
MIPS-X INSTRUCTION SET
and
PROGRAMMER’S MANUAL

PAUL CHOW

Technical Report No. CSL-86-289

MAY 1988

The MIPS-X project has been supported by the Defense Advanced Research
Projects Agency under contract MDAO03-83-C-0335. Paul Chow was partially
supported by a Postdoctoral Fellowship from the Natural Sciences and
Engineering Research Council of Canada.

MIPS-X Instruction Set
and Programmer’s Manual

Paul Chow

Technical Report No. 86-289

May 1986

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science __

Stanford University
Stanford, California 94305

Abstract

MIPS-X is a high performance second generation reduced
instruction set microprocessor. This document describes the visible
architecture of the machine, the basic timing of the instructions, and
the instruction set.

Keywords: MIPS-X processsor, RISC, processor architecture,
streamlined instruction set.

Copyright 0 1986 Stanford University

3

i

e Table of Contents
1. Introduction
2. Architecture

2.1. Memory Organization
2.2. General Purpose Registers
2.3. Special Registers
2.4. The Processor Status Word

2.4.1. Trap on Overflow
2.5. Privilege Violations

3. Instruction Timing
3.1. The Instruction Pipeline
3.2. Delays and Bypassing
3.3. Memory Instruction Interlocks
3.4. Branch Delays
3.5. Jump Delays
3.6. Detailed Instruction Timings

3.6.1. Notation
3.6.2. A Normal Instruction
3.6.3. Memory Instructions
3.6.4. Branch Instructions
3.6.5. Compute Instructions

3.6.5.1. Special Instructions
3.6.6. Jump Instructions
3.6.7. Multiply Step - ms?ep
3.6.8. Divide Step - dstep

4. Instruction Set
4.1. Notation
4.2. Memory Instructions

4.2.1. Id - Load
4.2.2. st - Store
4.2.3. Idf - Load Floating Point
4.2.4. stf - Store Floating Point
4.2.5. Idt - Load Through
4.2.6. stt - Store Through
4.2.7. movfrc - Move From Coprocessor
4.2.8. movtoc - Move To Coprocessor
4.2.9. aluc - Coprocessor ALU

4.3. Branch Instructions
4.3.1. beq - Branch If Equal
4.3.2. bge - Branch If Greater than or Equal
4.3.3. bhs - Branch If Higher Or Same
4.3.4. blo - Branch If Lower Than
4.3.5. blt - Branch If Less Than
4.3.6. bne - Branch If Not Equal

4.4. Compute Instructions
4.4.1. add - Add
4.4.2. dstep - Divide Step
4.4.3. mstart - Multiply Startup
4.4.4. mstep - Multiply Step
4.4.5. sub - Subtract

1
3
3
3
4
4
5
5
7
7
8
9
9

10
10
10
12
13
14
15
16
17
18
19
21
21
21
22
23
24
25
26
27
28
29
30
31
33
34
35
36
37
38
39
40
41
42
43
44

ii

4.4.6. subnc - Subtract with No Carry In
4.4.7. and -‘Logical And
4.4.8. bit - Bit Clear
4.4.9. not - Ones Complement
4.4.10. or - Logical Or
4.4.11. xor - Exclusive Or
4.4.12. mov - Move Register to Register
4.4.13. asr - Arithmetic Shift Right
4.4.14. rotlb - Rotate Left by Bytes
4.4.15. rotlcb - Rotate Left Complemented by Bytes
4.4.16. sh - Shift
4.4.17. nop - No Operation

4.5. Compute Immediate Instructions
4.5.1. addi - Add Immediate
4.5.2. jpc - Jump PC
4.5.3. jpcrs - Jump PC and Restore State
4.5.4. jspci - Jump Indexed and Store PC
4.5.5. movfrs - Move from Special Register
4.5.6. movtos - Move to Special Register
4.5.7. trap - Trap Unconditionally
4.5.8. hsc - Halt and Spontaneously Combust

Appendix I. Some Programming Issues
Appendix II. Opcode Map

11.1. OP Field Bit Assignments
11.2. Comp Func Field Bit Assignments
11.3. Opcode Map of All Instructions

Appendix Ill. Floating Point Instructions
111.1. Format
111.2. Instruction Timing
111.3. Load and Store Instructions
111.4. Floating Point Compute Instructions
111.5. Opcode Map of Floating Point Instructions

Appendix IV. Integer Multiplication and Division
IV.l. Multiplication and Division Support
IV.2. Multiplication
lV.3. Division

Appendix V. Multiprecision Arithmetic
Appendix VI. Exception Handling

VI.l. Interrupts
Vl.2. Trap On Overflow
Vl.3. Trap Instructions

Appendix VII. Assembler Macros and Directives
VII.1. Macros

VII.1 .I. Branches
VII.l.2. Shifts
Vll.l.3. Procedure Call and Return

Vll.2. Directives
Vll.3. Example
Vll.4. Grammar

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
67
69
69
69
71
73

__ 73
73
73
73
74
75
75
75
76
81
83
83
84
84
87
87
87
87
87
87
88
88

. . .
111

FiIgure 2-l : Word Numbering in MeGory 3
Fi,gure 2-2: Bit and Byte Numbering in a Word 3
Figure 2-3: The Processor Status Word 5
Figure 3-l : Pipeline Sequence 7
Fi,gure Ill-l: Floating Point Number Format 73
Figure IV-1 : Signed Integer Multiplication 77
Figure IV-2: Signed Integer Division 79
FiIgure VI-I : Interrupt Sequence 84
Fiigure VI-2: Trap Sequence 86

List of Figures

V

List of Tables
Table 3-l : MIPS-X Pipeline Stages
Table 3-2: Delay Slots for MIPS-X Instruction Pairs
Table 4-l : Branch Instructions
Table IV-I : Number of Cycles Needed to do a Multiplication
Table IV-2: Number of Cycles Needed to do a Divide

7
9

32
78
78

1. Introduction
This manual describes the visible architecture of the MIPS-X processor and

execute correct programs. MIPS-X is a pipelined processor that has no hardware
system is responsible for keeping track of the timing of the instructions.

1

the timing information required to
interlocks. Therefore, the software

The processor has a load/store architecture and supports a very small number of instructions. The instruction set of
the processor will be described.

The processor supports two types of coprocessor interfaces. One interface is dedicated to the floating point unit
(FPU) and the other will support up to 7 other coprocessors. These instructions will also be described.

3

2. Architecture

2.1. Memory Organization
The memory is composed of 32-bit words and it is a uniform address space starting at 0 and ending at 232-1. Each

memory location is a byte. Load/store addresses are manipulated as 32-bit byte addresses on-chip but only words can
be read from memory (ie., only the top 30 bits are sent to the memory system). The numbering of words in memory is
shown in Figure 2-l. Bytes (characters) are accessed by sequences of instructions that can do insertion or extraction of
characters into or from a word. (See Appendix I). Instructions that affect the program counter, such as branches and
jumps, generate word addresses. This means that the offsets used for calculating load/store addresses are byte offsets,
and displacements for branches and jumps are word displacements. The addressing is consistently Big Endian [I].

I I I 1 . . . 11
Word 0 Word 1 Word 2 word 23o-1

Figure 2-1: Word Numbering in Memory

Bytes are numbered starting with the most significant byte at the most significant bit end of the word The.bits in a
word are numbered 0 to 31 starting at the most significant bit (MSB) and going to the least significant bit (LSB). Bit
and byte numbering are shown in Figure 2-2.

0 7 8 15 16 23 24 31
2 , , , , , , , , , , I , , , 9 , , , , , , , , , , 3 3

Byte 0 (MSB end) Byte 1 Byte 2 Byte 3 (LSB end)

Figure 2-2: Bit and Byte Numbering in a Word

The address space is divided into system and user space. An address with the high order bit (bit 0) set to one (1) will
access user space. If the high order bit is zero (0) then a system space address is accessed. Programs executing in user
space cannot access system space. Programs executing in system space can access both system and user space.

2.2. General Purpose Registers
There are 32 general purpose registers (GPRs) numbered 0 through 31. These are the registers named in the register

fields of the instructions. All registers are 32 bits. Of these registers, one register is not general purpose. Register 0
(r-0) contains the constant 0 and thus cannot be changed. The constant 0 is used very frequently so it is the value that is

4

stored in the constant register. A constant register has one added advantage. One register is needed as a void

destination for instructions that do no writes or instructions that are being noped because they must be stopped for some
reason. This is implemented most easily by writing to a constant location.

2.3. Special Registers
There are several special registers that can be accessed with the Move SpeciaZ instructions. They are:

PSW The processor status word. This is described in more detail in Section 2.4.
PC-4, PC-1 Locations in the PC chain used for saving and restoring the state of the PC chain.
MD The mul/cliv register. This is a special register used during multiplication and division.

2.4. The Processor Status Word
The Processor Status Word (PSW) holds some of the information pertaining to the current state of the machine. The

PSW actually contains two sets of bits that are called PSWcurrenf and PSWother. The current state of the machine is
always reflected in PSWcurrent. When an exception or trap occurs, the contents of PSWcurrent are copied into
PSWofher. The e bit is not saved PSWother then contains the processor state from before the exception or trap so that
it can be saved. Interrupts are disabled, PC shifting is disabled, overflows are masked and the processor is put into
system state. The I bit is cleared if the exception was an interrupt. A jump PC and restore state instruction (ipcrs)
causes PSWother to be copied into PSWcurrent. After the ALU cycle of the jpcrs instruction, the interrupts are enabled
and the processor returns to user state with its state restored. Appendix VI describes the trap and interrupt handling
mechanisms.

The PSW can be both read and written while in system space, but a write to the PSW while in user space has no
effect. To change the current state of the machine via the PSW, a move to special (movros) instruction must be used to
write the bits in PSWcurrent. Before restoring the state of the machine, a lllove to special instruction must be used to
change the bits in PSWother. All the bits are writable except the e bit and the E-bit shift chain.

The assignment of bits is shown in Figure 2-3. The bits corresponding to PSWcurrent are shown in upper case and
those in lower case correspond to the bits in PSWother. The bits are:

I, i The I bit should be checked by the exception handler. It is set to 0 when there is an interrupt
request, otherwise it will be set to a 1. This bit never needs to be written but the value will be
retained until the next interrupt or exception. The i bit contains the previous value of the I bit but in
general has no meaning since only the I bit needs to be looked at when an exception occurs.

M m

u, u

s s

Interrupt mask. When set to 1, the processor will not recognize interrupts. Can only be changed by
a system process, an interrupt or a trap instruction.
When set to 1, the processor is executing in user state. Can only be changed by a system process,
an interrupt or a trap instruction.
Set to 1 when shifting of the PC chain is enabled.

e

E

Clear when doing an exception or trap return sequence. Used to determine whether state should be
saved if another exception occurs during the return sequence. This bit only changes after an
exception has occurred so the exception handler must be used to inspect this bit. See Appendix VI.
The E bits make up a shift chain that is used to determine whether the e bit needs to be cleared when
an exception occurs. The E bits and the e bit are visible to the programmer but cannot be written.

Processor Status Word

5

v9 v
09 0

The overflow mask bit. Traps on overflows are prevented when this bit is set. See Section 2.4.1.
This bit gets set or cleared on every exception. When a trap on overflow occurs, the 0 bit is set to 1
as seen by the exception handler. This bit never needs to be written. The o bit contains the previous
value of the 0 bit but in general has no meaning.

U u 010 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ jEIEIEIE!eIvIVImIMji II Is ISI

Figure 2-3: The Processor Status Word

2.4.1. Trap on Overflow
If the overflow mask bit in PSWcurrent (V) is cleared, then the processor will trap to location 0 (the start of all

exception and interrupt handling routines) when an overflow occurs during ALU or multiplication/division operations.
The exception handling routine should begin the overflow trap handling routine if the ovefflow bit (0) is set in
PSWcurrent.

The V bit can only be changed while in system space so a system call will have to be provided for user space
programs to set or clear this bit.

2.5. Privilege Violations __
User programs cannot access system space. Any attempt to access system space will result in the address being

mapped to user space. Bit 0 of the address will always be forced to 1 (a user space address) in user mode.

Attempting to write to the PSW while in user space will be the same as executing a rwp instruction. The PSW is not
changed and no other action is taken.

There are no illegal instructions, just strange results.

Processor Status Word

Instruction Timing

3. Instruction Timing
This chapter describes the MIPS-X instruction pipeline and the effects that pipelining has on the timing sequence for

various instructions. A section is also included that describes in detail the timing of the various types of instructions.

3.1. The Instruction Pipeline
MIPS-X has a S-stage pipeline with one instruction in each stage of the pipe once it has been filled. The clock is a

two-phase clock with the phases called phase I (4~) and phase 2 (Q2). The names of the pipe stages and the actions that
take place in them are described in Table 3- 1. The pipeline sequence is shown in Figure 3-l.

Abbreviation Name Action

IF Instruction Fetch Fetch the next instruction

RF Register Fetch The instruction is decoded.
The register file is accessed during the second half
of the cycle (Phase 2).

ALU ALU Cycle An ALU or shift operation is performed.
Addresses go to memory at the end of the cycle.

MEM Memory Cycle Waiting for the memory (external cache) to come back on read._-
Data output for memory write.

Write Back The instruction result is written to the register
file during the first half of the cycle (Phase 1).

Table 3-1: MIPS-X Pipeline Stages

1. IF RF ALU MEM WB
2. IF RF ALU MEM WB
3. IF RF ALU MEM WB
4. IF RF ALU MEM WB
5. IF RF ALU MJZM WB

Figure 3-1: Pipeline Sequence

Instruction Timing

I

8

3.2. Delays and Bypassing
A delay occurs because the result of a previous instruction is not available to be used by the current instruction. An

example is a compute instruction that uses the result of a load instruction. If in Figure 3-1, instruction 1 is a load

instruction, then the result of the load is not available to be read from the register fde until the second half of WB in
instruction 1. The first instruction that can access the value just loaded in the registers is instruction 4 because the
registers are read on phase 2 of the cycle. This means that there is a delay of two instructions from a load instruction
until the result can be used as an operand by the ALU. An instruction &lay can also be called a d&y slot where an
instruction that does not depend on the previous instruction can be placed. This should be a nop if no useful instruction
can be found. Delays between instructions can sometimes be reduced or eliminated by using bypassing.

Bypassing allows an instruction to use the result of a previous instruction before it is written back to the register file.
This means that some of the delays can be reduced. Table 3-2 shows the number of delay slots that exist for various
pairs of instructions in MIPS-X. The table takes into account bypassing on both the results of a compute instruction and
a load instruction. For example, consider the load-address pair of instructions. This can occur if the result of the first
load is used in the address calculation for the second load instruction. Without bypassing, there would be 2 delay slots.
Table 3-2 shows only 1 &lay slot because bypassing will take place.

The possible implementations for bypassing are bypassing only to Source 1 or to both Source 1 and Source 2. The
implementation of bypassing in MIPS-X uses bypassing to both sources. Bypassing only to Source 1 means that the
benefits of bypassing can only be achieved if the second instruction is accessing the value from the previous instruction
via the Source I register. If the second instruction can only use the value from the previous instruction as the Source 2
register, then 2 delay slots are required. Bypassing to both Sources eliminates this asymmetry. The asymmetry is most
noticeable in the number of &lay slots between compute or load instructions and a following instruction that tries to
store the results of the compute or load instruction. Branches are also a problem because the comparison is done with a
subtraction of Source I - Source 2. Not all branch types have been implemented because it is assumed that the operands
can be reversed. This means that it will not always be possible to bypass a result to a branch instruction. This
asymmetry could be eliminated by taking one bit from the displacement field and using it to decide whether a
subtraction or a reverse subtraction should be used. The tradeoff between the two types of bypassing is the ability to
generate more efficient code in some places versus the hardware needed to implement more comparators. Table 3-2
shows the delays incurred for both implementions of bypassing. It is felt that bypassing to both Sources is preferable
and the necessary hardware has been implemented

Instructions in the slot of bud instructions should not use the same register as the one that is the destination of the
load instruction. Bypassing will occur and the instruction in the load slot will get the address being used for the load
instead of the value from the desired register.

One other effect of bypassing should be described. Consider Figure 3-1. If instruction 1 is a load to rl and
instruction 2 is a compute instruction that puts its result also in rl, then there is an apparent conflict in instruction 3 if it
wants to use rl as its Source I register. Both the results from instructions 1 and 2 will want to bypass to instruction 3.
This conflict is resolved by using the result of the second instruction. The reasoning is that this is how sequential

instructions will behave. Therefore, in this example instruction 3 will use the result of the compute instruction.

Instruction Timing

9

Instruction Pair
(Inst 1 - Inst 2)

Delay Slots with Delay Slots with
Bypassing Only Src llSrc2

to Source 1 Bypassing
Comment

Load - Compute 1 1
Load - Address 1 1

Load - Data 2 1
Load - Branch 1 1

Compute - Compute 0 0
Compute - Address 0 0

Compute - Data 2 0
Compute - Branch 0 0

Loaded value used as address
Loaded value used for store data

Computed value used as address
Compute result used for store data

Table 3-2: Delay Slots for MIPS-X Instruction Pairs

3.3. Memory Instruction Interlocks
There are several instruction interlocks required because of the organization of the memory system. The external

cache is a write-back cache so it requires two memory cycles to do a store operation, one to check that the location is in
the cache and one to do the store. This means that a store instruction must be followed by a non-memory instruction so
that there can be two memory cycles available. For example, a store followed by a compute instruction is okay because
the compute instruction does not use its MEM cycle. The software should try to schedule non-memory instructions
after all stores. If this is not possible, the processor will stall until the store can complete. Scheduling a nop instruction
is not sufficient because an instruction cache miss will also generate a load cycle. This cannot be predicted so the
hardware must be able to stall the processor.

There are no restrictions for instructions after a load instruction. There is a restriction that a load instruction cannot
have as its destination the register being used to compute the .address of the load. The reason is that if the load
instruction misses in the external cache, it will still overwrite its destination register. This occurs because a late miss
detect scheme is used in the external cache. The load instruction must be restartable.

3.4. Branch Delays
Besides the delays that can occur because one instruction must wait for the results of a previous instruction to be

stored in a register or be bypassed, there are also delays because it takes time for a branch instruction to compute the
destination for a taken branch. These are called branch delays or branch slots. MIPS-X has two branch slots after
-every branch instruction. Again, consider Figure 3-l. If instruction 1 is a branch instruction, then it is not until
instruction 4 when the processor can decide that the branch is to be taken or not to be taken.

Instruction Timing

10

The branch slots can be filled with two types of instructions. They can either be ones that are always executed or
ones that must be squashed if the branch does not go in the predicted direction. Squashing means that the instructions
are converted into nops by preventing their write backs from occurring. This is used if the branch goes in a direction
different from the one that was predicted This mechanism is described in more detail in Section 4.3.

3.5. Jump Delays
The computation of a jump destination address means that there are two delay slots after a jump instruction before

the program can begin executing at the new address. The computation uses the ALU to compute the jump address so
the result is not available to the PC until the end of the ALU cycle. Unlike branches however, the instructions in the
delay slots are always executed and never squashed.

3.6. Detailed Instruction Timings
This section describes the timing of the instructions as they flow through the data path. It does not describe the

controls of the datapath and the timing required to set them up. These timing descriptions are intended to make more
clear the programmer’s view of how each instruction is executed. The description of each instruction given in the later
sections is generally insufficient when it is necessary to know the possible interactions of various instructions.

The timing for what happens during an exception is not described here. Appendix VI discusses the handling of
exceptions.

The notation that will be used to describe the instruction timings will be shown first and then the execution of a
normal instruction will be given. The timing for. each type of instruction is then described in more detail. Finally, the
timing for mstep and dstep are treated separately. These are the multiply and divide step instructions. They do not fit in
with the other types of compute instructions because they use the MD register.

3.6.1. Notation
The description of each type of instruction will show what parts of the datapath are active and what they are doing

for the instruction during each phase of execution. The notation that is used is:

IF,RF,ALX,MEM,WB
These are the names of the pipestages as described in Table 3- 1.

IF-1 This is the clock cycle before the IF cycle of the instruction being considered.

$1 Phase 1 of the clock cycle.

$2 Phase 2 of the clock cycle.
rSrc1, rSrc2 Register values on the Srcl and Src2 buses, corresponding to the Source 1 and Source 2 addresses

specified in the instruction.
rDes t Value to be written into the destination register specified by the Destination field of the instruction.

The Srcl bus is used.
aluSrc1, aluSrc2 ALU latches corresponding to the values on the Srcl and Src2 buses, respectively.
IR The “instruction register.
MDRil-i Memory data register for values coming onto the chip.
MDRout Memory data register for values going off chip.

Instruction Timing

11

P

rResult The result register.
PCsow The PC source to be used for this instruction. It will be one of: the displacement adder, the trap

vector, the incrementer, the ALU or from the PC chain.
FCinc The value from the PC incrementer.

PC-4 The last value in the PC chain.
Regcn>, Regcn..m>

Reg<< n
Bypass source
Icache
RFS

Bit n or Bits n to m of register Reg.

Reg is shifted left n.bits.
Either rResult or MDRin

The onchip instruction cache.
Reserved for Stanford.

Instruction Timing

3

12

3.6.2. A Normal Instruction
This section will show what each part of the datapath is doing during each phase of the execution of an instruction

The description of specific instruction types in the following sections will only describe the action of the relevant parts
of the datapath pertaining to the instruction in question.

3 $1
+2

RFS
PC bus c= PC,,,
Precharge tag comparators, valid bit store

Do tag compare
Valid bit store access
Icache address decoder e= FCc26..31>
Detect Icache hit
Precharge Icache
Do incrementer (calculate next sequential instruction address)
Do Icache access
IR e= Icache

RF 91
+2

Do bypass comparisons
aIuSrc1 c= r&cl

or aluSrc1~ Bypass source
aluSrc2 c== rSrc2

or aluSrc2 C= Bypass source
or aluSrc2 e= Offset value

Displacement adder latch = Displacement value
MDRout c= rSrc2

or MDRout - Bypass source

ALU $1

$2

Do ALU, do displacement adder (for branch and jump targets)
Frecharge Result bus
Result bus c= ALU
rResult c= Result bus
Memory address pads c= Result bus (There may be a latch here)

MEM +1 RFS
02 MDRin = rResult

or MDRin e= Memory data pads
or Memory data pads e= MDRout

WB 4~ rDest e= MDRin
$2 RFS

Instruction Timing

13

3.6.3. Memory Instructions
These instructions do accesses to memory in the form of loads and stores. The coprocessor and floating point

instructions have exactly the same timings. The only difference is that the processor may not always source an operand
or use an operand during a coprocessor instruction.

The MDRout register is implemented as a series of registers to correctly time the output of data onto the memory
data pads. These registers are labelled MDRout.RF@,, MDRoutALU$,, MDRout.ALU$, and MDRout.MEM$, ~

IF-1 $1
$2

RFS
PC bus ti PC,,,
Precharge tag comparators, valid bit store

IF $1 Do tag compare
Valid bit store access
Icache address decoder c= PC<26..3 l>
Detect Icache hit
Precharge Icache
Do incrementer (calculate next sequential instruction address)

$2 Do Icache access
IR e= Icache

RF $1
$2

Do bypass comparisons
aluSrc1 = rSrc1

or aluSrc1 e= Bypass source
aluSrc2 (= Offset value
MDRou~.RF~~ e= rSrc2 (For stores)

or MDRou~.RF$~ = Bypass source (For stores) . .

ALU 0, Do ALU(add)

$2

Precharge Result bus
MDRoutALU$, e= MDRout.RF$, (For stores)
Result bus e ALU
rResult e Result bus
Memory address pads e Result bus
MDRoutALU~, = MDRout.ALU~, (For stores)

MEM $1 MDRoutMEM~, c= MDRout.ALU+2 (For stores)
MDRin e Memory data pads (For loads)

or Memory data pads c= MDRou~.MEM~~ (For stores)

WB +1 rDest e= MDRin (For loads)
02 RFS

Instruction Timing

I
14

3.6.4. Branch Instructions
These instructions do a compare in the ALU. The PC value is taken from the displacement ad&r when a branch is

taken and from the incrementer when a branch is not taken.

IF-1 $1
$2

RFS
PC bus e= PC,,,
Precharge tag comparators, valid bit store

IF $1 Do tag compare
Valid bit store access
Icache address decoder = PC<26.‘.3 l>
Detect Icache hit
Precharge Icache
Do incrementer (calculate next sequential instruction address)

$2 Do Icache access
IR e Icache

RF +1
42

Do bypass comparisons
aluSrc 1 e= rSrc 1

or aluSrc1 e= Bypass source
aluSrc2 e= rSrc2

or aluSrc2 t= Bypass source
Displacement adder = Displacement value

$2

Do ALU(Src1 - Src2), do displacement adder (for branch target)
Precharge Result bus
Evaluate condition at the end of $r before the rising edge of e2
PC bus e= Displacement adder (Branch taken)

or PC bus e= Incrementer (Branch not taken)
Tag compare latch e= PC bus
rResult e= Result bus

MEM +1 RFS
+2 MDRin c= rResult

WB $1 RFS
$2 RFS

Instruction Timing

3
15

3.65 Compute Instructions
These instructions are mostly 3-operand instructions that use the ALU to do an operation. Some of them do traps or

jumps. These are treated separately in Section 3.6.6. The timing for instructions that access the speciaZ registers is
described in Section 3.6.5.1.

IF-1 $1
$2

RFS
PC bus e= PC,,,
Precharge tag comparators, valid bit store

IF @l Do tag compare
Valid bit store access
Icache address decoder e= FC<26..31>
Detect Icache hit
Precharge Icache

$2

Do incrementer (calculate next sequential instruction address)
Do Icache access
IR e= Icache

RF @l Do bypass comparisons
$2 aluSrc1 e= rSrc 1

or aluSrc1 = Bypass source
aluSrc2 e rSrc2

or aluSrc2 = Bypass source
or aluSrc2 c= Immediate value (for Compute Immediate Instructions)

Do ALU
Precharge Result bus
Result bus = ALU
rResult c= Result bus

MEM 4~ RFS
+2 MDRin + rResult

wB $1 rDest e= MDRin
$2 RFS

Instruction Timing

i

16

3.651. Special Instructions
These instructions (mvtos and mvfrs) access the special registers described in Section 2.3.

IF-1 %
+2

RFS
PC bus e= PC,,,
Precharge tag comparators, valid bit store

IF $1 Do tag compare
Valid bit store access
Icache address decoder e= PC<26..31>
Detect Icache hit
Recharge Icache

$2

Do incrementer (calculate next sequential instruction address)
Do Icache access
IR e Icache

RF $1
42

Do bypass comparisons
aluSrc 1 e= rSrc 1 (For movtos)

or aluSrc1 t= Bypass source (For mvt~s)

ALJJ $1 Do ALU(pass Srcl)

+2

Recharge Result bus
Result bus C= alu Srcl (For movtos)

or Result bus e= Special Register (For movfrs)
Special Register c= Result bus (For movtos)
rResult C= Result bus

MEM +1 RFS
$2 MDRin = rResu.lt

WB 91 rDest e= MDRin (For movfkr)
+2 RFS

Instruction Timing

17

3.6.6. Jump Instructions

IF-1 +1
$2

RFS
PC bus e= PC,,,
Precharge tag comparators, valid bit store

IF $1

$2

Do tag compare
Valid bit store access
Icache address decoder (= P&26.-3 l>
Detect Icache hit
Precharge Icache
Do incrementer (calculate next sequential instruction address) b
Do Icache access
IR (z Icache

RF $1 Do bypass comparisons

$2 aluSrc1 * rSrc 1
or aluSrc1 = Bypass source

aIuSrc2 * Immediate value (For jspci)

ALU $1 Do ALU(add)

$2

Precharge Result bus
Result bus c= PCinc (Forjspci)
PC bus C= ALU (For jspci)

or PC bus e= PC-4, shift PC chain (For@ andjpcrs)
or PC bus e Trap vector (For trap)

PSWcurrent (= PSWother (Forjpcrs)
rResult c= Result bus

MEM +I RFS
Q2 MDRin = rResult

WB $1 rDes t c MDRin (For jspci)

Instruction Timing

18

3.6.7. Multiply Step - mstep
The MD register is implemented as a series of q2-e1 registers. They are called MDresult.+2, MDresult.$l,

MDmdrin.@2, and MDwb.Q,. The names reflect the names of the bypass registers used when bypassing to the register
file. The special register that is visible for reading and writing is MDresult.+2. This chain of registers is necessary for
restarting the sequence after an exception. MDwb.el contains the true value of MD. When an interrupt occurs, the
write-back into this register is stopped just like write-backs to a register in the register file. The value in this register is
needed to restart the sequence. One cycle after an interrupt is taken, the contents of MDwb.$r are available in
h4Dresult.Q2. This value has to be saved if the interrupt routine does any multiplication or division.

The mstart instruction has similar timing with a different ALU operation.

There must be one instruction between the instruction that loads the h4D register and the first instruction that uses the
MD register. This occurs when starting a multiplication or division routine and when restarting after an interrupt.

IF-1 $1
$2

RFS
PC bus = F’C,,,
Precharge tag comparators, valid bit store

IF 41 Do tag compare
Valid bit store access
Icache address decoder C= PC<26..3 l>
Detect Icache hit
Precharge Icache
Do incrementer (calculate next sequential instruction address)

$2 Do Icache access --
IR e= Icache

RF $1 Do bypass comparisons
aluSrc1 = rSrcl<< 1

or aluSrc1 e= Bypass source<< 1
aluSrc2 e= rSrc2

ALU 4+ Do ALU(add)
Latch aluSrc 1

$2

Precharge Result bus
Result bus (= ALU (MSB (MDresult.@r) is 1)

or Result bus e= aluSrc1 (MSB (MDresult~$+) is 0)
rResult = Result bus
MDresult.$2 c== MDres~lt.~~<c 1

MDresult.$r = MDresult.$2
MDRin (= rResult
MDmdrin.$2 c= MDresult.+,

WB 4~

$2

rDest = MDRin
MDwb.Ql = MDmdrin.$
RFS

Instruction Timing

19

3.6.8. Divide Step - dstep
The MD register is also used for this instruction. See Section 3.6.7 for a description of its implementation and the

notation used

IF-1 $1
$2

RFS
PC bus e= PC,,,
Precharge tag comparators, valid bit store

IF 01 Do tag compare
Valid bit store access
Icache address decoder * PC<26..31>
Detect Icache hit
Recharge Icache
Do incrementer (calculate next sequential instruction address)

$2 Do Icache access
IR e= Icache

RF $1
+2

Do bypass comparisons
ah&cl (= rSrcl<< 1 + MSB(MDresult.~l)

or aluSrc1 e= Bypass source<< 1 + MSB(MDresult.$,)
aluSrc2 e= rSrc2

ALU $1 Do ALU(sub)
Precharge Result bus
Result bus = ALU (MSB (ALU result) is 0)

or Result bus c= aluSrc1 (MSB (ALU result) is 1)
rResult e Result bus
MDresult.$, (= MDres~lt.~~<c 1 + Complement of MSB(ALU result) __

MEM @, MDresult.+l c= MDres~lt$~
$2 MDRin = rResult

MDmdrin.$ * MDresult.$

WB 4+

$2

rDest = MDRin
MDwb.+l e= MDmdrin.@,
RFS

Instruction Timing

Instruction Timing

21

4. Instruction Set
There are four different types of instructions. They are memory instructions, branch instructions, compute

instructions, and compute immediate instructions. Coprocessor instructions are part of the memory instructions.

4.1. Notation
This section explains the notation used in the descriptions of the instructions.

MSB(x) The most significant bit of x.
x<< y x is shifted left by y bits.
x>> y x is shifted right by y bits.

X#Y x is a number represented in base y

x II Y x is concatenated with y.
PCcurrent Address of the instruction being fetched during the ALU cycle of an instruction

PCnext Address of the next instruction to be fetched.

WsO-0 The contents of CPU register n.

FM&Q The contents of register n in the floating point unit (FPU).

Reg<n>, Reg<n..m>
Bit n or Bits n to M of register Reg.

Memory[addr] The contents of memory at the location addr. The value accessed is always a word of 32 bits.

SignExtend The value of n sign extended to 32 bits. The size of n is specified by the field being sign extended.

rSrc 1 The register number used as the Source 1 operand

rSrc2 The register number used as the Source 2 operand
rDes t The register number used as the Destination location.

fSrc 1 The register number used as the Source 1 floating point operand.
fSrc2 The register number used as the Source 2 floating point operand.
fDest The register number used as the Destination floating point register.

cop1 Coprocessor instruction.
MAR The memory address register. The contents of this register are placed on the address pins of the

processor.
MDR The memory data register. The address pads of the processor always reflect the contents of this

register.

4.2. Memory Instructions
The memory instructions are the ones that do an external memory cycle. The most commonly used memory

instructions are load and store. The other instructions that are part of the memory instructions are the coprocessor

instructions. They do not always generate a memory cycle that is recognized by memory. Instead the coprocessor uses
the cycle. This is explained in more &tail in the individual instruction descriptions.

3

22

4.2.1. Id - Load

TY OP Srcl Dest Offset(17)
l(),()(-)O, ““I ““I D 9, 9 9 9 ,s 9 9 9 9 ,,,,

Assembler
Id Offset[rSrcl],rDest

Operation
Reg@est) c= Memory[SignExtend(Offset) -t Reg(Srcl)J

Description
The offset field is sign extended and added to the contents of the register specified by the Srcl field to compute a

memory address. The contents of that memory location is put into Reg@est).

Note: An instruction in the slot of a loud instruction that uses the same register as the load instruction is loading is
not guaranteed to get the correct result. Do not try to use the loud slots in this manner.

Id Load Id

i

4.2.2. st - Store

23

TY OP Srcl Src2 Offset(17)
1 o,* 10, 9 “9, 9 9 9 ‘, ” ,9 ,,s ,I,) 9 ,,,s

Assembler
st Offset[rSrcl]JSrc2

Operation
Memory[SignExtend(Offset) + Reg(Src l)] e= Reg(Src2)

Description
The offset field is sign extended and added to the contents of the register specified by the Srcl field to compute a

memory address. The contents of Reg(Src2) are stored at that memory location.

This instruction requires 2 memory cycles, one to read the cache and then one to do the store. To obtain maximum
performance, instructions that do not require a memory cycle should be scheduled after a store instruction if possible.
Otherwise, the processor may stall for one cycle.

st

-_

Store st

24

4.2.3. Idf - Load Floating Point

TY OP Srcl Dest Offset(17)
1(),1()(-J,‘,’ ,, P 9 9 ,, 9 9 8 9 9 9 9 9 9 9 P 9 9 9 ,9

Assembler
ldf Offset [rSrc l] ,fDes t

Operation
FReg@est) c= Memory[SignExtend(Offset) + Reg(Srcl)J

Description
The offset field is sign extended and added to the contents of the register specified by the Srcl field to compute a

memory address. The contents of that memory location is put into the register specified by Dest in the floating point
unit (FReg(Dest)). The CPU ignores the data returned in the memory cycle.

Note: An instruction in the slot of a load instruction that uses the same register as the load instruction is loading is
not guaranteed to get the correct result. Do not try to use the loud slots in this manner.

Note: If a processor configuration does not have an FPU then different code must be generated to-emulate the
floating point instructions. Any code that tries to use FPU instructions when there is no FPU will not execute correctly.

Idf Load Floating Point ldf

25

4.2.4. stf - Store Floating Point

TY OP Srcl Src2 Offset(17)
I(),1 I*,,,,,,” 9 9 , 9 9 9 9 9 9 9 9 ,9 9 9 9 9 9 9

Assembler
stf Offset[rSrcl],fSrc2

Operation
Memory[SignExtend(Offset) + Reg(Srcl)] (= FReg(Src2)

Description
The offset field is sign extended and added to the contents of the register specified by the Srcl field to compute a

memory address. The contents of the floating point register specified by Src2 are stored at that memory location. The
CPU does not put out any data during this write memory cycle.

Note: If a processor configuration does not have an FPU then different code must be generated to emulate the
floating point instructions. Any code that tries to use FPU instructions when there is no FPU wiIl not execute correctly.

stf Store Floating Point stf

3

2 6

4.25. ldt - Load Through

TY OP Srcl Dest Offset(17)
10*()11,999,9999,9999999999999999

Assembler
Idt Offset[rSrc I],rDest

Operation
Reg(Dest) e= Memory[SignExtend(Offset) + Reg(Srcl)]

Description
This instruction is the same as Id except that it is guaranteed to bypass the cache. There is no check to see whether

the location being accessed currently exists in the cache.

The offset field is sign extended and added to the contents of the register specified by the Srcl field to compute a
memory address. The contents of that memory location is put into Reg@est).

Note: An instruction in the slot of a load instruction that uses the same register as the load instruction is loading is
not guaranteed to get the correct result. Do not try to use the load slots in this manner. _.”

idt Load Through ldt

27

4.2.6. stt - Store Through

TY OP Srcl Src2 Offset(17)
Jl 010 1 11 9 ’ 9 9 I 9 , 9 , , , 9 , 9 9 9 , 9 , 9 9 9 , 9 ,

Assembler
stt Offset[rSrcl],rSrc2

Operation
Memory[SignExtend(Offset) + Reg(Src l)] e= Reg(Src2)

Description
This instruction is the same as st except that it is guaranteed to bypass the cache. There is no check to see whether

the location being accessed currently exists in the cache.

The offset field is sign extended and added to the contents of the register specified by the Srcl field to compute a
memory address. The contents of Reg(Src2) are stored at that memory location

stt

--

Store Through stt

I
2 8

4.2.7. movfrc - Move From Coprocessor

TY OP Srcl(r0) Dest COP# Func CSl CS2lCD
10101()o()()(),9999,99,99999,999,999

I cop1 I

Assembler
movfrc CopI,rDest

Operation
MAR = SignExtend(Cop1) + Reg(Src 1)
Reg(Dest) * MDR

Description
This instruction is used to do a Coprocessor register to CPU register move.

The Cop1 field is sign extended and added to the contents of the register specified by the Srcl field. The Srcl field
should be Register 0 if the Cop1 field is to be unmodified (hackers take note). The Cop1 field will appear on the address
lines of the processor where it can be read by the coprocessor. The coprocessor will place a value on the data bus that
will be stored in Reg@est) of the CPU. The memory system will ignore this memory cycle. *-

The Cop1 field is decoded by the coprocessor-s to fmd the coprocessor being addressed (COP#) and the function to be
performed. A possible format is shown above. The fields C’S1 and CS2ICD show possible coprocessor register fields.
The format is flexible except that all coprocessors should fmd the COP# in the same place.

No&: An instruction in the slot of a movfic instruction that uses the same register that the mo#rc instruction is
loading is not guaranteed to get the correct result. Do not try to use the slots in this manner.

movfrc Move From Coprocessor movfrc

29

4.2.8. movtoc - Move To Coprocessor

TY OP Srcl(r0) Src2 COP# Func CSl CS2lCD
J l 011 1 110 0 0 0 01 ’ ’ ’ 9 I , 9 9 9 9 , 9 9 9 9 , , 9

I cop1 I

Assembler
movtoc CopI,rSrc2

Operation
MAR * SignExtend(CopI) + Reg(Src1)
MDR = Reg(Src2)

Description
This instruction is used to do a CPU register to Coprocessor register move.

The Cop1 field is sign extended and added to the contents of the register specified by the Srcl field. The Srcl field
should be Register 0 if the Cop1 field is to be unmodified (hackers take note). The Cop1 field will appear on the address
lines of the processor where it can be read by the coprocessor. The contents of register Src2 are placed on the data lines
so that the coprocessor can access the value. The memory system will ignore this memory cycle. __

The Cop1 field is decoded by the coprocessors to find the coprocessor being addressed (COP#) and the function to be
performed. A possible format is shown above. The fields CSI and CS2ICD show possible coprocessor register fields.
The format is flexible except that all coprocessors should find the COP# in the same place.

movtoc Move To Coprocessor movtoc

30

4.2.9. aluc - Coprocessor ALU

TY OP Srcl (rQ) COP# Func CSl CS2KD

J1011011000001000001 9 9 1 9 9 9 9 9 1 9 9 9 I 9 9 9 [
cop1

Assembler
aluc Cop1

Operation
MAR = SignExtend(Cop1) + Reg(Src1)

Description
This instruction is used to execute a coprocessor instruction that does not require the transfer of data to or from the

CPU.

This instruction is actually implemented as:
movfrc CopI,rO 1

The Cop1 field is sign extended and added to the contents of the register specified by the Srcl field. The Srcl field
should be Register 0 if the Cop1 field is to be unmodified (hackers take note). The Cop1 field will appear on the address
lines of the processor where it can be read by the coprocessor. The memory system will ignore this memory cycle.

The Cop1 field is decoded by the coprocessor’s to find the coprocessor being addressed (COP#) and the function to be
performed. A possible format is shown above. The fields CSI and CS2ICD show possible coprocessor register fields.
The format is flexible except that all coprocessor-s should find the COP# in the same place.

Note that this instruction is needed to perform floating point ALU operations. Only floating point loads and stores

have special FPU instructions.

aluc Coprocessor ALU aluc

31 .

4.3. Branch Instructions
As described previously in Section 3.4, all branch instructions have two delay slots. The instructions placed in the

slots can be either ones that must always execute or ones that should be executed if the branch is taken. There are two
flavours of branch instructions that must be used depending on the type of instructions placed in the slots. They are:

No squash: The instructions in the slots are always executed. They are never squashed (turned into nops).
Squash if don’t go: All branches are statically predicted to go (be taken). This means that the instructions in the

branch slots should be instructions from the target instruction stream. If the branch is not
taken, then the instructions in the slots am squashed.

The instructions in the slots must be both of the same type. That is, they should both always execute or both be from
the target instruction stream. If squashing takes place, both instructions in the slots are treated equally.

Note that for best performance, it is best to try to find instructions that can always execute and use the no squash

branch types.

Branch instructions can be put in the slot of branches that can be squashed

The branch conditions are established by testing the result of
Reg(Src 1) - Reg(Src2)

where Srcl and Src2 are specified in the branch instruction. The condition to be tested is specified in the COND field
of the branch instruction, The expressions used to derive the conditions use the following notation:

N Bit 0 of the result is a 1. The result is negative.
Z The result is 0.
V 32-bit 2’s-complement overflow has occurred in the result. --

C A carry bit was generated from bit 0 of the result in the ALU.
$ Exclusive-Or

Some branch conditions that are usually found on other machines do not exist on MIPS-X. They can be synthesized
by reversing the order of the operands or comparing with kg(O) in Source 2 (Src2=0). These branches are shown in
Table 4-1 along with the existing branches.

32

Branch Description Expression Branch To Use
If Synthesized

beq
ke

Branch if equal z

Branch if greater than or equal N@V

w
bhi
bhs
ble
blo
blos
blt
bne

bP1
bmi
bra

Branch if greater than
Branch if higher
Branch if higher or same
Branch if less than or equal
Branch if lower than
Branch if lower or same
Branch if less than
Branch if not equal
Branch if plus
Branch if minus
Branch always

(N@V)+Z
c+z
C
(N@V)+Z
c
c+z
N@V
z
3
N

blt (rev ops)
blo (rev ops)

bge (rev ops)

bhs (rev ops)

bge (cmp to Src2=0)
blt (cmp to Src2=0)
beq fl,fi

Table 4-1: Branch Instructions

I

33

4.3.1. beq - Branch If Equal

TY Cond Srcl Src2 SQ Disp(16)
oo,ooI,,,,,,“9 91s, 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9,

s = 1 a Squash if don’t go
s = 0 3 No squashing

Assembler
h rSrc 1 ,rSrc2,Label
beqsq rSrc 1 ,rSrc2,Label

Operation

; No squashing
; Squash if don’t go

If [Reg(Src 1) - Reg(Src2)] 3 Z
then

PCnext = PCcuxrent + SignExtend@isp)

Description
If Reg(Src1) equals Reg(Src2) then execution continues at Label and the two delay slot instructions are executed.

The value of Label is computed by adding PCcutrent + the signed displacement.

If Reg(Src1) does not equal Reg(Src2), then the delay slot instructions are executed for beq and squashed for beqsq.

beq Branch If Equal

3

3 4

4.3.2. bge - Branch If Greater than or Equal

TY Cond Srcl Src2 SQ Disp(l6)
(-)(),I 11, 9 9 9 9, 9 9 9 9 Is, 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

s = 1 3 Squash ifdon’tgo
s = 0 * No squashing

Assembler
bge rSrc 1 ,rSrc2,Label
bgesq rSrc 1 ,rSrc2,Label

Operation

; No squashing
; Squash if don’t go

If [Reg(Srcl) - Reg(Src2)] * N $ V
then

PCnext (z PCcurrent + SignExtend(Disp)

Description
This is a signed compare.

If Reg(Src1) is greater than or equal to Reg(Src2) then execution continues at Label and the two delay slot

instructions are executed. The value of Label is computed by adding PCcurrent + the signed displacement.

If Reg(Src1) is less than Reg(Src2), then the delay slot instructions are executed for bge and squashed for bgesq.

Branch If Greater Than Or Equal

3
35

4.3.3. bhs - Branch If Higher Or Same

TY Cond Srcl Src2 SQ Disp(16)
()(),01(), 9999(9999,s(999999999999799

s = 1 3 Squash if don’t go
s = 0 + No squashing

Assembler
bhs rSrc 1 ,rSrc2,Label ; No squashing
bhssq rSrc l,rSrc2,Label ; Squash if don’t go

Operation
If PReg(Srcl) - Reg(Src2)] 3 C

then
PCnext e= PCcurrent + SignExtend@isp)

Description
This is an unsigned compare.

If Reg(Src1) is higher than or equal to Reg(Src2) then execution continues at Label and the two delay slot
instructions are executed. The value of Label is computed by adding PCcurrent + the signed displacement.

If Reg(Src 1) is lower than Reg(Src2), then the delay slot instructions are executed for bhs and squashed for bhssq.

bhs Branch If Higher Or Same bhs

36

4.3.4. blo - Branch If Lower Than

TY Cond Srcl Src2 SQ Disp(l6)
oo,110,9999,9999,s,999999999999999

s = 1 =B Squash if don’t go
s = 0 * No squashing

Assembler
blo rSrc 1 ,rSrc2,Label
blosq rSrc 1 ,rSrc2,Label

Operation

If [Reg(Srcl) - Reg(Src2)] 3 C

; No squashing
; Squash if don’t go

then
PCnext e PCcurrent + SignExtend@isp)

Description
This is an unsigned compare.

If Reg(Src1) is lower than Reg(Src2) then execution continues at Label and the two delay slot instructions are_.
executed. The value of Label is computed by adding PCcurrent + the signed displacement.

If Reg(Src1) is higher than or equal to Reg(Src2) or if there was a carry generated, then the delay slot instructions are
executed for blo and squashed for blosq.

blo Branch If Lower Than blo

3 7

4.35 blt - Branch If Less Than

TY Cond Srcl Src2 SQ Disp(l6)
() (),() 11, , , 9 , , , , , 9 Is, 9 9 9 9 9,) 3 , , , , , , ,

s = 1 3 Squash if don’t go
s = 0 3 No squashing

Assembler
blt rSrc 1 ,rSrc2,Label
bltsq rSrc l,rSrc2,Label

Operation

; No squashing
; Squash if don’t go

If [Reg(Src 1) - Reg(Src2)] * N $ V
then

PCnext (= PCcurrent + SignExtend@isp)

Description
This is a signed compare.

If Reg(Src1) is less than Reg(Src2) then execution continues at Label and the two delay slot instructions are__
executed. The value of L-ubeZ is computed by adding P&u-rent + the signed displacement.

If Reg(Src1) is greater than or equal to Reg(Src2), then the delay slot instructions are executed for bit and squashed
for bltsq.

blt Branch If Less Than blt

38

4.3.6. bne - Branch If Not Equal

TY Cond Srcl Src2 SQ Disp(l6)
0 Oil 0 l, , , 9 9, , , 9, Is, , 9 9 9 9 , 9 9 9 9 9,) 9 9

s = 1 + Squash if don’t go
s = 0 * No squashing

Assembler
bne rSrc l,rSrc2,Label
bnesq rSrc 1 ,rSrc2,Label

Operation

; No squashing
; Squash if don’t go

If [Reg(Srcl) - Reg(Src2)] * z
then

PCnext = PCcurrent + SignExtend@isp)

Description
If Reg(Src1) does not equal Reg(Src2) then execution continues at Label and the two delay slot instructions are

executed. The value of Label is computed by adding PCcurrent + the signed displacement.

If Reg(Src1) equals Reg(Src2), then the delay slot instructions are executed for bne and squashed for bnesq.

bne Branch If Not Equal bne

i

39

4.4. Compute Instructions
Most of the compute instructions are 3-operand instructions that use the ALU or the shifter to perform an operation

on the contents of 2 registers and store the result in a third register.

40

4.4.1. add - Add

TY OP Srcl Src2 Dest Comp Func(12)

0 1 1 0 0 ““I 99s’~““looooooollool~

Assembler
add rSrc 1 ,rSrc2,rDest

Operation
Reg(Dest) e= Reg(Src1) + Reg(Src2)

Description
The sum of the contents of the two source registers is stored in the destination register.

add Add add

I
41

4.4.2, dstep - Divide Step

TY OP Srcl Src2 Dest Camp Func(12)
01~0~~J”“~““1”“1000101100110[

Assembler
dstep rSrcl,rSrc2,rDest

Operation
Srcl should be the same as Dest.

ALUsrcl c= Reg(Srcl)cc 1 + MSB(Reg(MD))
ALUsrc2 c= Reg(Src2)
ALUoutput e= ALSJsrcl - ALUsrc2

If MSB(ALUoutput) is 1
then

Reg@est) e= ALUsrcl
Reg(MD) e= Reg(MD)c< 1

else
Reg@est) e= ALUoutput
Reg(MD) (z Reg(MD)<c 1 + 1

Description
. .

This is one step of a l-bit restoring division algorithm. The division scheme is described in Appendix IV.

dstep Divide Step dstep

i

42

4.4.3. mstart - Multiply Startupe

TY OP Srcl Src2 Dest Comp Func(l2)
Jolroooloooool”“i99’91000011100110~

Assembler
ms tart rSrc2,rDest

Operation
If MSB(Multiplier loaded in Reg(MD)) is 1

then
Reg(Dest) (= 0 - Reg(Src2)
Reg(MD) e= Reg(MD)ce 1

else
Reg(Dest) e= 0
Reg(MD) e= Reg(MD)cc 1

Description
This is the first step of a l-bit shift and add multiplication algorithm used when doing signed multiplication. If the

most significant bit of the multiplier is 1, then the multiplicand is subtracted from 0’ and the result is stored in
Reg(Dest). The multiplication scheme is described in Appendix IV.

mstart Multiply Startup mstart

3

43

4.4.4. mstep - Multiply Step

TY OP Srcl Src2 Dest Comp Func(12)
01l0001 ““1”“1”9 ‘ 1 0 0 0 0 1 0 0 1 1 0 0 1 ~

Assembler
mstep rSrc 1 ,rSrc2,rDes t

Operation
Srcl should be the same as Dest.

If MSB(Reg(MD)) is 1
then

Reg@est) = Reg(Srcl)c< 1 + Reg(Src2)
Reg(MD) e= Reg(MD)c< 1

else
Reg@est) = Reg(Srcl)<< 1
Reg(MD) = Reg(MD)c< 1

Description
This is one step of a l-bit shift and add multiplication algorithm. The multiplication scheme is described in

Appendix IV.

m s t e p Multiply Step mstep

44

4.4.5. sub - Subtract

TY OP Srcl Src2 Dest Comp Func(12)

01~100 ““1”“I’9’91000001100110[

Assembler
sub rSrc 1 ,rSrc2,rDest

Operation
Reg(Dest) * Reg(Src1) - Reg(Src2)

Description
The Source 2 register is subtracted from the Source 1 register and the difference is stored in the Destination register.

sub Subtract sub

45

4.4.6. subnc - Subtract with No Carry In

TY OP Srcl src2 Dest Camp Func(12)
0111OOl “ “ I “ “ I ““1000000100110[

Assembler
subnc rSrc 1 ‘rSrc2,rDest

Operation

Reg(Dest) e Reg(Src1) + Reg(Src2)

Description
The l’s complement of the Source 2 register is added to the Source 1 register and the result is stored in the

Destination register. This instruction is used when doing multiprecision subtraction.

The following is an example of double precision subtraction. The operation required is C = A - B, where A, B and
C are double word values.

11:

subnc rAhi,rBhi,rChi ;subtract high words
bhssq rAlo,rBlo,ll ;check if subtract of low

-wordsI generates a carry
;branch if carry set

addi rChi,#l,rChi ;add 1 to high word if carry
nw
sub rAlo,rBlo,Clo ;subtract low words

subnc Subtract with No Carry In subnc

46

4.4.7. and - Logical And

TY OP Srcl Src2 Dest Comp Func(12)

OllOOl “ “ I ‘) ‘) I 9 “ ‘ 1 0 0 0 0 0 0 1 0 0 0 1 1 ~

Assembler
and rSrc 1 ,rSrc2,rDest

Operation
Reg(Dest) = Reg(Src1) bitwise and Reg(Src2)

Description
This is a bitwise logical and of the bits in Source 1 and Source 2. The result is placed in Destination.

and Logical And and

4 7

4.4.8. bit - Bit Clear

TY OP Srcl src2 Dest Comp Func(12)

o111oo1”“1”“l”“loooooooo1o11[

Assembler
bit rSrcl,rSrc2,rDest

Operation

Reg@est) c= Reg(Srcl) bitwise and Reg(Src2)

Description
Each bit that is set in Source 1 is cleared in Source 2. The result is placed in Destination.

bit Bit Clear . bit

I
49

4.4.10. or - Logical Or

TY OP Srcl Src2 Dest Comp Func(12)
01]100~““1”“1”“1000000111011[

Assembler
or rSrc 1 ,rSrc2,rDest

Operation
Reg(Dest) e= Reg(Src1) bitwise or Reg(Src2)

Description
This is a bitwise logical or of the bits in Source 1 and Source 2. The result is placed in Destination.

or Logical Or or

50

4.4.11. xor - Exclusive Or

TY OP Srcl Src2 Dest Comp Func(12)
JO 1 1 1 0 01 9 9 9 9 I 9 9 9 9 I 9 9 9 9 IO 0 0 0 0 0 0 1 1 0 1 l[

Assembler
xor rSrc 1 ,rSrc2,rDes t

Operation
Reg(Dest) e Reg(Src1) bitwise exclusive-or Reg(Src2)

Description
This is a bitwise exclusive-or of the bits in Source 1 and Source 2. The result is placed in Destination.

xor Exclusive Or xor

51

4.4.12. mov - Move Register to Register

TY OP Srcl Dest Comp Func(12)

Jol~loo~““~oooool”“loooooco11ool~

Assembler
mov rSrc 1 ,rDes t

Operation
Reg(Dest) (= Reg(Srcl)

Description
This is a register to register move. It is implemented as

add rSrc l,rO,rDest .
This mnemonic is provided for convenience and clarity.

movmov Move Register to Register

52

4.4.13. asr - Arithmetic Shift Right

TY OP Srcl Dest Comp Func(12)
j0 110 0 11 ’ ’ ’ ’ IO 0 0 0 01 ’ ’ ’ ’ IO 0 0 1 Olb b b d d d d[

Assembler
asr rSrcl,rDest,#shift amount

Operation
Reg(Dest) e Reg(Srcl)>> shift amount (See below for explanation of shifr amount)
The high order bits are sign extended.

Description
The contents of Source 1 are arithmetically shifted right by shift amount. The sign of the result is the same as the

sign of Source 1 s The result is stored in Destination. The range of shifts is from 1 to 32.

To determine the encoding for the shift amount, first subtract the shift amount from 32. The result can be encoded as
5 bits. Assume the 5-bit encoding is bbbef, where bbb is used in the final encoding. The bottom two bits (&I are fully
decoded to yield &i&f in the following way:

ef dddd __
00 0001
01 0010
10 0100
11 1000

For example, to determine the bits required to specify the shift amount for the shift instruction

asr r4s3,#5
first do (32-5) to get 27 and then encode 27 according to the above to get 1101000.

asr Arithmetic Shift Right asr

i

53

4.4.14. rotlb - Rotate Left by Bytes

TY OP Srcl Src2 Dest Comp Func(12)
011001I”“I”“I”“1000011000000[

Assembler
rotlb rSrcl,rSrc2,rDest

Operation
Reg@est) = Reg(Src1) rotated left by Reg(Src2)<30..31> bytes

Description
This instruction rotates left the contents of Source 1 by the number of bytes specified in bit 30 and bit 31 of Source 2.

For example,
Reg(Src1) = ABOlCD23#16
Reg(Src2) = 51#16

rotlb rSrc 1 ,rSr&Dest

Reg(Dest) = OlCD23AB#16

rotlb Rotate Left by Bytes rotlb

3
54

4.4.15. rotlcb - Rotate Left Complemented by Bytes

TY OP Srcl Src2 Dest Comp Func(12)
0 1100 11 ” ’ * I ” ” I ” ” 10000 10000000~

Assembler
rotlcb rSrc 1 ,rSrc2,rDest

Operation
Reg(Dest) c== Reg(Src1) rotated left by BitComplement[Reg(Src2)<30..31>] bytes

Description
This instruction rotates left the contents of Source 1 by the number of bytes specified by using the bit complement of

bits 30 and 31 in Source 2. For example,
Reg(Src1) = ABOlCD23#16
Reg(Src2) = 51#16

rotlcb rSrc 1 ,rSrc2,rDest

Rotate amount is Bit-Complement of 01#2 = 10#2 = 2.
Reg(Dest) = CD23AB01#16

rotlcb Rotate Left Complemented by Bytes rotlcb

56

4.4.17. nop - No Operation

TY OP Camp Func(12)
JO 111 9 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 010 0 0 0 0 0 0 1 1 0 0 11

Assembler
noP

Operation
Reg(0) t= Reg(0) + Reg(0)

Description
This instruction does do not much except take time and space. It is implemented as

add rO,rO,rO

nap No Operation noP

e
57

4.5. Compute Immediate Instructions
The compute immediate instructions have one source and one destination register. They provide a means to load a

17-bit constant that is stored as part of the instruction. Some of the instructions are used to access the special registers
described in Section 2.3. In general, instructions that do not fit in with any of the other groups are placed here.

I

4.51. addi - Add Immediate

Assembler _
addi Src 1 ,#Immed,Dest

Operation
Reg@est) C= SignExtend(Immed) + Reg(Src1)

Description
The value of the signed immediate constant is added to Source 1 and the result is stored in Destination.

addi Add Immediate addi

i
59

4.5.2. jpc - Jump PC

TY OP Camp Func(12)

Jl 111 0 110 0 0 0 010 0 0 0 010 0 0 0 010 0 0 0 0 0 0 0 0 0 1 l(

Assembler
jpc

Operation
PCnext e= PC-4

Description
The PC chain should have been loaded with the 3 return addresses. PCnext is loaded with the contents of PC-4

which should contain a return address used for returning from an exception to user space.

This instruction should be the second and third of 3 jumps using the addresses in the PC chain. The first jump in the
sequence should be jpcrs which also causes some state bits to change.

jpc Jump PC .iPc

i

60

4.53. jpcrs - Jump PC and Restore State

Jl 111 1 110 6 0 0 010 0 0 0 010 0 0 0 010 0 0 0 0 0 0 0 0 0 1 11

Assembler
jpcrs

Operation
PC shifting enabled
PSWcurrent = PSWother
PCnext = PC-4

Description
The PC chain should have been loaded with the 3 return addresses. PCnext is loaded with the contents of PC-4

which should contain the frost return address when returning from an exception to user space.

This instruction should be the fast of 3 jumps using the addresses in the PC chain. The next two instructions should
be jpcs to jump to the 2 other instructions needed to restart the machine.

The machine changes from system to user state at the end of the ALU cycle of the jpcrs instruction. -The PSW is

changed at this time as well.

When this instruction is executed in user state, the PSW is not changed The effective result is a jump using the
contents of PC-4 as the destination address.

jpcrs Jump PC and Restore State jpcrs

61

4.54. jspci - Jump Indexed and Store PC

TY OP Srcl Dest Immed(17)
~,loo()l,,,,I,“‘I v,,,,*,,,,,,,,,,

Assembler
jspci rSrcl,#Imme&rDest

Operation
PC c= Reg(Src1) + SignExtend(Immed)
Reg(Dest) e= PCcment + 1

Description
This instruction has two delay slots. The address of the instruction after the two &lay slots is stored in the

Destination register. This is the return location. The immediate value is sign extended and added to the contents of
Source 1. This is the jump destination so it is jammed into the PC. The displacement is a 17-bit signed word
displacement.

This instruction provides a fast linking mechanism to subroutines that are called via a trap vector.

jspci Jump Indexed and Store PC jspci

62

4.5.5. movfrs - Move from Special Register

TY OP Dest Camp Func(12)
11 110 1 110 0 0 0 01 9 ’ ’ ’ 10 0 0 0 010 0 0 0 0 0 0 0 01 s s [

Assembler
movfrs SpecialReg,rDest

Operation
Reg@est) c= Reg(Spec)

Description
This instruction is used to copy the special registers described in Section 2.3 into a general register. The contents of

the special register are put in the destination register. The value used in the Spec field for each of the special registers is
shown in the table below along with the assembler mnemonic.

SpecialReg spec

Psw 001 __

md 010

pcm4 100

The PW (psw) can be read in both system and user state.

A move from pcm4 causes the PC chain to shift after the move.

movfrs Move from Special Register movfrs

63

4.5.6. movtos - Move to Special Register

TY OP Srcl Camp Func(12)
11 110 101 ’ ’ ’ ’ IO 0 0 0 010 0 0 0 010 0 0 0 0 0 0 0 01 ’ 9 [

spec

Assembler
movtos rSrc 1 ,SpecialReg

Operation
Reg(Spec) G= Reg(Src 1)

Description
This instruction is used to load the special registers described in Section 2.3. The contents of the Source 1 register is

put in the special register. The value used in the Spec field for each of the special registers is shown in the table below
along with the assembler mnemonic.

SpecialReg spec

Psw 001 ._

md 010

pcml 100

Accessing the PSW (pw) requires the processor to be in system state. Otherwise the instruction is a nop in user
state.

A move topcml causes the PC chain to shift after the move.

After a move to md, one cycle may be needed before an mstart or mstep instruction to settle some control lines to the
ALU.

movtos Move to Special Register movtos

64

4.5.7. trap - Trap Unconditionally

TY OP Vector(8)
Jl 111 1 0 1 0 0 0 0 010 0 0 0 010 0 0 0 0 01 9 9 9 9 9 ’ 9 IO 1 11

Assembler
trap Vector

Operation
Stop PC shifting
PC * Vector << 3
PSWother = PSWcurrent

Description
The shifting of the PC chain is stopped and the PC is loaded with the contents of the Vector field shifted left by 3

bits. The PSW of the user space is saved.

This is an unconditional trap. The instruction is used to go to a system space routine from user space. The state of
the machine changes from user to system after the ALU cycle of the trap instruction. .-

The trap instruction cannot be placed in the first delay slot of a branch, jspci, jpc, or jpcrs instruction. See Appendix
VI for more details.

The assembler should convert Vector to its one’s complement form before generating the machine instruction. ie.,
the machine instruction contains the one’s complement of the vector.

trap Trap Unconditionally trap

3
65

4.58. hsc - Halt and Spontaneously Combust

TY OP
11 110 0 111 1 1 1 1 1 0 0 0 0 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

Assembler
hsc

Operation
Reg(31) e= PC
The processor stops fetching instructions and self destructs.

Note that the contents of Reg(31) are actually lost.

Description
This is executed by the processor when a protection violation is detected. It is a privileged instruction available only

on the -NSA versions of the processor.

hsc Halt and Spontaneously Combust hsc

Halt and Spontaneously Combust hsc

I
67

Appendix I
Some Programming Issues

This appendix contains some programming issues that must be stated but have not been included elsewhere in this
document.

1. Address 0 in both system and user space should have a nop instruction. When an exception occurs during
a squashed branch, the PCs for the instructions that have been squashed are set to 0 so that when these
instructions are restarted they will not affect any state. The nop at address 0 is also convenient for some
sequences when it is necessary to load a null instruction into the PC chain.

2. The instruction cache contains valid bits for each of the 32 buffers. There is also a bit to indicate whether
the buffer contains system or user space instructions. When it is necessary to invalidate the instruction
cache entries for a context switch between user processes, a system space routine is executed that jumps to
32 strategic locations to force all of the system bits to be set in the tags. Thus when the new user process
begins, the cache is flushed of the previous user process. An example code sequence is shown at the end
of this appendix.

3. After an interrupt occurs, no registers should be accessed for two instructions so that the tags in the bypass
registers can be flushed. If a register access is done, then it is possible that the instruction will get values
out of the bypass registers written by the previous context instead of the register file. This should not be a
problem because the PCs must be saved first anyways. Since this happens in system space, the interrupt
handler can just be written so that the improper bypassing does not occur.

4. There is no instruction that can be used to implement synchronization primitives such as test-and-set. The
proposed method is to use Dekker’s algorithm or some other software scheme [3] but if this proves to be
insufficient then a load-locked instruction can be implemented as a coprocessor instruction for the cache
controller. This instruction will lock the bus until another coprocessor instruction is used to unlock id
This can be used to implement a read-modify-write cycle.

5. A long constant can be loaded with the following sequence:
.data
labell:
. word OxABCD1234
.text
Id labell[rO],r5

r5 now contains ABCD1234816

6. If a privileged instruction is executed in user space none of the state bits can be changed This means that
writing the PSW becomes a nop. Reading the PSW returns the correct value. Trying to execute a jpcrs
only does a jump to the address in PC-4 and does not change the PSW. There is no trap taken for a
privilege violation.

7. Characters can be inserted and extracted with the following sequences:
For each of these examples, assume

r2 initially contains stuv
r3 initially contains wxyz

where s, t, u, v, w, x, y and z are byte values.

I

; Byte insertion - byte u gets replaced by w
;

addi rO,#2,rl
rotlb r2,rl,r2 ; r2 <-- uvst
sh r3,r2,r2,#24 ; r2 <-- vstw
rotlcb r2,rl,r2 ; r2 <-- stwv

;
i Extract byte - extract byte u from r2 and place it in r3
I

addi r0,#2,rl
rotlb r2,rl,r3 ; r3 <-- uvst
sh r3,rO,r3,#24 ; r3 <-- u

Programming Issues

2&,&q 2!J@b
.‘.‘. . . . :_ :

jspcl ro,xoKleaqrt-l

10x187@ - 1’
*)spcl lo,KMwJo

10x1880- - l5
* jspcl lo,#oxl94Qla

IoIl8do:
slakenop IS

Jspcl lo,#oKl88q!0

3
69

Appendix II
Opcode Map

This is a summary of how the bits in the instruction opcodes have been assigned. The first sections will show howI
the bits in the OP and Comp Func fields are assigned. Then the opcode map of the complete instruction set will be
given.

11.1. OP Field Bit Assignments
The OP bits are bits 24 in all instructions. For memory type instructions the bits have no particular meaning by

themselves. For branch type instructions the bits in the OP field (also known as the Corui field) are assigned as follows:

Bit 2 Set to 0 if branch on condition true, set to 1 if branch on condition false
Bits 3-4 Condition upon which the branch decision is made. 00 = unused, 01 = Z, 10 = C, 11 = N @ V

For compute type instructions the bits are assigned as follows:

Bit 2 Set to 1 if the ALU always drives the result bus for the instruction
Bit 3 Set to 0
Bit 4 Set to 1 if the shifter always drives the result bus for the instruction

For compute immediate type instructions the bits are assigned as follows:

Bit 2 Set to 1 if the ALU always drives the result bus for the instruction
Bits 3-4 These bits have no particular meaning by themselves

11.2. Comp Func Field Bit Assignments
The Camp Func bits are bits 20 through 31 in the compute and compufe immediate type instructions. The bits are_-

assigned according to whether they are being used by the ALU or the shifter. The bits for the ALU are assigned in the
following way:

Bits 20-22 Unused
Bit 23 Set to 1 for dstep, 0 otherwise
Bit 24 Set to 1 for multiply instructions (mstart, mstep), 0 otherwise
Bit 25 CarryintotheALU
Bits 26-29 Input to the P function block.

Bit 26 Srcl * Src2
Bit 27 Srcl . Src2
Bit 2% Srcl l Src2- -
Bit 29 Srcl 0 Src2

3its 30-31 Input to the G function block.

Bit 30 0 for ALU add operation, 1 otherwise
Bit 31 0 for ALU subtract operation, 1 otherwise

The bits for the shifter are assigned as follows:

Bits 20-21 Unused
Bit 22 Set to 1 for funnel shift operation (sh instruction)
Bit 23 Set to 1 for arithmetic shift operation (asr instruction)
Bit 24 Set to 1 for byte rotate instructions (rotlb, rotlcb)

Opcode Map

70

Bit 25
Bits 2531

For byte rotate instructions, set to 1 if rotlb, 0 if rotlcb
Shift amount for funnel and arithmetic shift operations (sh and asr instructions). The range is 0 to
31 bits. Although this can be encoded in five bits, the two low-order bits are fully decoded;
therefore, the field is seven bits. The two low-order bits are decoded as follows: 0 = bit 31, 1 = bit
30, 2 = bit 29, 3 = bit 28. For example, a shift amount of 30 would become 1110100 in this
seven-bit encoding scheme.

Opcode Map

11.3. Opcode Map of All Instructions
Memory Instructions

Instruction TY
Id 10
st 10
ldf 10
stf 10
ldt 10
stt 10
movfrc 10
movtoc 10
aluc 10

Branch Instructions

OF Comments
000 *
010
100 *
110
001 *
011
101 Srcl=O, *
111 Srcl=O
101 Srcl=O, Dest=O, *

Instruction TY
beq 00
he 00
bhs 00
blo 00
blt 00
bne 00

Compute Instructions

COND
001
111
010
110
011
101

Instruction TY OP Comp Func
add 01 100 000000011001
dstep 01 000 000101100110
mstart 01 000 000011100110
mstep 01 000 000010011001
sub 01 100 000001100110
subnc 01 100 000000100110
a n d 01 100 000000100011
bit 01 100 000000001011
not 01 100 000000001111
or 01 100 000000111011
xor 01 100 000000011011
mov 01 100 000000011001
asr 01 001 OOOlObbbdddd
rotlb 01 001 000011000000
rotlcb 01 001 000010000000
sh 01 001 OOlOObbbdddd
nap 01 100 000000011001

Compute Immediate Instructions

Instruction TY OP Comp Func
addi 11 100 Immed
jspci 11 000 Immed
jpc 11 101 000000000011
jpcrs 11 111 000000000011
movfrs 11 011 OOOOOOOOOrrr
movtos 11 010 OOOOOOOOOrrr
trap 11 110 0vvvvvvvv011
unused 11 001

Comments

Srcl=O

Src2=0
Src2=0

Src2=0
Src2=0, bbbdddd=rotate

bbbdddd=rotate amount
Srcl=O, Src2=0, Dest=O

Comments
* (Immed is a 17-bit
* signed constant)
*

rrr = special register
rrr = special register
Srcl-0, vvvvvvvv=vector

amount

A star (*) indicates an instruction that has its Desf field in the position where the Src2 field normally sits. This can
also be determined by decoding the MSB of the type field and the middle bit of the OP field.

Opcode Map

Opcode Map

i

73

Appendix Ill
Floating Point Instructions

This describes the floating point opcodes and formats of the instructions implemented in the MIPS-X Instruction
Level Simulator (milsx).

111.1. Format
All floating point numbers are represented in one 32-bit word as shown in Fig. III-l. The fields represent the

following floating point number:

(-1)” x 2exp- 12’ x (1 + fraction) q
This is an approximate IEEE floating point format.

S exp (8 bits) fraction (23 bits)

I I , , 9 , , , , , , , , , , , , 9 , , , , , , , , , 1 , 9 ,

Figure III-l: Floating Point Number Format

111.2. Instruction Timing
All floating point instructions are assumed to take one cycle to execute. More realistic timing- numbers can be

derived by multiplying the number output by mifs by an appropriate constant

111.3. Load and Store Instructions
There are 16 floating point registers. They are loaded and stored using the Zq and stf instructions defined in the

instruction set. Moves between the floating point registers and the main processor are done using the movif and movfi
instructions. These use the movtoc and movfrc formats defined in the instruction set. Note that only 4 of the 5 bits that
specify a floating point register in the ldf, stf, movif and movfi instructions are used

111.4. Floating Point Compute Instructions
The format of the floating point compute instructions is the one shown in the description of the aZuc coprocessor

instruction. The coprocessor number (COP#) is 0 for the floating point coprocessor. The Func field specifies the
floating point operation to be performed.

Floating Point

111.5. Opcode Map of Floating Point Instructions
In the following table:

rl,r2 are cpu registers from rO..r31
fl,f2 are floating point registers from fO..flS
n is an integer expression

Instruction
fadd fl,f2
fsub fl,f2
fmul fl,f2
fdiv fl,f2
cvtif fl,f2

cvtfi fl,f2

imul fl,f2

idiv fl,f2

mod fl,f2

movif rl,fl
movfi fl,rl
ldf n[rl],fl
stf n[rl],fl

TY OP Func Operation
10 101 000000 f2 = fl + f2
10 101 000001 f2 e= fl - f2
10 101 000010 f2 * fl x f2
10 101 000011 f2 * fl / f2
10 101 000100 f2 e= float(f1)

10 101 000101 f2 e= int(f1)

10 101 000110 f2 = fl x f2

10 101 000111 f2 e= fl / f2

10 101 001000 f2 e= fl mod f2

10 111 001001 fl c= rl
10 101 001010 rl * fl
10 100
10 110

Comments
Srcl=O, Dest=O
Srcl=O, Dest=O
Srcl-0, Dest-0
Srcl-0, Dest-0
Srcl-0, Dest=O
Convert int to float
Srcl-0, Dest-0
Convert float to int
Srcl=O, Dest-0
Integer multiplication
Srcl-0, Dest=O
Integer division
Srcl=O, Dest=O
Integer mod
Srcl-0, CSl-0
Srcl-0, CS2=0
See instruction page
See instruction page

Floating Point

75

Appendix IV
Integer Multiplication and Division

This appendix describes the multiplication and division support on MIPS-X. The philosophy behind why the current
implementation was chosen is described first and then the instructions for doing multiplication and division are
described.

WI. Multiplication and Division Support
The goal of the multiplication and division support in MIPS-X is to provide a reasonable amount of support with the

smallest amount of hardware possible. Speed ups can be obtained by realizing that most integer multiplications are
used to obtain a 32-bit result, not a 64-bit result. The result is usually the input to another operation, or it is the address
of an array index. In either case a number larger than 32 bits would not make sense. Since the result is less than 32
bits, one of the operands is most likely to be less than 16 bits or there will be an overflow. In general this means that
only about 16 l-bit multiplication or division steps are required to generate the final answer. For very small constants,
instructions can be generated inline instead of using a general multiplication or division routine. Therefore, it was felt
that there was no great advantage to implement a scheme that could do more than 1 bit at a time such as Booth
mu1 tiplication.

The other advantage of only generating a 32-bit result is that it is possible to do multiplication starting at the MSB of
the multiplier meaning that the same hardware can be used for multiplication and division. The required hardware is a
single register, the MD register, that can shift left by one bit each cycle, and an additional multiplexer at the source 1
input of the ALU, that selects the input or two times the input for the source 1 operand.

IV.2. Multiplication
Multiplication is done with the simple l-bit shift and add algorithm except that the computation is started from the

most significant bit instead of the least significant bit of the multiplier. The instruction that implements one step of the
algorithm is called rnstep. For

mstep rSrc 1 ,rSrc2,rDest
the operation is:

If the MSB of the MD register is 1
then

rDest e= 2 x rSrc1 + rSrc2
else

rDest = 2 x rSrc1

Shift left MD

For signed multiplication, the first step is different from the rest. If the MSB of the multiplier is 1, the multiplicand
should be subtracted from 0. The instruction called mturt is provided for this purpose. For

mstart rSrc2,rDes t
the operation is

* Multiplication and Division

76

If the MSB of the MD register is 1
then

rDest e= 0 - rSrc2
else

rDest C= 0

Shift left MD

To show the simplest implementation of a multiplication routine assume that the following registers have been
assigned and loaded

rMer is the multiplier,
rMund is the multiplicand,
rDest is the result register
rLink is the jump linkage register.

Then,
movtos rMer,rMD
nw
mstart rMand,rDest
mstep rDest,rMand,rDest
jspci rLink,#O,rO

;Move the multiplier
;Needed for hardware
;Do the first mstep.
;Repeat 31 times
;Return

into MD
timing reasons--see movtos
Result goes into rDest

It is possible to speed up the routine by using the assumption described previously that the numbers will not both be
a full 32 bits long. The simplest scheme is to check to see if the multiplier is less than 8 bits long. Some statistics
indicate that this occurs frequently.

The routine shown in Figure IV-1 implements multiplication with less than 32 msteps on average. It will actually do
a full 32 msteps if it is necessary. In this case it is most likely that overflow will occur and this can be detected if the V
bit in the PSW is clear so that a trap on overflow will occur. Assume that the registers rMer, rMand anii rDest have
been assigned and loaded as in the previous example. Two temporary registers, rTemp1 and rTemp2 are also required

The number of cycles required, not including the instructions needed for the call sequence is shown in Table IV-l.
Compare this with the simple routine using just 32 steps which requires 35 instructions to do the multiplication and a
Booth 2-bit algorithm that will need about 19 instructions. It can be observed that if most multiplications require 8 or

less rnsteps, then this routine will be faster than just doing 32 msteps all the time.

IV.3. Division
For division, the same set of hardware is used, except the ALU is controlled differently. The algorithm is a restoring

division algorithm. Both of the operands must be positive numbers. Signed division is not supported as it is too hard to
do for the hardware required [2].

The dividend is loaded in the MD register and the register that will contain the remainder (&em) is initialized to 0.
The divisor is loaded into another register called (rDor). The result of the division (quotient) will be in MD. For

ds tep rRem,rDor,rRem
the operation is:

Multiplication and DiGsion

I
77

;i
;
;
;
;
;
;
r’
i

. .i;;;ii;;i;;;;i;iirrr,~~~**,,,*,,,,*,,,,,~,,.*,,,,,,**,~*,,,,*,,,*,*,.**
.,

MUL i
fast, unchecked, signed multiply ;

rLink = link ;
rMand = src2 ;
rDest = rMer = srcl/dest i
rTemp1 = temp :
rTemp2 = temp :

;
Note: This code has been reorganized i

MUL:
asr
bne
sh
movtos
mstart
mstep

lmul8bit:
mstep
mstep
mstep
mstep
jspci
mstep
mstep

lnot8:
addi
beqsq
mstart
mstep
movtos
mstart
mstep
mstep
mstep
mstep

rMer,rTemp2,#7
rTemp2, rO,lnot8
rO,rMer,rTempl,#24
rTempl,md
rMand,rDest
rDest,rMand,rDest

; Test for positive 8-bit number

; assume 8 bit

; may need nop before this

rDest ,rMand,rDest
rDest,rMand,rDest
rDest,rMand,rDest
rDest,rMand,rDest
rLink,#O,rO
rDest ,rMand,rDest
rDest,rMand, rDest

rTemp2,#l,rTemp2
rTemp2,rO,lmul8bit
rMand, rDest
rDest,rMand,rDest
rDest,md
rMand,rDest
rDest,rMand,rDest
rDest,rMand,rDest
rDest,rMand,rDest
rDest,rMand,rDest

; 8 bit negative

; do full 32 bits
; may need nop before this

24 msteps

mstep rDest,rMand,rDest
jspci rLink,#O,rO
mstep rDest,rMand,rDest
mstep rDest,rMand,rDest

Figure IV-l: Signed Integer Multiplication

Multiplication and Division

78

Number of msteps needed 8 32

Number of cycles with positive multiplier 13 42
Number of cycles with negative multiplier 15 42

Table IV-l: Number of Cycles Needed to do a Multiplication

Set ALUsrcl input to 2 x rRem + MSB(rMD)
Set ALUsrc2 input to rDor
ALUoutput * ALUsrcl - ALUsrc2

If MSB(ALUoutput) is 1
then

rRem = ALUsrcl
rMDr-2xrMD

else
rRem (= ALUoutput
rMD~2xrMD+l

At the end of 32 dsteps the quotient will be in the MD register, and the remainder is in rRem.

A routine for doing division is shown in Figure IV-2. The dividend is passed in rDend and the divisor in rDor. At
the end, the quotient is in MD and rQuot and the remainder is in rRem. Note that rDend and rRem can be the same

register, and rDor and rQuot can be the same register. The dividend and divisor are checked to make sure they are
positive. This routine does a 32-bit by 32-bit division so no overflow can occur.

The number of cycles needed, not including the calling sequence and assuming the operands are positive, is shown in
Table IV-2.

Number of dsteps needed 8 32

Number of cycles needed 34 60

Table IV-2: Number of Cycles Needed to do a Divide

Multiplication and Division

79

. .

,~,,,,*,*,**,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,*,,*,,,,,,,,,,,,,,,,,,,*,

0 ; ;

; DIV i
i fast, unchecked, signed divide (should check for zero divide) ;
i rLink = link :
; rDend,rRem = srcl (dividend) ;
; rDor = rQuot = src2/dest (divisor/quotient) ;
i rTemp1 = temp (trashed) ;
; rTemp2 = temp (trashed) ;
; ;
; Note: This code has been reorganized ;
; ;

. .;;;;;;*l*,,**,*,,,,*,,,*,,*,,,,,,,,,*,,***~~*,,**,,~,~~~~~*,,**,,~~~,~,*,
DIV:

mov
he
nap
nw
sub

lcinitl:
M-q
addi
nw
sub
sub
addi

lcinit2:
bltsq
movtos
mdv
sh
movtos
beq
mov
addi

ldivfull:
addi

ldivloop:
dstep
dstep

ldivloopr:
dstep
dstep
dstep
dstep
dstep
addi
dstep
bnesq
dstep
dstep
movfrs
Jw=
nap
nap
sub

lcinit3:
jspci
nw
nap

rDend,rTemp2
rDend,rO,lcinitl

rO,rDend,rDend

rDor,rO,lcinit2
rO,#Oxff,rTempl

rO,rTemp2,rTemp2
rO,rDor,rDor
rO,#Oxff,rTempl

rTempl,rDend,ldivfull
rDend,md
r0 ,rRem
rO,rDend,rDend,#8
rDend,md
rO,rO,ldivloop
rO,rRem
rO,#8,rTempl

'rO,#32,rTempl

rRem,rDor,rRem
rRem,rDor,rRem

rRem,rDor,rRem
rRem,rDor,rRem
rRem,rDor,rRem
rRem,rDor,rRem
rRem,rDor,rRem
rTempl,#-8,rTempl
rRem,rDor,rRem
rTempl,rO,ldivloopr
rRem,rDor,rRem
rRem,rDor,rRem
md,rQuot
rTemp2,rO,lcinit3

rO,rQuot,rQuot

rLink,#O,rLink

; dividend > 0 ?

; make dividend > 0

; divisor > 0 ?
; check for 8-bit dividend

; rTemp2 > 0 if positive result
; make divisor > 0

; do 8-bit check
; start 32-bit divide

; shift up divisor to do 8 bits
; start 8-bit divide

; loop counter

; do full 32 dsteps

; decrement loop counter

: get result
; check if need to adjust sign of result

; adjust sign of result

; return

Figure W-2: Signed Integer Division

Multiplication and Division

Multiplication and Division

i
81

Appendix V
Multiprecision Arithmetic

Multiprecision arithmetic is not a high priority but it is desirable to make it possible to do. The minimal support
necessary will be provided. The most straightforward way to do this would seem to be the addition of a carry bit to the
PSW. However, this turns out to be extremely difficult.

The following program segments are examples of doing double precision addition and subtraction. The only
addition required to the instruction set is the Subtract with No Carry (subnc) instruction. This is only an addition to the
assembly language and not to the hardware.

Assume that there are 2 double precision operands (A and B) and a double precision result to be computed (C).
Assume that the necessary registers have been loaded.

;Double precision addition

11:

add rAhi,rBhi,rChi ;add high words
sub rO,rBlo,rClo ;get -rBlo; branch does subtract
bhssq rAlo,rClo,ll ;check to see if carry generated

;branch if carry set
addi rChi,#l,rChi ;add 1 to high word if carry
nw
add rAlo,rBlo,rClo ;add low words

*Double precision subtractionI

11:

subnc rAhi,rBhi,rChi ;subtract high words
bhssq rAlo,rBlo,ll ;check if subtract of low

*words generates a carryI
;branch if carry set

addi rChi,#l,rChi ;add 1 to high word if carry
nap
sub rAlo,rBlo,Clo ;subtract low words

Multiprecision Arithmetic

82

Multiprecision Arithmetic

83

Appendix VI
Exception Handling

An exception is defined as either an event that causes an interrupt or a trap instruction that can be thought of as a
software interrupt. The two sequences cause similar actions in the processor hardware. Because there is a branch delay
of 2, three PCs from the PC chain must be saved and restarted on an interrupt. Three PCs are needed in the event that a
branch has occurred and fallen off the end of the chain. The two branch slot instructions and the branch destination are
saved for restarting. Restarting a trap is slightly different and is explained later. See Section 2.4 for a description of the
PSW during interrupts, exceptions, and traps.

VIA. Interrupts
Interrupts are asynchronous events that the programmer has no control over. Because there are several instructions

executing at the same time, it is necessary to save the PCs of all the instructions currently executing so that the machine
can be properly restarted after an interrupt. The PCs are held in the PC chain. When an interrupt occurs, the PC chain
is frozen (stops shifting in new values) to allow the interrupt routine to save the PCs of the three instructions that need
to be restarted These are the PCs of the instructions that are in the RF, ALU and MEM cycles of execution. This
means that no further exceptions can occur while the PCs are being saved. When the interrupt sequence begins, the
interrupts are disabled, PSWcwrent is copied into PSWother and the machine begins execution in system state. The
contents of PSWother should be saved if interrupts are to be enabled before the return from the interrupt. The contents
of the MD register must also be saved and restored if any multiplication or division is done. If the interrupt routine is
very short and interrupts can be left off, it is possible to just leave the PC chain frozen, otherwise the three PCs must be
saved. To save the PCs use movfrs with PC-4 as the source. The PC chain shifts after each read of PC-4._-

The interrupt routine will start execution at location 0. It must look at a register in the interrupt controller to
determine how to handle the interrupt. This sequence is yet to be specified.

To return from an interrupt, interrupts must first be disabled to allow the state of the machine to be restored. The
PSW must be restored and the PC chain loaded with the return addresses. The PC chain is loaded by writing to PC-l
and it shifts after each write to PC-l. The instructions are restarted by doing three jumps to the address in PC-4 and
having shifting of the PC chain enabled This means that the addresses will come out of the end of the chain and be
reloaded at the front in the desired order.

The first of the three jumps should be a jpcrs instruction. It will cause PSWother to be copied to PSWcurrent with
the interrupts turned on and the state returned to user space. The machine state changes after the ALU cycle of the first
jump. The last two instructions of the return jump sequence should bejpc instructions.

A problem arises because an exception could occur while restarting these instructions. The PC chain is now in a
state that it is not possible to restart the sequence again using the standard sequence of first saving the PC chain. The
start of an exception sequence should fust check the e bit in the PSW to see whether it is cleared. The e bit will be set
only when the PC chain is back in a normal state. If it is clear, then the state of the machine should not be resaved. The
state to use for restart should still be available in the process descriptor for the process being restarted when the

Exception Handling

84

lret: inst
inst ;:
inst C
--- interrupt ---
inst d
inst e

inthlr: bra to save if e bit set
Do necessary fixes
bra nosave

save: Save PSWother
Save MD
movfrs pcm4,rA
movfrs pcm4,rB
movfrs pcm4,rC

nosave: Enable interrupts

.
Process interrupts

.
Disable interrupts
Restore MD
Restore PSWother
movtos rA,pcml
movtos rB,pcml
movtos rC,pcml
jpcrs
jpc
jpc
execution begins at label lret

;Instructions a, b and c are restarted

;Start of interrupt handler
;e bit clear so don't save PC chain

;do save if interrupts to be enabled
*if necessary
isave PCs if necessary

;if necessary and above saving done

*if necessaryI

-if necessaryI
;restore PCs

-ThisI changes the PSW as well
;Doesn't touch PSW

Figure VI-l: Interrupt Sequence

exception occurred. The sequence for interrupt handling is shown in Figure VI-l.

Vl.2. Trap On Overflow
A trap on overflow (See Section 2.4.1) behaves exactly like an interrupt except that it is generated on-chip instead of

externally. This interrupt can be masked by setting the V bit in the PSW.

When a trap on overflow occurs, the 0 bit is set in the PSW. The exception handling routine must check this bit to
see if an overflow is the cause of the exception.

V1.3. Trap Instructions
Besides the Trap on Overflow, there is only one other type of trap available. It is an unconditional vectored trap to a

system space routine in low order memory. After the ALU cycle of the trap instruction the processor goes into system

state with the PC chain frozen. The instruction before the trap instruction will complete its WB cycle. The PSW is
saved by copying PSWcurrent to PSWother as described in Section 2.4. PSWcurrent is loaded as if this were an

interrupt.

Exception Handling

85

Before interrupts can be turned on again, some processor state must be saved. The return PCs are currently in the PC
chain. Three PCs must be read from the PC chain and the third one saved in the process descriptor. It is the instruction
that is in the RF cycle. The instruction corresponding to the PC in MEM completes so it need not be restarted. The PC
in the ALU cycle should not be restarted because it is the trap instruction. PSWother must be saved so that the state of
the prior process is preserved. If PSWother is not saved before interrupts are enabled, then another interrupt will smash
the PSW of the process that executed the trap before it can be saved

All trap instructions have an g-bit vector number attached to them. This provides 256 legal trap addresses in system
space. These addresses are 8 locations apart to provide enough space to store some jump instructions to the correct
handler. If this is not enough vectors, one of the traps can take a register as an argument to determine the action
required.

The return sequence must disable interrupts, restore the contents of PSWother and MD if they were saved and then
disable PC shifting so that the return address can be shifted into the PC chain. Two more addresses must be shifted in
as well so that the restart will look the same as an interrupt. This can be done by loading the addresses of two nop
instructions into the PC chain ahead of the return address. Three jumps to the addresses in the PC chain are then
executed using jpcrs and twojpcs. The first jump will copy the contents of PSWother into PSWcurrent and turn on PC
shifting. The processor state changes after the ALU cycle of the jpcrs. The change of state also enables interrupts and
puts the processor in user space.

If an interrupt occurs during the return sequence then
determine whether the state should be saved.

the interrupt handler will look at the e bit in the PSW to

The flow of code for taking a trap and returning is shown in Figure VI-2.

Exception Handling

86

lret:

.
trap vecnum

vecnum: movfrs pcm4,rO
movfrs pcm4,rO
movfrs pcm4,r31
Save PSWother
Save MD
Enable interrupts

Process requested trap

.
Disable interrupts
Restore MD
Restore PSWother
movtos rO,pcml
movtos rO,pcml
movtos r31,pcml
jpcrs
jpc
jpc
execution begins at label lret

iinstruction before trap
-trap instruction#
;save this one to restart
;if necessary
*if necessaryI
*if necessary and above saving done,

;movtos x,pswc where x has M bit set
-if necessary,
*if necessary,
;assume a nop at 0

*instructionI after trap

Figure VI-2: Trap Sequence

Exception Handling

3
87

Appendix VII *
Assembler Macros and Directives

This appendix’ describes the macros and directives used by the MIPS-X assembler. Also provided is a full grammar
of the assembler for those that need more detail.

VII.1. Macros
Several macros are provided to ease the process of writing assembly code. These allow low level details to be

hidden, and ease the generation of code for both compilers and assembly language programmers.

VII.1 .I. Branches
bgt, ble The assembler synthesizes these instructions by reversing the operands and using a bit or a bge

instruction.

VII.1.2. Shifts
lsr, Is1 These instructions are synthesized from the sh instruction. For example:

lsr rl,r2,#4

shifts rl four bits right and puts the result in r2.

VII.1.3. Procedure Call and Return
pjsr subroutine,#expl,reg2 A simple procedure call. The stack pointer is decremented by expl. The return address is

stored on the stack. On return, the stack pointer is restored. Reg2 is used as a temporary.
No registers are saved.

ipjsr reg 1 ,#exp 1 ,reg2
ipj sr exp2,reg 1 ,#expl ,reg2 A call to a subroutine determined at run time. The particular subroutine address must be

in a register (regl) or be addressable off a register (exp2 + regl). The stack pointer and
the return address handling is identical to pjsr. Reg2 is used as a temporary.

ret Jump to the return address stored by a pjsr or ipjsr macro.

Vll.2. Directives
.text

.data

.end

.eop

.ascii “xxx”

.word exp

Signals the beginning or resumption of the text segment. This allows code to be grouped into one
area. Labels in the text segment have word values.
Signals the beginning or resumption of the data segment. Labels in the data segment have byte
values. Ordering within the data segment is not changed.
Signals the end of the module.
Signals the end of a procedure. No branches are allowed to cross procedure boundaries. This
directive was added to reduce the memory requirements of the assembler. Reorganization can be
done by procedure instead of by module.
Allows a string literal to be put in the data segment..
Initializes a word of memory.

‘Provided by Scott McFarling

Assembler Macros and Directives

88

.float number
id = exp

.def id = exp

.noreorg
xeorgon
.comnmi~n
*glob1 id

Jit rl,r2,...
.lif r5,rlO,...

Initializes a floating point literal.
Sets an assembly-time constant. This allows a code generator to emit co& before the value of
certain offsets and literals are known. The assembler will resolve expressions using this identifier
for aliasing calculations etc.
Sets a link-time constant The identifier will be global.
Allows reorganization to be turned off in local areas.
Turns reorganization back on.
Defines a labeled common area of n words. Common area names are always global.
Makes an identifier global or accessible outside the module. The .globl statement must appear
before the id is otherwise used. All procedure entry points should be made global, otherwise the
code may be removed as dead.

Give a list of registers that are live for the following branches. lit is for registers live if the branch
is taken and .lif is for registers live if the branch is not taken. Liveness information is used for
interblock reorganization and branch scheduling.

Vll.3. Example
;program 1+1 = 2?
.data
labell:
. word 1
.text
.globl -main
main:-

Id labell[rO],rl
addi rl,#l,rl
addi r0,#2,r2
bne rl,r2,error
ret

error:
trap 1
ret

.end

Vll.4. Grammar
file

line

statement

.
i file line
: \n
1 COMMENT \n { comment = ;.* 1
I statement COMMENT \n
1 statement \n
: label
1 binALUState
1 monALUState
I specstate
I nopstate
I addistate
I jspcistate
I shiftstate
I loadstate
I storestate
I branchstate
I copstate
I miscstate
I directstate

Assembler Macros and Directives

-_
i

89

label
binALUState
binALUOp

monALUState

monOp

specstate

specialReg

nopstate
addistate
jspcistate
shiftstate

loadstate

storestate

branchstate

branchOp

branchSqOp

copstate

ID : { ID must be in column 1)
binALUOp reg,reg,reg
ADD
SUB

I macrostate
..
..
.
i
I
I
I
I
I
I
I
I
I.
i.
i.
i.
i
I
I..
..
..
.
i
I
I.
i

OR
XOR
ROTLB
ROTLCB
MSTEP
DSTEP
SUBNC
BIC
monOp reg,reg
MSTART reg,reg
NOT
MOV
MOVTOS reg,specialReg
MOVFRS specialReg,reg
MD
PSW
PCM4
PCMl
NOP
ADDI reg,#exp,reg
JSPCI reg,#exp,reg
ASR reg,reg,#exp
SH reg,reg,reg,#exp
LSR reg,reg,#exp
LSL reg,reg,#exp
LD exp[reg],reg
LD #exp,reg

.-{ adds constant to literal pool and loads it 1
I LDT exp[reg],reg
I LDF exp[reg],freg
.
i
ST exp[reg],reg
STT exp[reg],reg

I STF exp[reg],freg
.
i
branchop reg,reg,ID
branchSqOp reg,reg,ID

I BRA ID.
i
BEQ
BNE

I BGE
I BGT
I BHI
I BHS
I BLE
I BLO
I BLS
I BLT
.
i
BEQSQ
BNESQ

I BGESQ
I BGTSQ
I BHISQ
I BHSSQ
I BLESQ
I BLOSQ
I BLSSQ
I BLTSQ
.. MOVTOC exp,reg

Assembler Macros and Directives

90

floatBinOp

floatMonOp

miscstate

directstate

I MOVFRC exp,reg
I ALUC exp
I floatBinOp freg,freg
I floatMonOp freg,freg
I MOVIF reg,freg

liveList

macrostate

ew

addOp

term

multOp
factor

reg
freg

l

i
I
I.
i
I.
i.
i
.

MOVFI freg,reg
FADD
FSUB
FMUL
FDIV
IMUL
IDIV
MOD
CVTIF
CVTFI
TRAP exp
JPC
JPCRS
TEXT
DATA
END
EOP
ASCII STRING (string: ,re*m)
WORD exp
FLOAT FLOATCONSTANT
ID = exp
DEF ID = exp
REORGON
NOREORG
COMM ID,INT
GLOBL ID
LIT liveList
LIF liveList
r-3
liveList,reg

PJSR ID,#exp,reg
IPJSR reg,#exp,reg
IPJSR exp,reg,#exp,reg
RET
exp addOp term
- factor
term
+

term multOp factor
factor
*

: (exp)
I ID
1 INT
I HEXINT
: REG
: FREG

(like C: Oxl2fc)
{ rO..r31)
{ fO..f15 1

notes:

1) only labels and directives may start in column 1
2) Keywords are shown in upper case just to make them

stand out. In reality, they MUST be lower case.
3) directives begin with a ' Of

Assembler Macros and Directives

91

References

PI Cohen, Danny.
On Holy Wars and a Plea for Peace.
IEEE Computer 14(10):48-54, October, 1981.

PI Gill, J., Gross, T., Hennessy, J., Jouppi, N., Pxzybylski, S. and Rowen, C.
Summary of MIPS Instructions.
Technical Note 83-237, Stanford University, November, 1983.

131 Lamport, Leslie.
A Fast Mutual Exclusion Algorithm.
Technical Report 7, DEC Systems Research Center, November, 1985.

