to be integrated into a financial simulator. The CDO core can act as a co-processor

for the financial simulator running on the processor.

Further Acceleration The current bottleneck is identified to be the recursive convolutions.

The application can be further accelerated if clever ways are found to exploit the fine

grain parallelism. The most intuitive approach is to divide the convolution into smaller

convolutions and then combine their results by performing a larger convolution.

GPU Implementation While we have presented an FPGA approach, it will be interesting to

see a GPU implementation of the same problem and how it compares against the FPGA

implementation. The GPU is suited for calculations where there is little communication

between the computing nodes, and each one works on its own independent dataset. The

calculations in the CDO pricing problem display this pattern, the time steps and scenar-

ios in the problem are all independent and they do not share any data. Therefore, it is

expected that an efficient implementation of a GPU implementation can also result in a

significant speedup over a software implementation.
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Appendix A

Performance Comparison of the

Convolution Methods

Assume a testcase for a pool of 20 instruments with notionals varying between 1-100.

The FFT approach with the size of maximum length N of 2048 samples will take 20 ∗
2048 = 40, 960 cycles to compute the complete loss distribution. It is irrelevant what the data

looks like, as the FFT module must be designed to consider the worst case. Therefore, the

worst case scenario completion time, where all the elements are 100, is the average completion

time.

In contrast, the Output Side Algorithm based convolution method only calculates the points

required for each convolution. It is very dependent on the dataset, as the length of the convo-

lution result varying significantly for different cases. For instance, if all the notionals in the

example were 1, then the computation time will be significantly lower than if all the notionals

are 100. The average case would lie between these two extremes.

Table A.1 calculates the number of cycles required for different data samples. The worst

case for the convolution module is the same as FFT module, when all the notionals are 100.

Since the number of cycles in dependent on the number of points being calculated, after the

first one, it would be 100, 200 after the second one and so on. The latency of the convolution
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Table A.1: Number of Cycles required for Output Side Algorithm
Case Notionals Compute Cycles Overhead Total Cycles
Worst 100 100 + 200 + ... + 2000 = 21000 140 21140

Average 1-100 10480 140 10620
Best 1 1 + 2 + ... + 20 = 210 140 350

Table A.2: Performance Comparison of the FFT-based Convolution method and the Output
Side Algorithm based Convolution method

Case FFT(cycles) Conv Module(cycles) Performance
Ratio

Best 40,960 350 117.03
Average 40,960 10,620 3.85
Worst 40,960 21,140 1.93

module between the two iterations is 7 cycles, therefore 7 * 20 = 140 cycles is added to all

calculations. The best case would be calculated similarly. For the average case, the notionals

were generated randomly between 1-100 using and averaged over 1000 times to get the average

number of cycles required.

Table A.2 summarizes the performance comparison between the two approaches. The num-

ber for cycles required for convolution module is always less than the FFT block. The most

important result is the average case, which is where most of the dataset would fit, and the

convolution module outperforms the FFT-based by approximately four-fold.

It is very difficult to analytically determine the performance improvement of the FIFO-

based convolution method over the other two approaches. But since the FIFO-based convolu-

tion method has fewer points than the Output Side Algorithm based approach, it will always

perform better than the two approaches.



Appendix B

Monte Carlo Execution Time

The execution time for the Monte Carlo is calculated using Eqn. (B) provided by the author

of [16].

#instruments× ciel(#time steps
8

)×#scenarios
Frequency

(B.1)

Assuming a pool of 100 instruments, and using the same frequency as our CDO core, the

execution time for 100,000 scenarios is :

100× 1× 100000

200Mhz
= 50 ms

For 1 Million scenarios the execution time will be:

100× 1× 1000000

200Mhz
= 500 ms
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