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The last decade has seen a significant growth in the financial industry. The recent widespread use
of Internet technology has increased the accessibility of the general population to financial data,
thereby increasing the average portfolio size. This increase, compounded by the need for accurate
real-time results, has led to a rising demand for faster risk simulations. Often accurately pricing
widespread instruments, such as Collateralized Debt Obligations (CDOs), can take excessively
long due to their Multi-Factor assets dependency. We present a hardware implementation for a
Multi-Factor Gaussian Copula (MFGC) CDO pricing algorithm. Through a detailed benchmark
exploration we demonstrate how reconfigurable hardware could be used to exploit fine-grain par-
allelism. Our results show that our implementation mapped onto a Xilinx Virtex 5 (XC5VSX50T)
FPGA is over 71 times faster than corresponding software running on a single core 3.4 GHz Intel

Xeon processor.

Categories and Subject Descriptors: B.8.2 [Hardware]: Performance; Reliability—Performance
Analysis and Design Aids

General Terms: Algorithms, Economics, Performance
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1. INTRODUCTION

Over the past few years, the financial industry has seen a sharp increase in com-
putational demand [Dorfman and D.Canning 2007]. Financial engineers typically
attribute this increase to three distinct factors:

(1) Increasing model/contract complexity. Financial engineering is a relatively
new and fast growing field. As the field evolves, newer and more complex models
are developed to better represent real world scenarios [Haugh and Loe 2001]. Many
of these models do not have a closed-form solution, where the entire problem could
be represented in a single deterministic equation. In other cases the dataset may
be too general to allow the application of more restrictive analytical methods that
make oversimplifying assumptions about the portfolio characteristics. These cases
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typically necessitate the use of Monte-Carlo (MC) methods. While MC methods
are very generic and can be used to solve a large variety of equations, they are
typically slow due to their O( 1√

N
) (where N is the number of MC paths) convergence

rate [Glasserman 2004].
(2) Increasing portfolio size. As the financial market grows, more contracts are

issued and a larger number of instruments are created. A prominent example of this
increase can be seen in the derivative market, which is a subset of financial instru-
ments that derive their value based on the market behavior of a other instruments.
The amount of over-the-counter derivatives in G10 countries has almost doubled
from $370 trillion in June 2006 to $683 trillion in June 2008 [Bank of International
Settlements (BIS) 2008]. Consequently, even when using the exact same model,
more than twice as much data needs to be processed.

(3) The need to make real-time decisions. The increases in model/contract com-
plexity and portfolio size by themselves would not cause significant problems, if
financial institutes were willing to wait longer to make decisions. However, in the
financial world timing is critical. Market trends can change quickly and with most
instruments traded electronically a small computational delay can result in a sig-
nificant monetary loss.

While typical financial MC simulations are computationally intensive, they also
tend to be highly parallel, with a large portion of the computation time spent in a
small portion of the code. This has traditionally made them good candidates for
hardware acceleration. Some groups have accelerated single option pricing [Baxter
et al. 2007; McCool et al. 2006; Morris and Aubury 2007; Thomas et al. 2007],
focused on an interest rate model [Zhang et al. 2005], Value at Risk (VaR) calcula-
tions [Thomas and Luk 2007], and presented an optimal asset allocation accelera-
tion [Irturk et al. 2008]. To our knowledge we are the first to deal with structured
instrument pricing. Structured instruments are typically backed by a whole port-
folio of underlying assets and are created to transfer the risk associated with these
assets using a different risk-profile than the portfolio itself.

Recently, the fastest growing structured instruments have been Collateralized
Debt Obligations (CDO). In 2006 and 2007 CDO total global issuance reached
$521 and $482 billion, respectively, which is over three times the 2004 issuance of
$157 Billion [SIFMA 2008]. For a financial institute, a CDO provides a means
of transferring the risk of owning volatile assets, such as mortgage loans, to the
investors. To form a CDO, these assets are combined into a monetary Collateral
Pool, which in turn is repackaged into different tranches (portions), each tranche
covering a certain percentage of the monetary amount within the original pool.
These tranches are then sold to investors in return for interest payments. The
investor keeps receiving interest payments as long as there are no losses within the
pool. However if a loss occurs, i.e. one of the loans defaults, the owners of the
riskiest tranche start losing their invested principal. When the losses exceed the
amount covered by the current tranche, the next tranche starts being affected.

A key component in CDO pricing is capturing the default dependence among the
underlying assets, which could range from being independent to complete mutual
dependence. A common way to model this dependence is through a number of mu-
tual external stimuli, in such a way that highly correlated assets will depend on the
Journal of the ACM, Vol. V, No. N, Month 20YY.
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same stimuli. For example, the price of Ford and Honda stock, major automotive
manufacturing companies, might both depend on the global oil industry, the metal
manufacturing industry, etc. For CDO pricing the two most popular models are the
One-Factor Gaussian Copula (OFGC), which models the dependencies using only
one common external stimuli, and the Multi-Factor Gaussian Copula (MFGC), a
more general model with an arbitrary number of stimuli. Traditionally, the OGFC
model is more common due to it’s simplicity. However, it cannot fully capture
the dependencies that exist among the portfolio instruments, often forcing finan-
cial engineers to resort to using the MFGC model [Glasserman and Suchintabandid
2007].

In this paper we extend the OFGC pricing core introduced in [Kaganov et al.
2008] to an MFGC implementation. Our contributions are:

— An optimized hardware implementation of the MFGC model, which exploits
both coarse- and fine-grain parallelism inherit in the algorithm.

— A detailed benchmark exploration, highlighting the cases where the hardware
could significantly outperform the software, and cases where the hardware advan-
tage is small.

— A comparison against an optimized software implementation running on a 3.4
GHz Pentium Xeon single-core processor resulting in over 71-fold speedup using five
hardware cores.

The rest of the paper is structured as follows. Section 2 describes the CDO struc-
ture and Li’s [Li 2000] Gaussian Copula mathematical model. Section 3 presents
the overall architecture and the MFGC core hardware implementation. Section 4
describes the test methodology. Section 5 reports the results of our implementation.
Finally, section 6 summarizes the findings.

2. COLLATERALIZED DEBT OBLIGATION (CDO)

This section provides a brief overview of key CDO concepts: Subsection 2.1 presents
an introduction to the CDO structure, and Subsection 2.2 describes the key equa-
tions in MC CDO pricing.

2.1 Structure

A Collateralized Debt Obligation usually consists of highly volatile obligation-based
assets, such as: loans, bonds, and even other CDO tranches. Initially, a financial
institute, termed sponsor, sells the obligation-based portfolio to an external organi-
zation, termed Special Purpose Vehicle (SPV), to isolate the investors from its own
credit risk. The SPV combines all of the debt obligations into a single collateral
pool. This pool is repackaged into different risk/profit CDO tranches, with each
tranche covering a certain percentage of the monetary amount within the initial
pool, as shown in Fig. 1.

Each CDO tranche is defined by an attachment and a detachment point. An at-
tachment point is minimal monetary lose that can affect a tranche, and the detach-
ment point is largest monetary lose still covered by a tranche. When the collateral
pool loses exceed the attachment point, the investors in the tranche start to lose
their principal. However, the investor continues to receive interest payments on the
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Fig. 1. Synthetic CDO Structure

remaining amount. For example, an investor invests $900 in the Mezzanine, which
has an attachment of 3% and a 6% detachment, and suddenly the pool losses reach
4% of the total pool. The investor will lose $300, 1/3 of the original investment, but
will keep receiving interest payments on the remaining $600. When the cumulative
losses reach the detachment point the tranche investors lose their entire investment
and the tranche becomes inactive.

There are typically three motives for creating a CDO:

—Create market arbitrage: Generate money through the difference between tranche
sales and premium payment on these tranches.

—Shrink balance sheet: Banks typically have regulations regarding the number of
risky assets that they are allowed to hold.

—Risk Transfer: Sell the risk of owning a portfolio with debt assets to the in-
vestors [Goodman and Fabozzi 2002].

For a more complete CDO structure description refer to [J.Hall and White 2004].

2.2 Pricing

To issue tranches and establish the amount of interest an investor should receive,
financial institutions have to determine each tranche’s worth. To compute the value
of a tranche one needs the following:

—A: Attachment point
—D: Detachment point
—s: Premium spread. Investment return rate.
—tk: Premium dates. Dates at which investors receive interest payments, set

relative to the initial CDO tranche issuance date. 0 < t1 < t2 < ... < tK = T ,
where T denotes the CDO maturity date

Journal of the ACM, Vol. V, No. N, Month 20YY.
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—dk: Discount factor, present day worth of 1$ at time tk

—L̂(tk, x): Cumulative tranche losses up to the premium date tk for a given market
scenario x.

In pricing a CDO tranche there are two important quantities termed Default Leg,
Eqn. (1), and Premium Leg, Eqn. (2). The default leg measures the expected losses
of the tranche over the life of the contract. In contrast, the premium leg measures
the expected premium payments the tranche investor will receive over the life of
the contract [K.Jackson et al. 2007].

Default Leg = E

[
K∑
1

(
L̂(tk) − L̂(tk−1)

)
dk

]
, (1)

Premium Leg = E

[
K∑
1

s
(
(D − A) − L̂(tk)

)
dk

]
, (2)

By equating the two legs the break-even, “fair”, premium spread s can be found.
When evaluating Eqns. (1) and (2) the attachment/detachment points and the
discount factors are fixed, which reduces the computationally intensive component
to calculating E[L̂(tk)], the expected tranche loss. For each of our datasets, refer to
Section 4, expected tranche loss calculation takes over 99.8% of the total software
runtime. Therefore, we choose to compute E[L̂(tk)] using a Field Programmable
Gate Array (FPGA), while the rest could be performed using a host processor.

2.3 Multi-Factor Gaussian Copula Model

In the financial world E[L̂(tk)] is typically evaluated using Li’s [Li 2000] MC based
Gaussian Copula model for estimating collateral pool losses. This section highlights
the major equations that correspond to key steps in the algorithm, numbered as
Steps, which in turn will correspond to hardware blocks in Section 3.

Li’s model assumes that the default probability for an individual asset follows
an exponential distribution, with a default parameter λi. Hence, the probability of
the ith asset defaulting prior to time tk is given by:

P (τi < tk) = 1 − exp (−λitk) , (3)

To model the inter-asset default dependencies, Li introduced a creditworthiness
index, Yi, for each instrument given by:

Stage 1

Yi =
m∑

j=1

αi,jXj + βiZi, (4)

Where αi,j and βi are real positive constants such that
∑m

j=1 α2
i,j + β2

i = 1. Zi

is the idiosyncratic factor, unique to each asset. X1, X2, ..., Xm are systemic risk
factors, used to model inter-asset dependencies. They represent external market
stimuli that affect the entire portfolio. Highly correlated assets will have very similar
αi,j and βi values, therefore an increase/decrease in a given systemic factor will
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affect the assets in the same manner. In fact, the correlation between instrument i
and j can be expressed as

∑m
k=1 αi,kαj,k [K.Jackson et al. 2007]. By setting m = 1

in Eqn. (4) the MFGC is reduced to an OFGC model, where the asset dependency
is modeled through a single systemic factor. In the Gaussian Copula model the Xj ’s
and Zi are assumed to be independent zero mean unit variant Gaussian random
variables.

The individual probabilities of default and the creditworthiness indexes are re-
lated by:

P (τi < tk) = P (Yi < Hi(tk)) , (5)

In the financial world Hi(tk) is called the default barrier of the ith instrument at
time tk [K.Jackson et al. 2007]. Since, both Xj and Zi follow “standard” normal
distributions, Yi is also normally distributed, from which it follows:

Hi (tk) = Φ−1 [P (τi < tk)] , (6)

where Φ is the normal cumulative distribution function.
At each path the overall collateral pool losses for a given time instance tk and

market scenario x (X1, X2, ..., Xm) are:
Stage 2/3

L(tk, x) =
N∑

i=1

RiI(Yi(x), tk), (7)

where Ri is recovery adjusted notional, the amount lost when asset i defaults (i.e.
notional times one minus the recovery rate), and I(Y, tk) is the indicator function:

I(Y, tk) =
{

1 Y < Hi (tk) 0 ≤ tk ≤ T
0 Otherwise

}
, (8)

The tranche losses, L̂(tk,x), can be derived from the pool losses using the at-
tachment and detachment points. If the pool losses are below the attachment point
there are no tranche losses; if the pool losses are above the detachment point the
tranche losses are constant at the tranche width; between detachment and attach-
ment points tranche losses are linearly proportional to pool losses, for reference
refer to Fig 2:

Stage 4

L̂(tk, x) = min (D − A, max (L(tk, x) − A, 0)) , (9)

The final expected value for the actual tranche loss is the average over all MC
paths:

Stage 5

E[L̂(tk)] = E[L̂(tk, x)] ≈ 1
# of Paths

# of Paths∑
j=1

L̂(tk, x), (10)

Journal of the ACM, Vol. V, No. N, Month 20YY.
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3. HARDWARE IMPLEMENTATION

This section presents the hardware implementation for a MFGC CDO pricing. Sub-
section 3.1 presents the overall multi-core pricing architecture. Subsection 3.2 goes
into an in-depth description of the MFGC core design and presents the modifica-
tions made to the OFGC architecture [Kaganov et al. 2008] to allow multi-factor
pricing.

3.1 Multi-Core Simulation Architecture

The hardware setup consists of a single FPGA (Virtex 5 SX50T) connected to a host
processor through a single-lane PCI Express card, 250 MBytes/s bandwidth in both
directions. The host processor is mostly idle, only controlling data transfer. In an
actual financial system, the processor could be used for other pricing calculations,
such as the Default and Premium Legs, Eqns. (1),(2). The FPGA itself performs
the computationally intensive portion of computing E[L̂(tk)].

The top level architecture plays three distinct roles: Input/Output (IO) man-
agement, data distribution and final data collection. The architecture, shown in
Fig. 3, is designed to overlap data transfer and computation, which is achieved
using memory double buffering by taking advantage of the dual-ported nature of
Block RAMs (BRAMs). As discussed in Section 5.3, double buffering can com-
pletely hide transfer latency for our design given a data transfer bandwidth greater
than 11.3MBytes/s.

The Distributor receives data from the host processor and loads local memory
blocks within each CDO pricing core. Input data required for every simulation is:

—# of scenarios,
—# of instruments, N

—# of time steps, T

—# of default barriers, B

—# of system factors, F

—αi,j (NxF matrix) and βi (Nx1 vector)
—Ri (Nx1 vector), recovery adjusted notional
—Hi(tk) (BxT matrix), default barriers
—Indi (Nx1 vector), index vector

Journal of the ACM, Vol. V, No. N, Month 20YY.
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Fig. 3. Multi-Core Simulation Architecture.

The index vector,Indi, provides a mapping between instrument i and its default
barrier. Many of the assets involved in the collateral pool have the same barrier
curve, on average 4-5 curves per dataset [CDX 2008]. Therefore, providing an index
vector, rather than replicating default barrier curve for each instrument, allows us
to transfer significantly less data per simulation.

Since all MC paths are independent of each other [Glasserman 2004], the Distrib-
utor equally divides the paths amongst the CDO pricing cores. All CDO pricing
cores to loaded simultaneously with the same data. The difference in the outputs
stems from the different random numbers generated at each core. The number of
pricing cores instantiated depends only on chip resources. The architecture sup-
ports an arbitrary number of cores. The performance and resource utilization is
linearly proportional to the number of cores instantiated.

The final stage of the design is the Collector module. It combines the output from
all the individual pricing cores, divides by the number of MC paths, and returns
the results to the host processor. The Collector is decoupled from the pricing cores
using Fast Simplex Links (FSLs) [Xilinx Inc. 2009], allowing the cores to start a
new simulation, while the Collector is either still processing data or waiting for a
Journal of the ACM, Vol. V, No. N, Month 20YY.
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Fig. 4. CDO Pricing Core Block Diagram

data transfer.

3.2 Multi-Factor Gaussian Copula Hardware

The asset correlation in the MFGC model is captured in Eqn. 4. To create a
MFGC model, Eqn. 4 had to be incorporated into the CDO pricing engine presented
in [Kaganov et al. 2008]. The single systemic factor computation at Stage 1 has
been replaced by a Factor Accumulation Module (FAM).

Fig. 4 shows a block diagram of the design. Stage 1 demonstrates the two dif-
ferent equations modeled, the FAM and the Single Systemic factor in the MFGC
and OFGC designs, respectively. In Stages 2 and 3, there are eight replicas of a
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comparator, Yi < Hi(tk) and Eqn. 7, respectively. This allows eight time steps to
be processed simultaneously. It was found that eight replicas on average provided
the best performance to chip resource trade-off for our benchmarks, refer to Subsec-
tion 4.1. Stage 4 converts the pool loses to tranche losses, and Stage 5 accumulates
the losses over the number of MC paths.

The FAM, shown in Fig. 5, consists of eight separate memory blocks. Four
hold the correlation factors, αi,j , and the other four hold the systemic factors, Xj ,
for the current MC path. The factors are generated using a variant of the Wallace
Gaussian Random Number Generator (GRNG) [Lee et al. 2005]. To reduce latency,
the idiosyncratic factor, Zi, is generated by a second Wallace GRNG.

To minimize stalls, the GRNG generates systemic factors for the next path while
the old ones are still being used in the calculations. The new systemic factors are
written into double buffered BRAMs. In a given MC path the same system factors
are reused for all instrument, and new ones are generated for a new MC path. The
architecture allows for a maximum of four factors to be processed in parallel; a
decision which was made based on a typical MFGC simulation that usually has
three to four factors [Glasserman and Suchintabandid 2007]. The Wallace GRNG
produces one random sample per cycle, while the rest of the module accumulates
up to four factors per cycle. It takes n cycles to produce n Gaussian variants,
Journal of the ACM, Vol. V, No. N, Month 20YY.
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and
⌈n x # Instrument

4

⌉
to accumulate all the factors. Hence, to make sure the

GRNG keeps up with systemic factor use, the simulation has to have at least as
many instruments as factors, or a minimum of four instruments for n > 4.

Unlike, the OFGC model, which operates on single-precision floating-point Gaus-
sian samples, the FAM uses 5-integer and 27-fractional bits fixed-point notation.
The use of fixed-point notation allows for single-cycle addition, which in turn al-
lows for a single-cycle final systemic factor accumulation, thereby reducing module
latency.

One major difference between the OFGC and the MFGC designs is the interface
between Stages 1 and Stages 2 . In the OFGC design a new creditworthiness
index, Yi, was generated as input to Stage 2 of the design every-cycle. This is
no longer possible in the MFGC design where it might take a few cycles to pro-
duce a Yi. This can potentially cause Stages 2 and beyond to stall. However,
since Stage 2 can only process up to eight time steps a cycle, a new Yi is only
needed every

⌈
# of Time Steps

8

⌉
cycles. While FAM can produce a new Yi every⌈# of Systemic Factors

4

⌉
cycles. Hence, in certain cases there is no delay due to the

multi-factor accumulation, otherwise Stage 2 stalls for
⌈# of Systemic Factors

4

⌉
−⌈# of Time Steps

8

⌉
cycles.

4. TEST METHODOLOGY

4.1 Benchmarks

To measure performance nine benchmarks from [Kaganov et al. 2008] were used.
They are listed in Table I. Benchmarks 1 through 8 are based on Dow Jones CDX
indices, and have the same number of assets and credit rating distribution as the
March 24, 2008 CDX indices [CDX 2008]. The notional amounts are based on
Moody’s corporate bond defaults for 1999. There is a wide range in notional sizes
from $0.6 million to $6.6 billion. Benchmark 9 is added to represent a very large
semi-homogeneous collateral pool of 400 assets, with only four different notional
sizes: 20, 50, 100, and 200 million.

For all other input data:

—βi: uniformly distributed from [0, 1].

—Return rate: normally distributed with a mean of 0.40 and 0.15 variance, [K.Jackson
et al. 2007].

—Number of time steps: normally distributed with a mean of 20 steps and a
variance of 10 steps.

—Each asset in the pool is randomly assigned a default barrier.

For each benchmark in Table I, 16 sub-benchmarks were generated with the
number of systemic factors ranging from 1 to 16. Due to an artificial limitation of
the current design, Benchmark 9 had a maximum of four system factors (a single
BRAM contains a maximum of 512 32-bit entries resulting in maximum number of
systemic factors of 4 × 512

# of Instruments ). However, since on-chip memory is not the

Journal of the ACM, Vol. V, No. N, Month 20YY.
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Table I. Test Benchmarks

# Based on Data from # of
Assets

# of
Time
Steps

#
Systemic
Factors

Software
Runtime
(sec)

1 CDX.NA.HY 100 15 1-16 1.415 - 2.804

2 CDX.NA.IG 125 35 1-16 2.891 - 4.594

3 CDX.NA.IG.HVOL 30 19 1-16 0.494 - 0.940

4 CDX.NA.XO 35 22 1-16 0.635 - 1.151

5 CDX.EM 14 6 1-16 0.120 - 0.350

6 CDX.DIVIRSIFIED 40 23 1-16 0.729 - 1.306

7 CDX.NA.HY.BB 37 13 1-16 0.497 - 1.038

8 CDX.NA.HY.B 46 26 1-16 0.941 - 1.612

9 [K.Jackson et al. 2007]
Semi-Homogeneous

400 24 1-4 7.236 - 8.510

limiting resource, in future designs a larger number of BRAMs could be utilized
with minor design alterations, allowing for a larger number of systemic factors.

For each new factor sub-benchmark the new αij is generated from βi in a recursive
manner:

αi,j = Uj(1 − Uj−1)...(1 − U1)(1 − β2
i ), (11)

where Ui is a uniform random number.
The software runtime column in Table I presents the empirically measured av-

erage run time for the smallest and the largest number of systemic factors, for a
software setup described in Section 4.2.

4.2 Validation Methodology

All hardware designs were compared to an optimized double precision C++ soft-
ware program (compiled using the gcc version 4.2.4 -O2 optimization flag), running
on a single-core Pentium Xeon 3.4GHZ processor with 3GB RAM. A single core
processor was chosen to allow a direct comparison with a single core hardware
implementation, to demonstrate how FPGA exploits fine-grain parallelism. Both
software and hardware can exploit the course-grain parallelism. Since MC paths
are completely independent (and the amount of data for setup and reduction is
relatively small), adding additional cores should create a linear speedup both in
hardware, which we demonstrate Section 5.2.4, and software.

All hardware designs are written in Verilog and synthesized using Xilinx ISE 9.2.
The hardware results were validated on a Xilinx ML506 Evaluation Platform, with
a Virtex 5 SX50T -1 speed grade chip. The performance results in this paper are
extrapolated to a faster -3 chip. To obtain the -3 speed grade performance values,
the designs were placed and routed on a -3 speed grad chip and the execution times
obtained on a -1 speed grade were multiplied by

(Frequency -1 Speed Grade
Frequency -3 Speed Grade

)
.

To obtain performance and accuracy measurements each benchmark was run
100 times, each time with a different GRNG seed, for 100,000 MC paths on all
designs. 100,000 MC paths provided a Standard Deviation below 0.1% across dif-
ferent GRNG seeds. The software and hardware results obtained with the same
GRNG seed were compared. For accuracy measurements the final results were
Journal of the ACM, Vol. V, No. N, Month 20YY.
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rounded up to a nearest cent, considering cents as the smallest meaningful entity.
This allowed the hardware double-precision floating point to match the processor
double precision, despite the Pentium Xeon processor using 80-bit Floating-Point
registers.

For each benchmark, the computational error due to finite word-width effects is
computed as:

1
100

100∑
1

|Hardware Results for Run i − Software Results for Run i|
Software Results for Run i

, (12)

The final error reported is the benchmark computational errors averaged over the
number of benchmarks and the maximal error is the largest observed benchmark
error.

5. RESULTS

5.1 Resource Utilization

In the hardware designs three different recovery adjusted notional representations
were explored: floating-point double-precision, floating-point single-precision, and
integer. For the integer design: all the recovery adjusted notional values were
multiplied by 100 to convert to cents (resulting in integer values). It was assumed
that no financial transaction could contain values smaller than one cent and since
Li’s [Li 2000] algorithm just performs additions and subtractions on the adjusted
notionals amounts, no smaller value could be generated. Table II summarizes the
resource utilization for each design. The first percentages, next to the resource
consumed count, indicates the portion used out of the total available. The second
percentage, in bold, indicates the change compared to the corresponding OFGC
design with the same notional representation [Kaganov et al. 2008].

As can be seen from Table II, the floating-point single-precision design uses almost
half of the resources of the double-precision counterpart. However, compared to
double-precision it has a 0.38% (maximal 1.10%) computational error. To achieve
the resource utilization of the single-precision and the accuracy of double-precision
designs, a hybrid design was created with a double-precision accumulator added,
at Stage 5, to the single-precision design. This design significantly reduces the
average computational error 10,000-fold, to 3.19E-5% (maximal 4.99E-5%), while
keeping the resource utilization similar to single-precision. Furthermore, for our
benchmarks, it was found that a 42-bit integer design with a 54-bit accumulator
(at Stage 5 ) produced results identical to the double-precision floating point design,
while using significantly less resources.

As seen from Table II, the MFGC design, compared to OFGC, uses between
9.1% and 19.3% more flip-flops, and between 3.4% and 10.5% more LUTs. The
most significant increase is seen in terms of DSP48Es [Przybus 2008] usage, with an
increase between 35%-48.3% for the floating point designs and a tripled DSP usage
for the integer design. The majority of the new DSPs originate from the multipliers
used in the factor accumulation module. The single-core frequency changes were
very small and can probably be accredited to routing differences. However, when
the number of cores was replicated to fill the entire chip the increase in the overall
design size was evident as the overall frequency went down by approximately 7.2%.
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Table II. Resource Utilization

Single-
Precision
Floating-Point

Double-
Precision
Floating-Point

Single-Precision
Notionals &
Double-
Precision
Accumulator

Integer

Flip-Flops 7205 (22.1%)
(+10.3%)

10811 (33.1%)
(+9.1%)

7564 (23.1%)
(+12.5%)

5852 (17.9%)
(19.3%)

LUTs 7347 (22.5%)
(+4.2%)

13779 (42.2%)
(+3.4%)

8037 (24.6%)
(+5.8%)

5775 (16.7%)
(+10.5%)

BRAMs 20 (15.2%)
(+25.0%)

37 (28.0%)
(+19.4%)

20 (15.2%)
(+25.0%)

20 (15.2%)
(+25.0%)

DSP48Es 43 (14.9%)
(+48.3%)

54 (18.8%)
(+35.0%)

44 (15.3%)
(+46.7%)

21 (7.3%)
(+200.0%)

Freq (MHz) 246.9 (-0.8%) 195.9
(+2.6%)

244.5 (-0.1%) 262.1 (-2.2%)

Average Error
(%)

0.38 0 3.19E-5 0

[Max Error] [1.10] [4.99E-5]

Maximum # of
Cores

4 2 4 5

Replicated Freq
(MHz)

195.1 (-6.4%) 138.6 (-1.6%) 185.8 (-11.5%) 198.1 (-9.3%)

5.2 Performance

5.2.1 Single Core. Fig. 6(a) depicts the single core performance results for the
nine benchmarks averaged over 16 Systemic factors. The floating-point hybrid
design was grouped together with the single-precision design, since both have the
same cycle-by-cycle behavior and operate at almost identical maximum frequency.
As can be seen from the figure the average speedup across the benchmarks varies
between 6 and 21, with the average speedup for double-precision, single-precision
and integer designs being 13.5, 17.0, and 19, respectively. The difference between
the single-precision and double-precision acceleration is mainly due to the frequency
difference between the two designs. However, in addition to a frequency advantage
the integer design has a significantly shorter pipeline, which is especially evident
for Benchmark 5 (CDX.EM). The CDX.EM is the smallest benchmark with only
14 instruments. This causes all designs to stall between Stages 2 and 3 as the
partial sums are combined. However, due to a shorter pipeline the integer design
creates the least number of partial sums, and due to a single-cycle integer adder it
takes the least time to add up the sums. Therefore, the integer design stalls for the
least number of cycles, creating a significantly larger acceleration compared to the
floating-point designs, 15.5-fold compared to 6- to 7-fold.

To examine the differences in acceleration between the benchmarks, the effects
of the number of time steps, instruments, and systemic factors have on acceleration
are explored next.

5.2.2 Performance versus Time Steps. Fig. 6(b) presents the effect of time steps
on acceleration for Benchmark 9 as the number of instruments and number of
systemic factors was kept constant at 400 and 1, respectively, while the number
Journal of the ACM, Vol. V, No. N, Month 20YY.
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Fig. 6. Performance Results

of time steps was varied from 2 to 64. One can see from Fig. 6(b) that as the
number of time steps is closer to a multiple of eight the larger the acceleration.
The number of time steps dictates the number of comparisons done at Stage 2 of
the design. While in software these comparisons are done sequentially, in hardware
eight comparisons are done in parallel. Hence, in software it would take longer to
price 8n+7 time steps than 8n+1 (where n > 0 is an integer), while in hardware it
takes the same amount of time.

There is also a more general trend; speedup decreases as the number of time
steps increase. We believe that the majority of this behavior is due to the hardware
GRNG. As the number of time steps increases a smaller portion of the software
execution time is dependent on the GRNG and hence less advantage can be taken
from having single-cycle hardware GRNG. The second curve in Fig. 6(b) shows
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the hardware design compared to the software run-time without the time required
to produce Gaussian samples. The two curves exhibit the same characteristics.
However, without accounting for GRNG time there is no decrease in speedup over
the number of time steps. Hence, for a small number of time steps, the hardware
GRNG alone provides a significant speedup, 16.3-fold versus 10.0-fold for two time
steps, but has a relatively small impact when the number of time steps is large,
12.0-fold compared to 11.9-fold for 64 time steps.

5.2.3 Performance versus Instruments. To test acceleration compared to the
number of instruments the time steps and systemic factors were kept constant at
24 and 1, respectively, while the number of instruments for Benchmark 9 was varied
from 4 to 512 (512 being the largest possible due to current design restrictions),
Fig. 6(c). One can see that speedup does not change as the number of instruments
is increased, indicating that in terms of instruments, the hardware design is as
scalable as software. However, when the number of instruments falls below 20,
the floating-point designs start stalling and the performance starts to drop. The
same happens to the integer design when the number of instruments falls below
10. Hence, to obtain sizable performance improvement, the collateral pool should
contain at least ten instruments.

5.2.4 Performance versus Systemic Factors. Fig. 6(d) is a performance plot for
benchmark 1 (CDX.NA.HY), as the number of systemic factors is varied from 1 to
16 (all other benchmarks follow a similar trend). To examine the plot let us define
two quantities: Consumer Cycles (CC), which is the number of cycles before Stage
2 in Fig. 4 requires a new Yi, and Producer Cycles (PC), which is the number of
cycles it takes to produce a new Yi. CC is given by:

CC =
⌈

# of Time Steps
8

⌉
, (13)

and PC is given by:

PC =
⌈

# of System Factors
4

⌉
, (14)

Fig. 6(d) can be divided into two regions: PC <= CC, and PC > CC. For the
region in which PC <= CC the speedup increases linearly with systemic factors. In
this region increasing the number of systemic factors increases the number of calcu-
lations performed in a software program, thereby increasing the software runtime.
While in hardware, Yi generation is done in parallel to Yi consumption, hence while
PC <= CC a new Yi is generated before it’s required. This results in a constant
hardware runtime with respect to an increase in the number of systemic factors. In
the PC > CC region, the speedup follows a step-like curve. Since FAM processes
four factors at a time, the closer the number of systemic factors to the next multiple
of four, the larger the acceleration.

For each precision representation the number of pricing cores was replicated to
the extent permitted by the FPGA resources. Since MC paths are completely inde-
pendent, adding additional pricing cores creates a linear speedup. Using a Virtex-5
SXT50, the double-precision design was replicated twice, single-precision and hy-
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Table III. Performance Summary

# of
Cores

Frequency
(MHz)

PC<CC
(Speedup)

PC=CC
(Speedup)

PC>CC
(Speedup)

Average
(Speedup)

Software
(Intel
Xeon)

1 3400 1 1 1 1

Double-
Precision

2 138.6 18.7 22.5 16.9 19.0

Single-
Precision

4 195.1 52.8 63.4 47.7 53.6

Hybrid 4 185.8 50.3 60.4 45.4 51.1

Integer 5 198.1 67.0 84.5 70.1 71.5

brid designs four times, and the integer design five times. Table III summarizes
the results across all benchmarks based on three regions PC<CC, PC=CC, and
PC>CC. As one would expect the highest speedup is obtained in the PC=CC re-
gion, which is on average 84.5 (in general the highest acceleration was 103.4 seen
in CDX.NA.HY for eight systemic factors). However, the average acceleration for
five integer cores is 71.5.

5.3 IO Requirements

To maintain the CDO simulation engine fully utilized and obtain the speedups
mentioned in the sections above, the IO device has to provide sufficient bandwidth
to complete data transfer neaded for the next simulation while the previous simu-
lation is still being priced. The worst case scenario, which is the one that requires
the fastest data transfer, occurs when a simulation with the shortest computation
time is followed by one with the largest input dataset. In such a case to avoid stalls
the large input dataset has to be transferred within the computation time of the
short simulation.

Examining computational times across all designs and benchmarks, it was found
that one systemic-factor Benchmark 5 (CDX.EM), running on five integer cores
had the shortest computational time of 2.93 ms. The largest dataset was the four
systemic-factor Benchmark 9 (semi-homogeneous), which requires 104 Kbits. Us-
ing these worst-case empirical numbers it was found that for our benchmarks a
35.5 Mbits/s (4.4 MBytes/s) transfer rate would be sufficient to keep all pricing
cores fully utilized. Going further, based on the current design memory utilization,
the user could provide a maximum of 262 Kilobits. For this theoretical maxi-
mum dataset, assuming 2.93 ms computational time, the required transfer rate is
89.4 Mbits/s (11.2 MBytes/s), which is still well within the 250 MBytes/s available
with a 1-lane PCI-express card.

6. CONCLUSION

In this paper we presented a hardware implementation of Li’s Multi-Factor Gaussian
Copula model for synthetic CDO, which allows pricing a portfolio with an arbitrary
asset dependency structure. Through our benchmark exploration we demonstrated
how reconfigurable hardware allows the designer to exploit fine grain parallelism.
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We illustrated the advantages of replicating modules that cause data-flow bottle-
necks, seen in the time step exploration. The factor accumulation module demon-
strates the advantage of parallel execution, where the module execution time can
completely be hidden. In addition, we demonstrated how customizing bit width
based on the dataset and the general data-flow allows us to create an integer de-
sign that matches the accuracy of a double precession floating point design, for a
fraction of the resource utilization.

As the need for faster pricing simulations keeps growing in the financial world,
the next natural question becomes which technology is most suitable for these
applications. In presenting a technology, we believe it’s vital to demonstrate the
performance over a large set of representative test-cases, explain which techniques
have been used to obtain the acceleration, and present the trade-offs; as we have
done in this paper. This allows the financial engineers to make an informed decision
and ultimately teaches the generic techniques that they could eventually apply to
their own designs while using this technology, which is the ultimate goal.
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