FPGA Acceleration of Monte-Carlo Based Credit Derivatives Pricing

Alexander Kaganov¹, Asif Lakhany², Paul Chow¹

¹ Department of Electrical and Computer Engineering, University of Toronto ² Quantitative Research, Algorithmics Incorporated

Increasing Computational Requirements (1/3)

In recent years the financial industry has seen:

- 1. Increasing contract/model complexity
 - Every year new models are developed
 - Unavailability of closed-form solution
 - Necessitate Monte-Carlo pricing

Increasing Computational Requirements (2/3)

2. Increasing portfolio sizes

- Increase in simple instruments
 - Bonds
 - Loans
- Increase in complex derivate security
 - CDO issuance has increased from \$157 billion in 2004 to \$507 billion in 2007 (>3x)¹

N instruments

Y time

3xN instruments

3xY time (at least)

¹ SIFMA

Increasing Computational Requirements (3/3)

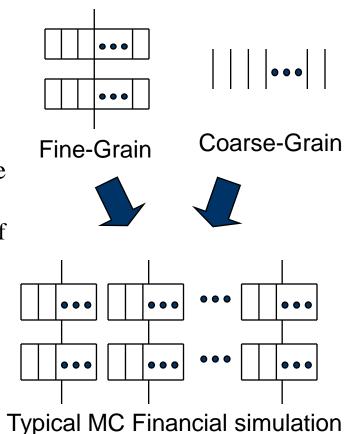
- 3. Ever-present need to make **real-time** decisions
 - Market trends can change quickly
 - Instruments traded electronically

1 ms in Latency is Worth \$100 M in Stock Trading Business Value (AMD

Analyst Day-26 july 2007)

Trends in Financial Monte-Carlo Algorithms

- 1. Computationally intensive
 - Converges in $\frac{1}{\sqrt{N}}$
- 2. Highly repetitive
 - A large portion of the calculation time is spent in a small portion of the code
 - (~90% of the time is spent in ~10% of the code)
- 3. High degree of coarse and fine-grain parallelism



Collateralized Debt Obligation (CDO)

CDO

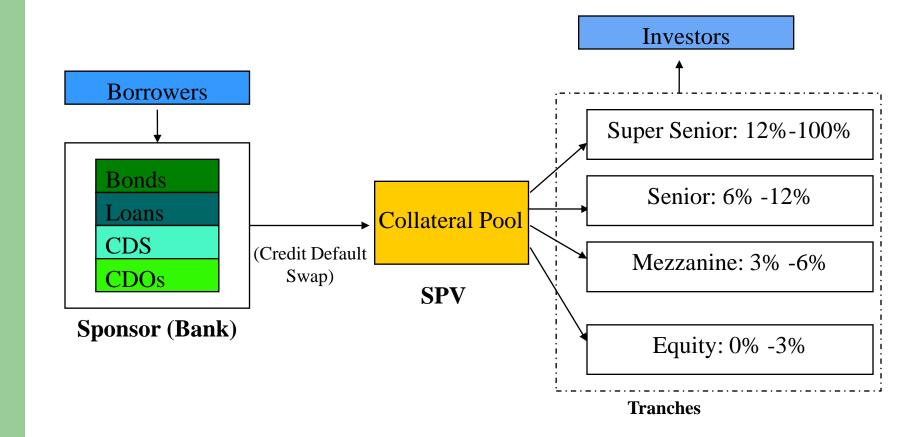
Problem:

Banks typically hold portfolios with highly volatile assets.

Solution:

- Sell assets to an outside entity (SPV), which combines the different assets together into one collateral pool
- Repackage the pool as CDO tranches.
- Sell tranches as form of protection to investors in return for premium payments

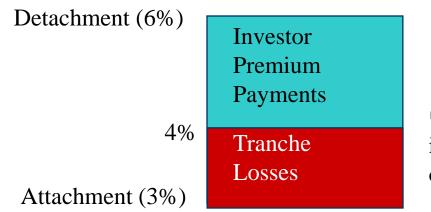
CDO Structure (1/2)



CDO Structure (2/2)

- Each tranche has attachment and detachment points
 - Losses below attachment point \rightarrow the tranche is unaffected
 - Losses above the detachment point \rightarrow the tranche becomes inactive
- Investor premium is paid based on the tranche width minus tranche losses

Mezzanine Tranche:



• Losses 1/3 of the principal investment. Paid based on 2/3 of the original investment

Pricing a CDO

- Default Leg: expected losses of the tranche over the life of the contract
- Premium Leg: expected premiums that the tranche investor will receive over the life of the contract

CDO Tranche Value = Premium Leg – Default Leg

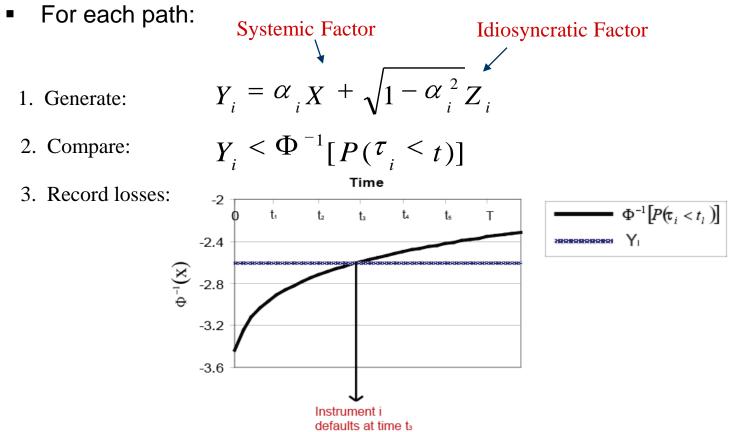
$$= E\left[\sum_{i=1}^{T} s_{i}(S - L_{i})d_{i}\right] - E\left[\sum_{i=1}^{T} (L_{i} - L_{i-1})d_{i}\right]$$

S = tranche thickness s_i = Premium

 d_i = Discount factor L_i = Tranche loses at time interval i

Li's One-Factor Gaussian Copula (OFGC) Model

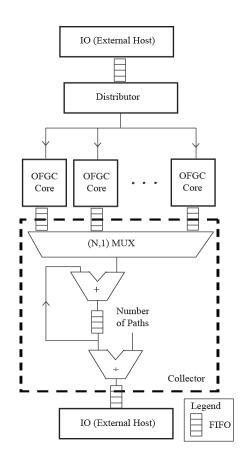
Calculate total losses by averaging over all Monte-Carlo (MC) paths



Implementation

Multi-Core Architecture

- Three portions: Distributor, OFGC pricing cores, and Collector.
- All cores have the same input data except for market scenarios
- Coarse Grain Parallelism: MC paths divided among OFGC cores
- Data transfer occurs in parallel to calculations
 - Double Buffering
- Maximal required data transfer rate of: 24MBytes/sec
 - 1-Lane PCI express- 250 MBytes/sec
 - Data transfer latency can be hidden



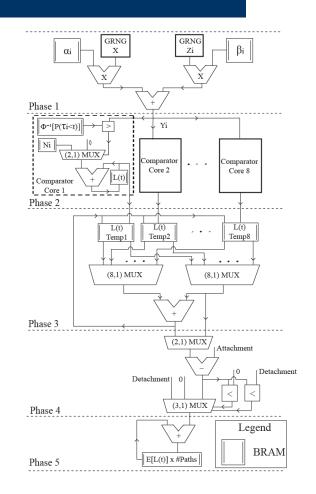
OFGC Design

Phase 1: Generate Y_i

Phase 2: Compare $Y_i < \Phi^{-1}[P(T_i < t)]$. Record partial losses

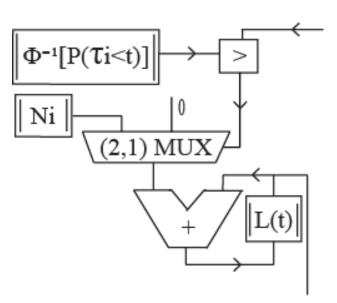
Phase 3: Combine the partial sums, $L(t_i)$'s.

Phase 4: Convert collateral pool losses to tranche losses Phase 5: Accumulate tranche losses



Phase 2

- Compare $Y_i < \Phi^{-1}[P(\tau_i < t)]$. Record Losses
- Fine-grain parallelism: parallelize over time
 - 8 replicas
- More replicas → higher speedup (potentially)
 - However, large portions of the hardware become underutilized
- Pipelined adder latency creates multiple partial sums



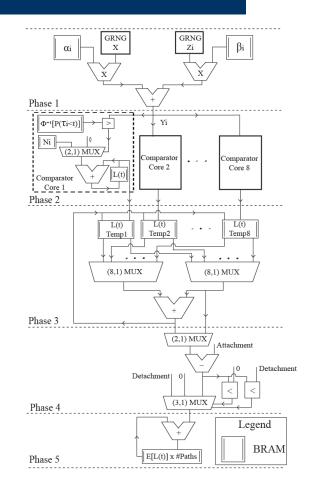
OFGC Design

Phase 1: Generate Y_i

Phase 2: Compare $Y_i < \Phi^{-1}[P(\tau_i < t)]$. Record partial losses

Phase 3: Combine the partial sums, $L(t_i)$'s.

Phase 4: Convert collateral pool losses to tranche losses Phase 5: Accumulate tranche losses



Experiments and Results

- Three notional representations were explored: floating-point single-precision, double-precision, and fixed-point.
 - Floating-Point DSP exploration
 - Single-Precision/Double-Precision Hybrid
 - Fixed-Point
- Performance Results

Floating-Point DSP Exploration: DSP48E Background

- Highly optimized slices dedicated to arithmetic operations
- Potential clock frequency 550 MHz
- Support for over 40 operating modes:

• multiplier- • three input accumulator adder

•etc

• wide bus

multiplexers

• barrel shifter

PCOUT

Virtex 5 DSP48E Slice Diagram¹

¹ Diagram taken from Xilinx website

Floating-Point DSP Exploration: Results

	Floating-Point Single- Precision			Floating-Point Double- Precision	
	Without DSP	With DSP		Without DSP	With DSP
Flip-Flops	7097	6530 (-8.0%)	Flip-Flops	10454	9910 (-5.2%)
LUTs	8660	7052 (-18.6%)	LUTs	13548	13325 (-1.6%)
BRAMs	15	15	BRAMs	31	31
DSP48Es	9	29 (+ 222%)	DSP48Es	10	40 (+ 300%)
Frequency	235.2	248.8 (+ 5.8%)	Frequency	187.3	190.9 (+ 1.9%)
Average Error (%)	0.39 [1.07]		Average Error (%)		0

Single-Precision is 1.5 to 2 times smaller but has an accuracy error

Single-Precision/Double-Precision Hybrid

- Combine the accuracy of the double-precision and resource utilization of single-precision
 - Single-precision notionals and double-precision accumulator at phase 5

	Single Precision	Hybrid
Flip-Flops	6530	6721 (+ 2.9%)
LUTs	7052	7599 (+ 7.8%)
BRAMs	15	15
DSP48Es	29	30 (+ 3.4%)
Frequency	248.8	244.8
		(-1.6%)
Average	0.37	3.02E-5
Error (%)	[1.07]	[5.27E-5]

Fixed-Point

- 42-bit notionals, 54-bit final accumulator matches the accuracy of a doubleprecision design
- Each additional notional bit requires 62 Flip-Flops and 74 LUTs.

	Single Precision	Fixed-Point
Flip-Flops	6530	4906
		(-24.9%)
LUTs	7052	5224
		(-25.9%)
BRAMs	15	15
DSP48Es	29	7 (-75.9%)
Frequency	248.8	268.2
		(+7.8%)
Average	0.37	0
Error (%)	[1.07]	

Performance: Benchmarks

#	Based on Data From	# of Assets	# of Time Steps	# of Default Curves	•
1	CDX.NA.HY	100	15	5	_
2	CDX.NA.IG	125	35	5	
3	CDX.NA.IG.HVOL	30	19	4	
4	CDX.NA.XO	35	22	4	
5	CDX.EM	14	6	4	
6	CDX.DIVERSIFIED	40	23	5	
7	CDX.NA.HY.BB	37	13	4	
8	CDX.NA.HY.B	46	26	4	
9	Semi-homogenous	400	24	2	

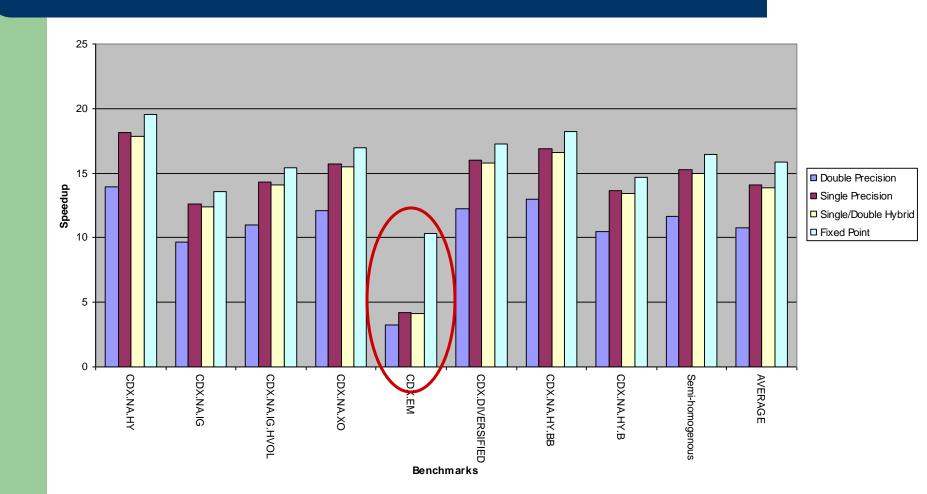
- Credit rating and number of instruments are based on Dow Jones CDX
- Notionals obtained from Moody's, range from \$600,000 to \$6.6 billion
 - α: uniformly distributed in [0, 1]
 - Recovery rate: Normally distributed, N (0.4,0.15)
 - # of Time Steps: Normally distributed, N (20,10)

Processor vs. FPGA setup

- 3.4 GHz Intel Xeon Processor
- 3GB RAM
- C++ program
- 100,000 Monte-Carlo paths

- Virtex 5 SX50T speed grade -3
- Connected to host through PCI express
- 100,000 Monte-Carlo paths

Performance: Single Core Results (1/2)



Performance: Single Core Results (2/2)

Single Core Average Acceleration: Double Precision: 10.6 X Single Precision: 13.9 X Single/Double Hybrid: 13.6 X Fixed Point: 15.6 X

Performance: Multi-Core

 Monte-Carlo paths independence allows for a linear speedup as more pricing cores are incorporated.

	Double	Single	Single/Double Hybrid	Fixed - Point
Single Core Acceleration	10.6X	13.9X	13.6X	15.6X
Maximum # of Instantiations	2	4	4	5
Multi-Core Acceleration	15.7X	46.5X	46.8X	63.5X

Summary

- Presented a hardware architecture for pricing Collateralized Debt Obligations using Li's model
- Demonstrated the advantages of using DSP48Es in terms of resource utilization and frequency
 - Especially evident for single precision
- Established that either a single/double hybrid or fixed-point representations could be used to balance resource utilization and accuracy
- Fixed-point hardware design is over 63-fold faster than a corresponding software implementation

Future Work

1. Expand to Multi-Factor model

$$Y_{i} = \sum_{j=1}^{m} (a_{ij} X_{ij}) + \beta_{i} Z_{i}$$

- 2. Attempt the algorithm on a different accelerator architecture
 - GPU

Thank You (Questions?)