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Increasing Computational 
Requirements (1/3)

In recent years the financial industry has 

seen:

1.   Increasing contract/model complexity

 Every year new models are developed

 Unavailability of closed-form solution

 Necessitate Monte-Carlo pricing



Increasing Computational 
Requirements (2/3)

2. Increasing portfolio sizes

 Increase in simple instruments
 Bonds

 Loans

 Increase in complex derivate security
 CDO issuance has increased from $157 billion in 2004 to $507 

billion in 2007 (>3x)¹

3xN instruments

3xY time (at least)

N instruments

Y time

¹ SIFMA



Increasing Computational 
Requirements (3/3)

3. Ever-present need to make real-time 
decisions
 Market trends can change quickly

 Instruments traded electronically

1 ms in Latency is Worth $100 M in 

Stock Trading Business Value (AMD 

Analyst Day-26 july 2007)



Trends in Financial Monte-Carlo 
Algorithms

1.  Computationally intensive

 Converges in

2.  Highly repetitive

 A large portion of the calculation time 
is spent in a small portion of the code

 (~90% of the time is spent in ~10% of 
the code)

3. High degree of coarse and fine-grain 
parallelism

N

1

Coarse-GrainFine-Grain

Typical MC Financial simulation



Collateralized Debt 

Obligation (CDO)



CDO

Problem:
 Banks typically hold portfolios with highly volatile 

assets.

Solution:
 Sell assets to an outside entity (SPV), which combines 

the different assets together into one collateral pool

 Repackage the pool as CDO tranches.

 Sell tranches as form of protection to investors in 

return for premium payments



CDO Structure (1/2)

Investors

Sponsor (Bank)

Bonds

Loans

CDS

CDOs

Collateral Pool

SPV

Tranches

Super Senior: 12%-100%

Senior: 6% -12%

Mezzanine: 3% -6%

Equity: 0% -3%

Borrowers

(Credit Default 

Swap)



CDO Structure (2/2)

 Each tranche has attachment and detachment points
 Losses below attachment point → the tranche is unaffected

 Losses above the detachment point → the tranche becomes inactive

 Investor premium is paid based on the tranche width minus 

tranche losses 

Attachment (3%)

Detachment (6%)

Tranche 

Losses

Investor 

Premium 

Payments

4%

Mezzanine Tranche:

 Paid premium on the full 

investment

 Losses 1/3 of the principal 

investment. Paid based on 2/3 

of the original investment



Pricing a CDO

 Default Leg: expected losses of the tranche over the 

life of the contract

 Premium Leg: expected premiums that the tranche 

investor will receive over the life of the contract
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CDO Tranche Value = Premium Leg – Default Leg

S =tranche thickness si= Premium

di= Discount factor Li= Tranche loses at time interval i



Li’s One-Factor Gaussian Copula 
(OFGC) Model

 Calculate total losses by averaging over all Monte-Carlo (MC) paths

 For each path:
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2.  Compare:

3.  Record losses:

1.  Generate: 

Systemic Factor Idiosyncratic Factor
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Implementation



Multi-Core Architecture

 Three portions: Distributor, OFGC 
pricing cores, and Collector. 

 All cores have the same input data 
except for market scenarios

 Coarse Grain Parallelism: MC paths 
divided among OFGC cores

 Data transfer occurs in parallel to 
calculations

 Double Buffering

 Maximal required data transfer rate 
of: 24MBytes/sec 

 1-Lane PCI express- 250 MBytes/sec

 Data transfer latency can be hidden



OFGC Design

Phase 4: Convert collateral pool losses to 

tranche losses 

Phase 5: Accumulate tranche losses 

Phase 3: Combine the partial sums, L(ti)’s.

Phase 1: Generate Yi

Phase 2: Compare Yi<Φ-1[P(τi<t)]. Record 

partial losses



Phase 2

 Compare Yi<Φ-1[P(τi<t)].  

Record Losses 

 Fine-grain parallelism: 

parallelize over time

 8 replicas

 More replicas → higher 

speedup (potentially)

 However, large portions of 

the hardware become 

underutilized 

 Pipelined adder latency 

creates multiple partial 

sums



OFGC Design

Phase 4: Convert collateral pool losses to 

tranche losses 

Phase 3: Combine the partial sums, L(ti)’s.

Phase 1: Generate Yi

Phase 2: Compare Yi<Φ-1[P(τi<t)]. Record 

partial losses

Phase 4: Convert collateral pool losses to 

tranche losses 

Phase 3: Combine the partial sums, L(ti)’s.

Phase 5: Accumulate tranche losses Phase 5: Accumulate tranche losses 



Experiments and Results

 Three notional representations were explored: 

floating-point single-precision, double-precision, and 

fixed-point.

 Floating-Point DSP exploration

 Single-Precision/Double-Precision Hybrid

 Fixed-Point

 Performance Results



Floating-Point DSP Exploration:
DSP48E Background

 Highly optimized slices 

dedicated to arithmetic 

operations 

 Potential clock frequency 

550 MHz

 Support for over 40 

operating modes: 

multiplier  multiplier-

accumulator

 three input 

adder

 barrel 

shifter

 wide bus 

multiplexers

etc

Virtex 5 DSP48E Slice Diagram¹

¹ Diagram taken from Xilinx website



Floating-Point DSP Exploration: 
Results

Floating-Point Double-

Precision

Without 

DSP

With DSP

Flip-Flops 10454 9910 (-5.2%)

LUTs 13548 13325 (-1.6%)

BRAMs 31 31 

DSP48Es 10 40 (+300%)

Frequency 187.3 190.9 (+1.9%)

Average 

Error (%)

0

Floating-Point Single-

Precision

Without 

DSP

With DSP

Flip-Flops 7097 6530 (-8.0%)

LUTs 8660 7052 (-18.6%)

BRAMs 15 15

DSP48Es 9 29 (+222%)

Frequency 235.2 248.8 (+5.8%)

Average 

Error (%)

0.39 [1.07]

Single-Precision is 1.5 to 2 times smaller but has an accuracy error



Single-Precision/Double-Precision 
Hybrid

 Combine the accuracy of 

the double-precision and 

resource utilization of 

single-precision

 Single-precision notionals 

and double-precision 

accumulator at phase 5

Single 

Precision

Hybrid

Flip-Flops 6530 6721 

(+2.9%)

LUTs 7052 7599 

(+7.8%)

BRAMs 15 15

DSP48Es 29 30 (+3.4%)

Frequency 248.8 244.8

(-1.6%)

Average 

Error (%)

0.37

[1.07]

3.02E-5

[5.27E-5]



Fixed-Point

 42-bit notionals, 54-bit 

final accumulator matches 

the accuracy of a double-

precision design

 Each additional notional 

bit requires 62 Flip-Flops 

and 74 LUTs.

Single 

Precision

Fixed-Point

Flip-Flops 6530 4906 

(-24.9%)

LUTs 7052 5224 

(-25.9%)

BRAMs 15 15

DSP48Es 29 7 (-75.9%)

Frequency 248.8 268.2

(+7.8%)

Average 

Error (%)

0.37

[1.07]

0



Performance: Benchmarks

# Based on Data From # of 

Assets

# of 

Time 

Steps

# of 

Default 

Curves

1 CDX.NA.HY 100 15 5

2 CDX.NA.IG 125 35 5

3 CDX.NA.IG.HVOL 30 19 4

4 CDX.NA.XO 35 22 4

5 CDX.EM 14 6 4

6 CDX.DIVERSIFIED 40 23 5

7 CDX.NA.HY.BB 37 13 4

8 CDX.NA.HY.B 46 26 4

9 Semi-homogenous 400 24 2

 Credit rating and number of 

instruments are based on Dow 

Jones CDX

 Notionals obtained from 

Moody’s, range from 

$600,000 to $6.6 billion 

 α: uniformly distributed in 

[0, 1]

 Recovery rate: Normally 

distributed, N (0.4,0.15)

 # of Time Steps: Normally 

distributed, N (20,10)



Processor vs. FPGA setup

 3.4 GHz Intel Xeon 

Processor

 3GB RAM

 C++ program  

 100,000 Monte-Carlo 

paths

 Virtex 5 SX50T speed 

grade -3

 Connected to host 

through PCI express

 100,000 Monte-Carlo 

paths



Performance: Single Core Results (1/2) 

0

5

10

15

20

25

C
D

X
.N

A
.H

Y

C
D

X
.N

A
.IG

C
D

X
.N

A
.IG

.H
V

O
L

C
D

X
.N

A
.X

O

C
D

X
.E

M

C
D

X
.D

IV
E

R
S

IF
IE

D

C
D

X
.N

A
.H

Y
.B

B

C
D

X
.N

A
.H

Y
.B

S
e
m

i-h
o
m

o
g
e
n
o
u
s

A
V

E
R

A
G

E

Benchmarks

S
p

e
e
d

u
p

Double Precision

Single Precision

Single/Double Hybrid

Fixed Point



Performance: Single Core Results (2/2)

Single Core Average Acceleration:

Double Precision: 10.6 X

Single Precision: 13.9 X

Single/Double Hybrid: 13.6 X

Fixed Point: 15.6 X



Performance: Multi-Core

 Monte-Carlo paths independence allows for a linear speedup 

as more pricing cores are incorporated.

Double Single Single/Double 

Hybrid

Fixed - Point

Single Core

Acceleration

10.6X 13.9X 13.6X 15.6X

Maximum # 

of 

Instantiations

2 4 4 5

Multi-Core 

Acceleration

15.7X 46.5X 46.8X 63.5X



Summary

 Presented a hardware architecture for pricing Collateralized Debt 
Obligations using Li’s model

 Demonstrated the advantages of using DSP48Es in terms of resource 
utilization and frequency
 Especially evident for single precision

 Established that either a single/double hybrid or fixed-point 
representations could be used to balance resource utilization and 
accuracy

 Fixed-point hardware design is over 63-fold faster than a 
corresponding software implementation



Future Work

1. Expand to Multi-Factor model
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2. Attempt the algorithm on a different accelerator  

architecture 

 GPU



Thank You
(Questions?)


