MIPS-X INSTRUCTION SET

and
PROGRAMMER’'S MANUAL

PAUL CHOW

Technical Report No. CSL-86-289

MAY 1988

The MIPS-X project has been supported by the Defense Advanced Research
Projects Agency under contract MDA903-83-C-0335. Paul Chow was partially
supported by a Postdoctoral Fellowship from the Natural Sciences and
Engineering Research Council of Canada

MIPS-X Instruction Set
and Programmer's Manual

Paul Chow

Technical Report No. 86-289
May 1986

Computer Systems L aboratory
Departments of Electrica Engineering and Computer Science
StanfordUniversity
Stanford, California 94305

Abstract

MIPS-X is a high performance second generation reduced
instruction set microprocessor. This document describes the visible
architecture of the machine, the basic timing of the instructions, and
the instruction set.

Keywords: MIPS-X processsor, RISC, processor architecture,
streamlined instruction set.

Copyright © 1986 Stanford University

Table of Contents
1.Introduction

2. Architecture

2.1. Memory Organization

2.2. General Purpose Registers

2.3. Special Registers

2.4. The Processor Status Word
2.4.1. Trap on Overtlow

2.5. Privilege Violations

3. Instruction Timing

3.1. The Instruction Pipeline

3.2. Delays and Bypassing

3.3. Memory Instruction Interlocks

3.4. Branch Delays

3.5. Jump Delays

3.6. Detailed Instruction Timings
3.6.1. Notation
3.6.2. A Normal Instruction
3.6.3. Memory Instructions
3.6.4. Branch Instructions
3.6.5. Compute Instructions

3.6.5.1. Special Instructions

3.6.6. Jump Instructions
3.6.7. Multiply Step - mstep
3.6.8. Divide Step - dstep

4. Instruction Set

4.1. Notation
4.2. Memory Instructions
4.2.1.1d - Load
4.2.2, st - Store
4.2.3. |{df - Load Floating Point
4.2.4. stf - Store Floating Point
4.2.5. Idt - Load Through
4.2.6. stt - Store Through
4.2.7. movfrc - Move From Coprocessor
4.2.8. movtoc - Move To Coprocessor
4.2.9. aluc - Coprocessor ALU
4.3. Branch Instructions
4.3.1. beq - Branch If Equal
4.3.2. bge - Branch If Greater than or Equal
4.3.3. bhs - Branch If Higher Or Same
4.3.4. blo - Branch If Lower Than
4.3.5. blt - Branch If Less Than
4.3.6. bne - Branch If Not Equal
4.4. Compute Instructions
4.4.1. add - Add
4.4.2, dstep - Divide Step
4.4.3. mstart - Multiply Startup
4.4.4. mstep - Multiply Step
4.4.5. sub - Subtract

COoON Jooubbhwow W —

d ek ed h ek ek ed d ek eh b
OCONOOBEWNMNMOOO

N
—

[ANANANSECHCECHCECE I GRS

4.4.6. subnc - Subtract with No Carry In
4.4.7. and - Logical And
4.4.8. bic - Bit Clear
4.4.9. not - Ones Complement
4.4.10. or - Logical Or
4.4.11. xor - Exclusive Or
4.4.12. mov - Move Register to Register
4.4.13. asr - Arithmetic Shift Right
4.4.14. rotlb - Rotate Left by Bytes
4.4.15. roticb - Rotate Left Complemented by Bytes
4.4.16. sh - Shift
4.4.17. nop - No Operation

4.,5. Compute Immediate Instructions
4.5.1. addi - Add Immediate
4.5.2. jpc - Jump PC
4.5.3. jpcrs - Jump PC and Restore State
4.5.4. jspci - Jump Indexed and Store PC
4.5.5. movfrs - Move from Special Register
4.5.6. movtos - Move to Special Register
4.5.7. trap - Trap Unconditionally
4.5.8. hsc - Halt and Spontaneously Combust

Appendix I. Some Programming Issues

Appendix Il. Opcode Map
II.1. OP Field Bit Assignments
I1.2. Comp Func Field Bit Assignments
I1.3. Opcode Map of All Instructions

Appendix Ill. Floating Point Instructions
lil.1. Format
lil.2. Instruction Timing
111.3. Load and Store Instructions
lIL.4. Floating Point Compute Instructions
1Il.5. Opcode Map of Floating Point Instructions

Appendix IV. Integer Multiplication and Division
IV.1. Multiplication and Division Support
IV.2. Multiplication
IvV.3. Division

Appendix V. Multiprecision Arithmetic

Appendix VI. Exception Handling
VL1. Interrupts
V1.2, Trap On Overflow
VL.3. Trap Instructions

Appendix VII. Assembler Macros and Directives

Vil.1. Macros
VIl.1.1. Branches
VIl.1.2. Shifts
VIl.1.3. Procedure Call and Return
VIil.2. Directives
VIL3. Example
Vil.4. Grammar

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

67
69
69

69
71
73
73
73
73
73
74

75

75
75
76

81
83
83

84
87

87
87
87
87
87
88
88

List of Figures
Figure 2-1: Word Numbering in Memory
Figure 2-2: Bit and Byte Numbering in a Word
Figure 2-3: The Processor Status Word
Figure 3-1: Pipeline Sequence
Figure ill-1: Floating Point Number Format
Figure IV-1: Signed Integer Multiplication
Figure IV-2: Signed Integer Division
Figure VI-1: Interrupt Sequence
Figure VI-2: Trap Sequence

it

Table 3-1:
Table 3-2:
Table 4-1:

Table IV-1:
Table IV-2:

List of Tables
MIPS-X Pipeline Stages
Delay Slots for MIPS-X Instruction Pairs
Branch Instructions
Number of Cycles Needed to do a Multiplication
Number of Cycles Needed to do a Divide

32
78
78

1. Introduction

This manual describes the visible architecture of the MIPS-X processor and the timing information required to
execute correct programs. MIPS-X is a pipelined processor that has no hardware interlocks. Therefore, the software
system is responsible for keeping track of the timing of the instructions.

The processor has a load/store architecture and supports a very small number of instructions. The instruction set of
the processor will be described.

The processor supports two types of coprocessor interfaces. One interface is dedicated to the floating point unit
(FPU) and the other will support up to 7 other coprocessors. These instructions will also be described.

2. Architecture

2.1. Memory Organization
The memory is composed of 32-hit words and it is a uniform address space starting at 0 and ending at 232—1, Each

memory location is a byte. Load/store addresses are manipulated as 32-bit byte addresses on-chip but only words can
be read from memory (ie., only the top 30 bits are sent to the memory system). The numbering of wordsin memory is
shown in Figure 2-1. Bytes (characters) are accessed by sequences of instructions that can do insertion or extraction of
characters into or from a word. (See Appendix |). Instructions that affect the program counter, such as branches and
jumps, generate word addresses. This means that the offsets used for calculating load/store addresses are byte offsets,
and displacements for branches and jumps are word displacements. The addressing is consistently Big Endian [I].

| ! t T |
Word 0 Word 1 Word 2 word 230-1

Figure 2-1: Word Numbering in Memory

Bytes are numbered starting with the most significant byte at the most significant bit end of the word The bits in a
word are numbered 0 to 31 starting at the most significant bit (MSB) and going to the least significant bit (LSB). Bit
and byte numbering are shown in Figure 2-2.

0 7 8 15 16 23 24 31

il il

Byte 0 (MSB end) Bytel Byte 2 Byte 3 (LSB end)

Figure 2-2: Bit and Byte Numbering in a Word

The address space is divided into system and user space. An address with the high order bit (bit 0) set to one (1) will
access user space. If the high order bit is zero (0) then a system space address is accessed. Programs executing in user
space cannot access system space. Programs executing in system space can access both system and user space.

2.2. General Purpose Registers
There are 32 general purpose registers (GPRs) numbered 0 through 31. These are the registers named in the register

fields of the instructions. All registers are 32 bits. Of these registers, one register is not general purpose. Register 0
(r-0) contains the constant 0 and thus cannot be changed. The constant 0 is used very frequently so it isthe value that is

stored in the constant register. A constant register has one added advantage. One register is needed as a void
destination for instructions that do no writes or instructions that are being noped because they must be stopped for some
reason. Thisisimplemented most easily by writing to a constant location.

2.3. Special Registers
There are several special registersthat can be accessed with the Move Special instructions. They are:

PSW The processor status word. Thisis described in more detail in Section 2.4.
PC-4, PC-1 Locationsin the PC chain used for saving and restoring the state of the PC chain.
MD The mul/div register. Thisisaspecial register used during multiplication and division.

2.4. The Processor Status Word

The Processor Status Word (PSW) holds some of the information pertaining to the current state of the machine. The
PSW actually contains two sets of bits that are called PSWcurrent and PSWother. The current state of the machine is
always reflected in PSWeurrent. When an exception or trap occurs, the contents of PSWcurrent are copied into
PSWother. The e bit is not saved PSWother then contains the processor state from before the exception or trap so that
it can be saved. Interrupts are disabled, PC shifting is disabled, overflows are masked and the processor is put into
system state. The I bit is cleared if the exception was an interrupt. A jump PC and restore state instruction (jpcrs)
causes PSwother to be copied into PSicurrent. After the ALU cycle of the jpersinstruction, the interrupts are enabled
and the processor returns to user state with its state restored. Appendix VI describes the trap and interrupt handling
mechanisms.

The PSW can be both read and written while in system space, but a write to the PSW while in user space has no
effect. To change the current state of the machine via the PSW, a move o special (moveos) instruction must be used to
write the bitsin PS\current. Before restoring the state of the machine, amove to special instruction must be used to
change the bits in PS\other. All the bits are writable except the e bit and the E-bit shift chain.

The assignment of bits is shown in Figure 2-3. The bits corresponding to PSWcurrent are shown in upper case and
those in lower case correspond to the bits in PSwother. The bits are:

l,i The I bit should be checked by the exception handler. It is set to O when there is an interrupt
request, otherwise it will be set toal. This bit never needs to be written but the value will be
retained until the next interrupt or exception. Thei bit contains the previous value of the I bit but in
general has no meaning since only the ! bit needsto be looked at when an exception occurs.

M, m Interrupt mask. When set to 1, the processor will not recognize interrupts. Can only be changed by
a System process, an interrupt or a trap instruction.

U,u When set to 1, the processor is executing in user state. Can only be changed by a system process,
an interrupt or a trap instruction.

S,s Set to 1 when shifting of the PC chain is enabled.

e Clear when doing an exception or trap return sequence. Used to determine whether state should be

saved if another exception occurs during the return sequence. This bit only changes after an
exception has occurred so the exception handler must be used to inspect this bit. See Appendix V1.

E The E bits make up a shift chain that is used to determine whether thee bit needsto be cleared when
anexceptionoccurs. The E bits and thee bit are visible to the programmer but cannot be written.

Processor Status Word

V,v The overflow mask hit. Traps on overflows are prevented when this bit is set. See Section 2.4.1.

0,0 This bit gets set or cleared on every exception. When atrap on overflow occurs, the O bit isset to 1

as seen by the exception handler. This bit never needs to be written. The o bit contains the previous
value of the O bit but in general has no meaning.

31
U u O|o ’ ’) ’ ’ ¥ ’ 1) y b) ’ ’ y |EJ7EIE1E!erIV|mlMli]I ls Iil

Figure 2-3: The Processor Status Word

2.4.1. Trap on Overflow

If the overflow mask bit in PSWcurrent (V} is cleared, then the processor will trap to location O (the start of all
exception and interrupt handling routines) when an overflow occurs during ALU or multiplication/division operations.

The exception handling routine should begin the overflow trap handling routine if the ovefflow bit (0) is set in
PSWcurrent.

The V hit can only be changed while in system space so a system call will have to be provided for user space
programs to set or clear this hit.

2.5. Privilege Violations

User programs cannot access system space. Any attempt to access system space will result in ;he address being
mapped to user space. Bit 0 of the address will always be forced to 1 (auser space address) in user mode.

Attempting to write to the PSW while in user space will be the same as executing anop instruction. The PSW is not
changed and no other action istaken.

Therearenoillegal instructions, just strange results.

Processor Status Word

Instruction Timing

3. Instruction Timing

This chapter describes the MIPS-X instruction pipeline and the effects that pipelining has on the timing sequence for
variousinstructions. A section isalso included that describesin detail the timing of the various types of instructions.

3.1. The Instruction Pipeline

MIPS-X has a S-stage pipeline with one instruction in each stage of the pipe once it has been filled. The clock isa
two-phase clock with the phases called phase I (¢;) and phase 2 (¢,). The names of the pipe stages and the actions that
take place in them are described in Table 3- 1. The pipeline sequenceis shown in Figure 3-I.

Abbreviation Name Action
IF Instruction Fetch Fetch the next instruction
RF Register Fetch Theinstruction isdecoded.

Theregister fileis accessed during the second half
of the cycle (Phase 2).

ALU ALUCycle An ALU or shift operation is performed.
Addresses go to memory at the end of the cycle.

MEM Memory Cycle Waiting for the memory (external cache) to come back on read.
Dataoutput for memory write.

WB Write Back Theinstruction result iswritten to the register
fileduring thefirst half of the cycle (Phase 1).

Table 3-1: MIPS-X Pipeline Stages

1 IF RF ALU MEM WB

2. IF RF ALU MEM WB

3. IF RF ALU MEM WB

4. IF RF ALU MEM WB

5. IF RF ALU MEM WB

Figure 3-1: Pipeline Sequence

Instruction Timing

3.2. Delays and Bypassing

A delay occurs because the result of a previous instruction is not available to be used by the current instruction. An
example is a compute instruction that uses the result of aload instruction. If in Figure 3-1, instruction 1 is aload
instruction, then the result of the load is not available to be read from the register file until the second half of WB in
instruction 1. The first instruction that can access the value just loaded in the registers is instruction 4 because the
registers are read on phase 2 of the cycle. This means that there is a delay of two instructions from a load instruction
until the result can be used as an operand by the ALU. An instruction &lay can aso be called adelay slot where an
instruction that does not depend on the previous instruction can be placed. This should be anop if no useful instruction
can be found. Delays between instructions can sometimes be reduced or eliminated by using bypassing.

Bypassing allows an instruction to use the result of a previous instruction before it is written back to the register file.
This means that some of the delays can be reduced. Table 3-2 shows the number of delay dots that exist for various
pairs of instructions in MIPS-X. The table takes into account bypassing on both the results of a compute instruction and
a load instruction. For example, consider the load-address pair of instructions. This can occur if the result of the first
load is used in the address calculation for the second load instruction. Without bypassing, there would be 2 delay slots.
Table 3-2 showsonly 1 &lay slot because bypassing will take place.

The possible implementations for bypassing are bypassing only to Source 1 or to both Source 1 and Source 2. The
implementation of bypassing in MIPS-X uses bypassing to both sources. Bypassing only to Source 1 means that the
benefits of bypassing can only be achieved if the second instruction is accessing the value from the previousinstruction
viathe Source I register. If the second instruction can only use the value from the previous instruction as the Source 2
register, then 2 delay slots are required. Bypassing to both Sources eliminates this asymmetry. The asymmetry is most
noticeable in the number of &lay slots between compute or load instructions and a following instruction that tries to
store the results of the compute or load instruction. Branches are also a problem because the comparison is done with a
subtraction of Source 1 - Source 2. Not all branch types have been implemented because it is assumed that the operands
can be reversed. This means that it will not always be possible to bypass a result to a branch instruction. This
asymmetry could be eiminated by taking one bit from the displacement field and using it to decide whether a
subtraction or a reverse subtraction should be used. The tradeoff between the two types of bypassing is the ability to
generate more efficient code in some places versus the hardware needed to implement more comparators. Table 3-2
shows the delays incurred for both implementions of bypassing. It is felt that bypassing to both Sources is preferable
and the necessary hardware has been implemented

Instructions in the slot of load instructions should not use the same register as the one that is the destination of the
load instruction. Bypassing will occur and the instruction in the load slot will get the address being used for the load
instead of the value from the desired register.

One other effect of bypassing should be described. Consider Figure 3-1. If instruction 1 is a load to »/ and
instruction 2 is a compute instruction that putsits result also in r1, then there is an apparent conflict in instruction 3 if it
wants to use r! as its Source I register. Both the results from instructions 1 and 2 will want to bypass to instruction 3.
This conflict is resolved by using the result of the second instruction. The reasoning is that this is how sequential
instructions will behave. Therefore, in this example instruction 3 will use the result of the compute instruction.

Instruction Timing

Instruction Pair Delay Slotswith Delay Slots with
(Inst1-Inst 2) Bypassing Only Src1/Src2 Comment
to Source 1 Bypassing
Load - Compute
Load - Address L oaded value used as address
Load - Data L oaded value used for store data
Load - Branch

Compute - Compute
Compute- Address
Compute - Data
Compute - Branch

Computed value used as address
Compute result used for store data

O N O O — N — —
O O O O — — = —

Table 3-2: Delay Slotsfor MIPS-X Instruction Pairs

3.3. Memory Instruction Interlocks

There are severa instruction interlocks required because of the organization of the memory system. The external
cacheisawrite-back cache so it requires two memory cyclesto do a store operation, one to check that thelocation isin
the cache and one to do the store. This means that a store instruction must be followed by a non-memory instruction so
that there can be two memory cycles available. For example, a store followed by a compute instruction is okay because
the compute instruction does not use its MEM cycle. The software should try to schedule non-memory instructions
after al stores. If thisis not possible, the processor will stall until the store can complete. Scheduling a nop instruction
is not sufficient because an instruction cache miss will also generate aload cycle. This cannot be predicted so the
hardware must be able to stall the processor.

There are no restrictions for instructions after aload instruction. There is arestriction that aload instruction cannot
have as its destination the register being used to compute the .address of the load. The reason is that if the load
instruction misses in the external cache, it will still overwrite its destination register. This occurs because a late miss
detect scheme isused in the external cache. Theload instruction must be restartable.

3.4. Branch Delays

Besides the delays that can occur because one instruction must wait for the results of a previous instruction to be
stored in aregister or be bypassed, there are also delays because it takes time for a branch instruction to compute the
destination for a taken branch. These are called branch delays or branch slots. MIPS-X has two branch dots after
‘every branch instruction. Again, consider Figure 3-1. If instruction 1 is a branch instruction, then it is not until
instruction 4 when the processor can decide that the branch is to be taken or not to be taken.

Instruction Timing

10

The branch dots can be filled with two types of instructions. They can either be ones that are always executed or
ones that must be squashed if the branch does not go in the predicted direction. Squashing means that the instructions
are converted into nops by preventing their write backs from occurring. Thisis used if the branch goes in a direction
different from the one that was predicted This mechanism is described in more detail in Section 4.3.

3.5. Jump Delays

The computation of a jump destination address means that there are two delay slots after a jump instruction before
the program can begin executing at the new address. The computation uses the ALU to compute the jump address so
the result is not available to the PC until the end of the ALU cycle. Unlike branches however, the instructions in the
delay slots are always executed and never sguashed.

3.6. Detailed Instruction Timings

This section describes the timing of the instructions as they flow through the data path. It does not describe the
controls of the datapath and the timing required to set them up. These timing descriptions are intended to make more
clear the programmer’s view of how each instruction is executed. The description of each instruction given in the later
sectionsisgenerally insufficient when it is necessary to know the possibleinteractions of variousinstructions.

The timing for what happens during an exception is not described here. Appendix VI discusses the handling of
exceptions.

The notation that will be used to describe the instruction timings will be shown first and then the execution of a
normal instruction will be given. The timing for. each type of instruction is then described in more detail. Finally, the
timing for mstep and dstep are treated separately. These are the multiply and divide step instructions. They do not fit in
with the other types of compute instructions because they use the MD register.

3.6.1. Notation
The description of each type of instruction will show what parts of the datapath are active and what they are doing
for theinstruction during each phase of execution. The notation that isused is:

IF,RF,ALU,MEM,WB
These are the names of the pipestages as described in Table 3- 1.

IF, Thisisthe clock cycle beforethe IF cycle of the instruction being considered.

() Phase 1 of the clock cycle.

o, Phase 2 of the clock cycle.

Srcl, rSrc2 Register values on the Srcl and Src2 buses, corresponding to the Source 1 and Source 2 addresses
specified intheinstruction.

rDest Value to be written into the destination register specified by the Destination field of the instruction.

The Srcl busis used.
aluSrcl, duSrc2 ALU latches corresponding to the values on the Srcl and Src2 buses, respectively.

IR The “instruction register.
MDRin Memory dataregister for values coming onto the chip.
MDRout Memory dataregister for values going off chip.

Instruction Timing

11

rResult The result register.

PCource The PC source to be used for thisinstruction. It will be one of: the displacement adder, the trap
vector, theincrementer, the ALU or from the PC chain.

PCinc Thevalue from the PC incrementer.

PC-4 Thelast valueinthe PC chain.

Reg<n>, Reg<n.m> _ '
Bit n or Bitsn to mof register Reg.

Reg<<n Reg is shifted |left n.bits.
Bypass source Either rResult or MDRin
Icache Theonchip instruction cache.
RFS Reserved for Stanford.

Instruction Timing

12

3.6.2. A Normal Instruction

This section will show what each part of the datapath is doing during each phase of the execution of an instruction
The description of specific instruction types in the following sections will only describe the action of the relevant parts
of thedatapath pertaining to the instruction in question.

IF;, &
173

RFS

PC bus < PC,,,
Precharge tag comparators, valid bit store

IF 9,

Do tag compare

Valid hit store access

Icache address decoder <= PC<26..31>

Detect Icache hit

Precharge Icache

Doincrementer (calculate next sequential instruction address)
DoIcache access

IR &< Icache

RF)

Do bypass comparisons
aluSrcl < rSrcl
or aluSrcl <= Bypass source
auSrc2 c==rSrc2
or aluSrc2 < Bypass source
or aluSrc2 « Offset value
Displacement adder latch <= Displacement value
MDRout < rSrc2
or MDRout <= Bypass source

Do ALU, do displacement adder (for branch and jump targets)
Precharge Result bus
Result buse= ALU

rResult < Result bus
Memory address pads <= Result bus (There may be alatch here)

MEM ¢,

RFS
MDRIin < rResult

or MDRin <= Memory data pads
or Memory data pads < MDRout

WB o,

rDest < MDRin
RFS

Instruction Timing

13

3.6.3. Memory Instructions

These instructions do accesses to memory in the form of loads and stores. The coprocessor and floating point
instructions have exactly the same timings. The only differenceisthat the processor may not always source an operand
or use an operand during a coprocessor instruction.

The MDRout register is implemented as a series of registers to correctly time the output of data onto the memory
data pads. These registers are labelled MDRout.RF¢,, MDRout. ALU¢;, MDRout.ALU¢, and MDRout MEM¢; .

IF o, RFS
¢, PC bus & PC,,,
Precharge tag comparators, valid bit store
IF o, Do tag compare
Valid hit store access
Icache address decoder < PC<26..31>
Detect Icache hit
Precharge Icache
Doincrementer (cal cul ate next sequential instruction address)
9, DoIcache access
IR < Icache
RF o, Do bypass comparisons
9, aluSrcl < rSrcl
or aluSrc1 < Bypass source
aluSrc2 < Offset value
MDRout.RF¢, < rSrc2 (For stores)
or MDRout.RF¢, < Bypass source (For stores)
ALU ¢, Do ALU(add)
Precharge Result bus
MDRout. ALU$; <= MDRout.RF¢, (For stores)
o, Result bus<= ALU
rResult < Result bus
Memory address pads< Result bus
MDRout. ALU%, < MDRout. ALU¢, (For stores)
MEM ¢, MDRout. MEM¢, <= MDRout.ALU$, (For stores)
o, MDRin < Memory data pads (For loads)
or Memory data pads < MDRout. MEM®, (For stores)
WB 0, rDest & MDRin (For loads)
¢, RFS

Instruction Timing

14

3.6.4. Branch Instructions

These instructions do a compare in the ALU. The PC value is taken from the displacement ad&r when a branch is

taken and from the incrementer when abranch is not taken.

IF,

3
¢

RFS
PC bus « PC,,
Precharge tag comparators, valid bit store

J

)

Do tag compare

Valid bit store access

Icache address decoder &< PC<26..31>

Detect Icache hit

Precharge Icache

Doincrementer (calculate next sequential instruction address)
DoIcache access

IR & Icache

RF

g
42

Do bypass comparisons
aluSrc 1<1Src 1
or aluSrc1 ¢ Bypass source
aluSrc2 & rSre2
or aluSrc2 « Bypass source
Displacement adder <= Displacement value

ALU

2!

b,

Do ALU(Src1 - Src2), do displacement adder (for branch target)
Precharge Result bus
Evaluate condition at the end of ¢, before the rising edge of ¢,
PC bus « Displacement adder (Branch taken)

or PC bus < Incrementer (Branch not taken)
Tag compare latch < PC bus
rResult & Result bus

MEM

RFS
MDRin < rResult

WB

RFS
RFS

Instruction Timing

15

3.65 Compute Instructions

These instructions are mostly 3-operand instructions that use the ALU to do an operation. Some of them do traps or
jumps. These are treated separately in Section 3.6.6. The timing for instructions that access the special registersis
described in Section 3.6.5.1.

IF ; 9, RFS
¢, PC bus < PC,,,
Precharge tag comparators, valid hit store
IF ¢, Do tag compare
Valid bit store access
Icache address decoder &= PC<26..31>
Detect Icache hit
PrechargeIcache
Doincrementer (calcul ate next sequential instruction address)
¢, DolIcache access
IR < Icache
RE ¢ Do bypass comparisons
9, aluSrcl&<=1Src 1
or aluSrc1 <= Bypass source
aluSrc2 &=1Src2
or aluSrc2 < Bypass source
or aluSrc2 <= Immediate value (for Compute Immediate | nstructions)
ALU ¢, Do ALU
Precharge Result bus
¢, Result bus«<=ALU
rResult &= Result bus
MEM ¢; RFS
o, MDRIn < rResult
WB ¢, Dest & MDRin
o, RFS

Instruction Timing

16

3.651. Special Instructions
These instructions (movtos and movfrs) access the special registers described in Section 2.3.

IF o, RFS
¢, PC bus < PC,,,
Precharge tag comparators, valid bit store

IE 9 Do tag compare
Valid bit store access
Icache address decoder & PC<26..31>
Detect Icache hit
Precharge Icache
Do incrementer (cal culate next sequential instruction address)
9, DoIcache access

IR & Icache

REF ¢ Do bypass comparisons
¢, aluSrc 1< rSrc 1 (For movtos)
or aluSrc1 <= Bypass source (For movtos)

ALU ¢, Do ALU(pass Srcl)
Precharge Result bus
o, Result bus <= au Srcl (For movtos)
or Result bus < Special Register (For movfrs)
Special Register <= Result bus (For movios)
rResult < Result bus

MEM 9 RFS
9, MDRin <= rResult

WB o, rDest <= MDRIn (For movfrs)
¢, RFS

Instruction Timing

3.6.6. Jump Instructions

17

IF ¢, RFS
o, PC bus <& PC,,,
Precharge tag comparators, valid hit store
= N Do tag compare
Valid hit store access
Icache address decoder <= PC<26..31>
Detect Icache hit
PrechargeIcache
Doincrementer (cal culate next sequential instruction address)
o, Dolcache access
IR < Icache
RF ¢, Do bypass comparisons
%, aluSrcl¢<=1Src 1
or aluSrc1 < Bypass source
aluSrc2 & Immediate value (For jspci)
ALU ¢ Do ALU(add)
Precharge Result bus
0, Result bus « PCinc (For jspci)
PC bus<= ALU (For jspci)
or PC bus < PC+4, shift PC chain (For jpc and jpcrs)
or PC bus < Trap vector (For trap)
PSWecurrent & PSWother (For jpcrs)
rResult < Result bus
MEM ¢, RFS
¢, MDRin ¢« rResult
WB ¢, rDes t < MDRin (For jspci)
0, RFS

Instruction Timing

18

3.6.7. Multiply Step - mstep

The MD register is implemented as a series of ¢,-¢, registers. They are called MDresult.¢,, MDresult.¢;,
MDmdrin.¢,, and MDwb.¢;. The names reflect the names of the bypass registers used when bypassing to the register
file. The special register that is visible for reading and writing is MDresult.¢,. This chain of registersis necessary for
restarting the sequence after an exception. MDwb.¢, contains the true value of MD. When an interrupt occurs, the
write-back into this register is stopped just like write-backs to aregister in the register file. The valuein thisregister is
needed to restart the sequence. One cycle after an interrupt is taken, the contents of MDwb.¢, are available in
MDresult.¢,. This value hasto be saved if the interrupt routine does any multiplication or division.

Themstart instruction has similar timing with adifferent ALU operation.

There must be one instruction between the instruction that |oads the MD register and the first instruction that usesthe
MD register. This occurs when starting amultiplication or division routine and when restarting after an interrupt.

IF o, RFS
o, PC bus &= PCyyree
Precharge tag comparators, valid bit store

IF 9, Do tag compare
Valid bit store access
Icache address decoder <= PC<26..31>
Detect Icache hit
PrechargeIcache
Doincrementer (calculate next sequential instruction address)
¢, Dolcache access

IR & Icache

RE ¢ Do bypass comparisons
o, aluSrcl & rSrclc< 1

or aluSrc1 & Bypass source<< 1
aluSrc2 <= rSrc2

ALU ¢, Do ALU(add)
LatchaluSrc 1
Precharge Result bus
o, Result bus¢< ALU (MSB (MDresult.9,) is 1)
or Result bus ¢ aluSrcl (MSB (MDresult.¢,) is 0)
rResult < Result bus
MDresult.¢,c==MDresult.¢,<<1

MEM ¢, MDresult.¢; < MDresult.¢,
o, MDRIin < rResult
MDmdrin.¢, c= MDresult.¢,

WB 9, rDest <= MDRin
MDwb.¢; < MDmdrin.¢,
o, RFS

Instruction Timing

3.6.8. Divide Step - dstep
The MD register is also used for this instruction. See Section 3.6.7 for a description of its implementation and the

19

notation used
IF o, RFS
¢, PC bus & PCygrce
Precharge tag comparators, valid hit store
IF ¢, Do tag compare
Valid bit store access
Icache address decoder <= PC<26..31>
Detect Icache hit
Precharge Icache
Doincrementer (cal culate next sequential instruction address)
o, DolIcache access
IR < Icache
RF ¢ Do bypass comparisons
%, aluSrcl < 1Srcl<< 1 + MSB(MDresult.¢,)
or aluSrc1 < Bypass source<< 1 + MSB(MDresult.9;)
aluSrc2 ¢=rSrc2
ALU ¢, Do ALU(sub)
Precharge Result bus
0, Result bus¢<= ALU (MSB (ALU result) is0)
or Result bus ¢« aluSrcl (MSB (ALU result) is 1)
rResult & Result bus
MDresult.¢, <= MDresult.$,<< 1 + Complement of MSB(ALU result)
MEM ¢, MDresuit.¢; < MDresult.¢,
9, MDRin ¢« rResult
MDmdrin.¢, < MDresult.¢,
WB ¢, Dest &< MDRin
MDwb.¢, < MDmdrin.¢,
¢, RFS

Instruction Timing

Instruction Timing

21

4. Instruction Set
There are four different types of instructions. They are memory instructions, branch instructions, compute
instructions, and compute immediate instructions. Coprocessor instructions are part of the memory instructions.

4.1. Notation
This section explains the notation used in the descriptions of the instructions.
MSB(x) The most significant bit of x.
x<<y X is shifted left by y hits.
x>>Y X is shifted right by y bits.
xity X is anumber represented in base y
x|y X isconcatenated withy.
PCcurrent Address of theinstruction being fetched during the ALU cycle of aninstruction
PCnext Address of the next instruction to be fetched.
Reg(n) The contents of CPU register n.
FReg(n) The contents of register nin the floating point unit (FPU).

Reg<n>, Reg<n..m>
Bit nor Bitsntom of register Reg.

Memory[addr] The contents of memory at the location addr. The value accessed is always aword of 32 bits.
SignExtend The value of n sign extended to 32 hits. The size of nis specified by the field being sign extended.

Srcl The register number used as the Source 1 operand

rSrc2 The register number used as the Source 2 operand

rDest Theregister number used asthe Destination location.

fSrcl Theregister number used as the Source 1 floating point operand.

fSrc2 The register number used as the Source 2 floating point operand.

fDest The register number used as the Destination floating point register.

copl Coprocessor instruction.

MAR The memory address register. The contents of this register are placed on the address pins of the
Processor.

MDR The memory data register. The address pads of the processor always reflect the contents of this
register.

4.2. Memory Instructions
The memory instructions are the ones that do an external memory cycle. The most commonly used memory
instructions are load and store. The other instructions that are part of the memory instructions are the coprocessor

instructions. They do not always generate amemory cycle that is recognized by memory. Instead the coprocessor uses
the cycle. Thisis explained in more &tail in the individual instruction descriptions.

22

4.2.1.1d - Load

TY OoP Srcl Dest Offset(17)
1 0 lO 0 QJ ’ ’ ’ ’ ’ ’ ’ ’ | » ’ ’ ’ ’ ’ ’ ’ ’ ’ 3 ’ ’ ’ ’ ’

Assembler
1d Offset[rSrcl],rDest

Operation
Reg(Dest) & Memory[SignExtend(Offset) + Reg(Src1)]
Description

The offset field is sign extended and added to the contents of the register specified by the Srcl field to compute a
memory address. The contents of that memory location is put into Reg(Dest).

Note: Aninstruction in the dlot of aloud instruction that uses the same register as the load instruction is loading is
not guaranteed to get the correct result. Do not try to use theload slotsin this manner.

Id Load 1d

23

4.2.2.st=Store

TY oP Srcl Src2 Offset(17)
1 0 IO 1 0 | 4 ’ ’ ’ | ’ ’ ’ ’] ’ ’ ’ ’) ’] ’ ’ ’ ’ ’ ’ ’ ’ 9

Assembler
st Offset[rSrc1],rSrc2
Operation
Memory[SignExtend(Offset) + Reg(Src1)] <= Reg(Src2)
Description
The offset field is sign extended and added to the contents of the register specified by the Srcl field to compute a
memory address. The contents of Reg(Src2) are stored at that memory location.

This instruction requires 2 memory cycles, one to read the cache and then one to do the store. To obtain maximum
performance, instructions that do not require a memory cycle should be scheduled after a store instruction if possible.
Otherwise, the processor may stall for onecycle.

st Store st

24

4.2.3. ldf - Load Floating Point

TY oP Srcl Dest Offset(17)
1 O | 1 O 0 I ’ 3 ¥ ’ 9 9 H b j H 3] 9 9 H ¥ 9 3 ¥] b 3

Assembler

lof Offset[rSrc1] fDest
Operation

FReg(Dest) < Memory[SignExtend(Offset) + Reg(Src1)]
Description

The offset field is sign extended and added to the contents of the register specified by the Srcl field to compute a

memory address. The contents of that memory location is put into the register specified by Dest in the floating point
unit (FReg(Dest)). The CPU ignores the data returned in the memory cycle.

Note: Aninstruction in the dot of aload instruction that uses the same register as the load instruction is loading is
not guaranteed to get the correct result. Do not try to use theload slotsin this manner.

Note: If a processor configuration does not have an FPU then different code must be generated to-emulate the
floating point instructions. Any code that tries to use FPU instructions when there is no FPU will not execute correctly.

| df Load Floating Point |df

25

4.2.4. stf - Store Floating Point

TY OP Srcl Src2 Offset(17)
1 011 1 0] L » 19 y T T

Assembler

stf Offset[rSrc1],fSrc2
Operation

Memory[SignExtend(Offset) + Reg(Src1)] & FReg(Src2)
Description

The offset field is sign extended and added to the contents of the register specified by the Srcl field to compute a

memory address. The contents of the floating point register specified by Src2 are stored at that memory location. The
CPU does not put out any data during this write memory cycle.

Note: If a processor configuration does not have an FPU then different code must be generated to emulate the
floating point instructions. Any code that tries to use FPU instructions when there is no FPU will not execute correctly.

stf Store Floating Point stf

26

4.25.1dt- Load Through

TY OP Srcl Dest Offset(17)
1 0,0 0 1‘ y H 9 ’ ']] ’ ? l,, ’7’) b4 ? ? 7’ ’ 7’77! ’9 ,’ 9 ?

Assembler
I dt Offset[rSrc 1],rDest

Operation
Reg(Dest) &= Memory[SignExtend(Offset) + Reg(Src1)]

Description
This instruction is the same as 1d except that it is guaranteed to bypass the cache. There is no check to see whether
the location being accessed currently existsin the cache.

The offset field is sign extended and added to the contents of the register specified by the Srcl field to compute a
memory address. The contents of that memory location is put into Reg(Dest).

Note: An instruction in the slot of a load instruction that uses the same register as the load instruction is loading is
not guaranteed to get the correct result. Do not try to use the load slots in this manner.

Idt Load Through Idt

4.2.6. stt - Store Through

27

Offset(17)

TY oP Srcl
11 010 1 1yt "7
Assembler

stt Offset[rSrc1],rSrc2
Operation

Memory[SignExtend(Offset) + Reg(Src1)]<= Reg(Src2)

Description

Thisinstruction is the same as st except that it is guaranteed to bypass the cache. There is no check to see whether
the location being accessed currently existsin the cache.

The offset field is sign extended and added to the contents of the register specified by the Srcl field to compute a
memory address. The contents of Reg(Src2) are stored at that memory location

stt

Store Through

stt

28

4.2.7. movfrc - Move From Coprocessor

TY | oP Src1(r0) Dest COpr# Func CS1 CS2/CD
1 0 l 1 0 1 l 0 0 0 0 0 l 7’7 3 2 ¥] 3 3 l ’ ’ Ll ’ »] 3 9 ’ l 9 3 3
\ copl

Assembler
movfrc Copl,rDest

Operation

MAR & SignExtend(Copl) + Reg(Src 1)
Reg(Dest) <= MDR

Description
This instruction is used to do a Coprocessor register to CPU register move.

The Copl field is sign extended and added to the contents of the register specified by the Srcl field. The Srcl field
should be Register 0 if the Copl field isto be unmodified (hackers take note). The Copl field will appear on the address
lines of the processor where it can be read by the coprocessor. The coprocessor will place a value on the data bus that
will be stored in Reg(Dest) of the CPU. The memory system will ignore this memory cycle.

TheCopl field is decoded by the coprocessor-sto fmd the coprocessor being addressed (COP#) and the function to be
performed. A possible format is shown above. The fields €SI and CS2/CD show possible coprocessor register fields.
The format is flexible except that all coprocessors should find the COP# in the same place.

Note: Aningtruction in the dot of a movfre instruction that uses the same register that the movfre instruction is
loading is not guaranteed to get the correct result. Do not try to use the dotsin this manner.

movfrc Move From Coprocessor movfrc

4.2.8.movtoc - Move To Coprocessor

TY OoP Srcl(r0) Sc2 COP#

29

J 0112 1t 110 OO O O * * " " [,

Assembler
movtoc Copl,rSrc2
Operation

MAR « SignExtend(Copl) + Reg(Src1)
MDR < Reg(Src2)

Description

This instruction is used to do a CPU register to Coprocessor register move.

The Copl field is sign extended and added to the contents of the register specified by the Srcl field. The Srcl field
should be Register 0 if the Copl field isto be unmodified (hackers take note). The Copl field will appear on the address
lines of the processor where it can be read by the coprocessor. The contents of register Src2 are placed on the data lines
so that the coprocessor can access the value. The memory system will ignore this memory cycle.

The Copl field is decoded by the coprocessors to find the coprocessor being addressed (COP#) and the function to be
performed. A possible format is shown above. The fields €SI and CS2/CD show possible coprocessor register fields.
The format isflexible except that all coprocessors should find the COP# in the same place.

movtoc Move To Coprocessor

movtoc

30

4.2.9. aluc - Coprocessor ALU

IY OP Srcl (r0) COP# Func Cs1 CS2/CD
1 01 0 1100000100000y * * | *» > > > > | ""*"]
I copl I

Assembler
aluc Copl
Operation
MAR « SignExtend(Copl) + Reg(Srcl)
Description
Thisinstruction is used to execute a coprocessor instruction that does not require the transfer of datato or from the
CPU.

Thisinstructionisactually implemented as:
movfrc CopLr0 .

The Copl field is sign extended and added to the contents of the register specified by the Srcl field. The Srcl field
should be Register 0 if the Copl field isto be unmodified (hackers take note). The Copl field will appear on the address
lines of the processor where it can be read by the coprocessor. The memory system will ignore this memory cycle.

The Copl field is decoded by the coprocessor’s to find the coprocessor being addressed (COP#) and the function to be
performed. A possible format is shown above. The fields CSI and CS2/CD show possible coprocessor register fields.

The format is flexible except that al coprocessor-s should find the COP# in the same place.

Note that this instruction is needed to perform floating point ALU operations. Only floating point loads and stores
have special FPU instructions.

aluc Coprocessor ALU aluc

31

4.3. Branch Instructions

As described previously in Section 3.4, al branch instructions have two delay slots. The instructions placed in the
slots can be either ones that must always execute or ones that should be executed if the branch istaken. There are two
flavours of branch instructions that must be used depending on the type of instructions placed in the slots. They are:
No squash: Theinstructionsin the dots are always executed. They are never squashed (turned into nops).

Squash if don’t go: All branches are statically predicted to go (be taken). This means that the instructions in the
branch slots should be instructions from the target instruction stream. If the branch is not
taken, then the instructionsin the slotsare squashed.

Theinstructionsin the dots must be both of the same type. That is, they should both always execute or both be from
the target instruction stream. If squashing takes place, both instructionsin the slots are treated equally.

Note that for best performance, it is best to try to find instructions that can always execute and use the no squash
branch types.

Branch instructions can be put in the slot of branches that can be squashed

The branch conditions are established by testing the result of
Reg(Src 1) — Reg(Src2)
where Src1 and Src2 are specified in the branch instruction. The condition to be tested is specified in the COND field
of the branch instruction, The expressions used to derive the conditions use the following notation:

N Bit 0 of theresult isa 1. Theresult is negative.

z The result is 0.

Vv 32-hit2’s-complement overflow has occurred in the result.

C A carry bit was generated from bit 0 of the result in the ALU.
® Exclusive-Or

Some branch conditions that are usually found on other machines do not exist on MIPS-X. They can be synthesized
by reversing the order of the operands or comparing with Reg(0) in Source 2 (Src2=0). These branches are shown in
Table 4-1 along with the existing branches.

32

Branch Description Expression Branch To Use
If Synthesized
beq Branchif equal z
bge Branch if greater than or equal NOeV
bgt Branch if greater than NOeV)+Z blt (rev ops)
bhi Branchif higher C+Z blo (rev ops)
bhs Branch if higher or same C
ble Branch if less than or equal N®eV)+Z bge (rev ops)
blo Branch if lower than C
blos Branch if lower or same C+Z bhs (rev ops)
bit Branch if less than NeV
bne Branch if not equal z
bpl Branch if plus N bge (cmp to Src2=0)
bmi Branch if minus N blt (cmp to Src2=0)
bra Branch aways beq 10,10

Table 4-1: Branch Instructions

33

4.3.1. beq - Branch If Equal

TY Cond Sl Src2 SQ Disp(16)
O 0 IO 0 l [’ ’ ’ 9 L ’ 1 ’ 9’ |S I g 9 9 g 9 g g 3] L ’ ’ ’)

s= 1= Squash if don’t go
s=0= No squashing

Assembler

beq rSrcl,rSrc2,Label ; No sguashing
begsqrSrc 1,rSrc2,Label ; Squash if don't go

Operation

If [Reg(Src 1) — Reg(Src2)] = Z
then

PCnext < PCcurrent + SignExtend@isp)
Description

If Reg(Src1) equals Reg(Src2) then execution continues at Label and the two delay slot instructions are executed.
The value of Label is computed by adding PCcurrent + the signed displacement.

If Reg(Src1) does not equal Reg(Src2), then the delay slot instructions are executed for beg and squashed for begsq.

beq Branch If Equal beq

34

4.3.2. bge - Branch If Greater than or Equal

TY Cond Scl Src2 SQ Disp(16)
0 0 | 1 1 1 ' ’) H 9 I]] 5] ,S l ’) ’ 3 ’ 3 3 9] 3 9) 3

s=1 = Squash if don’t go
s= 0= No squashing

Assembler

bge rSrcl,rSrc2,Label ; No sguashing
bgesqrSrc 1,rSrc2,Label ; Squash if don't go

Operation

If [Reg(Srcl) — Reg(Src2)]=> N @OV
then

PCnext ¢<= PCcurrent + SignExtend(Disp)
Description
This is a signed compare.

If Reg(Srcl) is greater than or equal to Reg(Src2) then execution continues at Label and the two delay slot
instructions are executed. The value of Label is computed by adding PCcurrent + the signed displacement.

If Reg(Src1) isless than Reg(Src2), then the delay slot instructions are executed for bge and squashed for bgesq.

bge Branch If Greater Than Or Equal bge

35

4.3.3. bhs - Branch If Higher Or Same

TY Cond Srcl Src2 SO Disp(16)

0010 1 0L > > > | > 2 s 2220000
s= 1= Sgquash if don’t go
s= 0= No sguashing

Assembler

bhs rSrcl,rSrc2,Label ; No squashing

bhssq rSrc 1,rSrc2,Label ; Squash if don’t go
Operation

If [Reg(Srcl) — Reg(Src2)] = C

then
PCnext & PCcurrent + SignExtend@isp)

Description

Thisisan unsigned compare.

If Reg(Srcl) is higher than or equal to Reg(Src2) then execution continues at Label and the two delay dlot
instructions are executed. The value of Label is computed by adding PCcurrent + the signed displacement.

If Reg(Src 1) islower than Reg(Src2), then the delay slot instructions are executed for b4s and squashed for bhssg,

bhs Branch If Higher Or Same bhs

36

4.3.4.blo -Branch If Lower Than

TY Cond Srcl Src2 SQ Disp(16)

00110 > > Js) > 2 2 2
s= 1= Squash if don’t go
s= 0= No sguashing

Assembler
blo rSrcl,rSrc2,Label , No squashing
blosq rSrcl,rSrc2,Label ; Squash if don't go
Operation

If [Reg(Src1) - Reg(Src2)] = C
then
PCnext < PCcurrent + SignExtend@isp)

Description
This is an unsigned compare.

If Reg(Srcl) is lower than Reg(Src2) then execution continues at Label and the two delay slot instructions are
executed. The value of Label is computed by adding PCcurrent + the signed displacement.

If Reg(Src1) is higher than or equal to Reg(Src2) or if there was a carry generated, then the delay slot instructions are
executed for blo and squashed for blosq.

blo Branch If Lower Than blo

37

4.3.5.blt - Branch If Less Than

TY Cond Srcl Src2 SQ Disp(16)

00101 vy o oo s
s=1= Squash if don't go
s= 0 = No squashing

Assembler
blt rSrcl,rSrc2,Label ; No squashing
bltsg rSrc 1,rSrc2,Label ; Squash if don’t go
Operation
If [Reg(Src 1) - Reg(Src2)] = N ® V
then

PCnext ¢ PCcurrent + SignExtend@isp)

Description
This is a signed compare.

If Reg(Srcl) is less than Reg(Src2) then execution continues at Label and the two delay dot instructions are
executed. The value of Label is computed by adding PCcurrent + the signed displacement. -

If Reg(Srcl) is greater than or equal to Reg(Src2), then the delay dlot instructions are executed for bl and squashed
for bitsq.

blt Branch If Less Than blt

38

4.3.6. bne - Branch If Not Equal

TY Cond Secl Src2 SQ Disp(16)
OOIlOlI””I””lsl”v»9,,99,,,,9,
s=1= Squash if don't go
s=0 = No squashing

Assembler
bne rSrcl,rSrc2,Label ; No sguashing
bnesqrSrc 1,rSrc2,Label ; Squash if don’t go
Operation

If [Reg(Src1) — Reg(Src2)] = Z
then

PCnext < PCcurrent + SignExtend(Disp)
Description

If Reg(Src1) does not equal Reg(Src2) then execution continues at Label and the two delay dot instructions are
executed. The value of Label is computed by adding PCcurrent + the signed displacement.

If Reg(Srcl) equals Reg(Src2), then the delay slot instructions are executed for bne and squashed for bnesg.

bne Branch If Not Equal bne

39

4.4. Compute Instructions
Most of the compute instructions are 3-operand instructions that use the ALU or the shifter to perform an operation
on the contents of 2 registers and store the result in a third register.

40

4.4.1. add - Add

TY oP Secl Sc2 Dest Comp Func(12)
o 1 1 00 *»>»>»> > > 100000001100 1]

Assembler
addrSrc 1,rSrc2,rDest

Operation
Reg(Dest) < Reg(Srcl) + Reg(Src2)

Description
The sum of the contents of the two source registersis stored in the destination register.

add Add add

41

4.4.2, dstep - Divide Step

TY oP Srcl Src2 Dest CompFunc(12)
0 110 0 0} *» *» » >y > » > » | > * ' |00 0 10110011 0]
Assembler
dstep rSrc1,rSrc2,rDest
Operation

Srcl should be the same as Dest.

ALUsrcl & Reg(Srcl)<< 1 + MSB(Reg(MD))
ALUsrc2 < Reg(Src2)
ALUoutput &= ALUsrcl — ALUsrc2

If MSB(ALUoutput)is1
then
Reg(Dest) <= ALUsrcl
Reg(MD) < Reg(MD)<< 1
else
Reg(Dest) & ALUoutput
Reg(MD) < RegMD)<< 1+ 1

Description
Thisis one step of al-bit restoring division algorithm. The division schemeis described in Appendix 1V.

dstep Divide Step dstep

42

4.4.3. mstart - Multiply Startup

TY OoP Srcl Sc2 Dest Comp Func(12)
/|0 1l0 0 0jO0 00O O] * * * * | * * * * |J]OOOO 11100 11 0]

Assembler
mstart rSrc2,rDest

Operation

If MSB(Multiplier loaded inReg(MD)) is 1
then
Reg(Dest) < 0 - Reg(Src2)
Reg(MD) < Reg(MD)<< 1
else
Reg(Dest) <=0
Reg(MD) &< Reg(MD)<< 1

Description

Thisisthe first step of al-bit shift and add multiplication algorithm used when doing signed multiplication. If the
most significant bit of the multiplier is 1, then the multiplicand is subtracted from 0" and the result is stored in
Reg(Dest). The multiplication schemeis described in Appendix IV.

mstart Multiply Startup mstart

43

4.4.4. mstep - Multiply Step

TY OoP Srcl Src2 Dest Comp Func(12)
o 1jo. 0 0yt> > > > > p 21 000010011001 ~
Assembler

mstep rSrcl,rSrc2,rDest

Operation
Srcl should be the same as Dest.

If MSB(Reg(MD)) is 1
then
Reg(Dest) <= Reg(Srcl)<< 1 + Reg(Src2)
Reg(MD) < Reg(MD)<< 1
else
Reg(Dest) < Reg(Srcl)<< 1
Reg(MD) < Reg(MD)<< 1

Description
This is one step of a l-bit shift and add multiplication algorithm. The multiplication scheme is described in
Appendix IV.

mstep Multiply Step mstep

44

4.45, sub - Subtract

TY oP Srcl Src2 Dest Comp Func(12)
o ty1 00 > > >y > > | * > > *]00O0O0O0 11001 10]

Assembler
sub rSrcl,rSrc2,rDest

Operation
Reg(Dest) < Reg(Srcl) — Reg(Src2)
Description
The Source 2 register is subtracted from the Source 1 register and the differenceis stored in the Destination register.

sub Subtract sub

45

4.4.6. subnc - Subtract with No Carry In

TY OoP Srcl Src2 Dest Comp Func(12)
0 111 0 01" “ | ! “ | 2 10000001 0011 0]
Assembler

subncrSrc 1,rSrc2,rDest

Operation

Reg(Dest) < Reg(Srcl) + Reg(Src2)
Description

The I's complement of the Source 2 register is added to the Source 1 register and the result is stored in the
Dedtination register. Thisinstruction is used when doing multiprecision subtraction.

The following is an example of double precision subtraction. The operation required is C = A — B, where A, B and

C aredouble word values.

subnc rAhi, rBhi, rChi ;subtract hi gh words

bhssq rAlo, rBlo, 11 ;check if subtract of |ow
swords generates a carry
;branch if carry set

addi rchi, #1, rChi ;add 1 to high word if carry
nop
11: sub raAlo, rBlo,Clo ;subtract | ow words

subnc Subtract with No Carry In subnc

46

4.4.7.and - Logical And

TY OoP Scl Sc2 Dest Comp Func(12)

Ol{lOOI““I””I"“1000000100011

Assembler
andrSrc 1,rSrc2,rDest

Operation
Reg(Dest) < Reg(Srcl) bitwise and Reg(Src2)

Description
Thisis abitwise logical and of the bitsin Source 1 and Source 2. The result is placed in Destination.

and Logica And

and

47

4.4.8. bic - Bit Clear

TY oP Srcl src2 Dest Comp Func(12)
011100y} > > >]0OOO0O0O0O0O0OOOT1 0 1 1]
Assembler

bic rSrc1,rSrc2,rDest
Operation
Reg(Dest) < ieg(Srcl) bitwise and Reg(Src2)

Description
Each bit that is set in Source 1 iscleared in Source 2. The result is placed in Destination.

bic Bit Clear . bic

48

4.4.9. not - Ones Complement

TY OP Srcl Dest Comp Func(12)
10 111 0 0¢f * * > l0OOOOO} > *"* |OOOOOOOOT1 1 1 1]

Assembler
not rSrcl,rDest

Operation
Reg(Dest) < Reg(Srcl)

Description
The ones complement of Source 1 is placed in Destination.

not Not : not

4.4.10. or - Logical Or

TY OP Srcl Src2 Dest Comp Func(12)

o1j1004¢ > > >’ 100000011101

1]

Assembler
orrSrc 1,rSrc2,rDest

Operation
Reg(Dest) < Reg(Srcl) bitwise or Reg(Src2)

Description
Thisis abitwise logical or of the bitsin Source 1 and Source 2. Theresult is placed in Destination.

or Logical Or

49

or

50

4.4.11. xor - Exclusive Or

TY OoP Srcl Src2 Dest Comp Func(12)
J 1110 0y > oy e '’ ' ' 100000001101 1]
Assembler

xor rSrc1,rSrc2,rDest
Operation
Reg(Dest) < Reg(Srcl) bitwise exclusive-or Reg(Src2)
Description
This is a bitwise exclusive-or of the bits in Source 1 and Source 2. The result is placed in Destination.

xor Exclusive Or xor

4.4.12. mov = Move Register to Register

TY OoP Stcl

Dest

Comp Func(12)

51

|0 111 00f > > * * 100000O0] "

b

J0O 0 0 00C O 1

100 1]

Assembler
mov rSrc1 rDest

Operation
Reg(Dest) < Reg(Srcl)
Description

Thisisaregister to register move. It isimplemented as
add rSrc [,rO,rDest .

Thismnemonicis provided for convenience and clarity.

mov Move Register to Register

mov

52

4.4.13. asr - Arithmetic Shift Right

TY OP Srcl Dest Comp Func(12)
0 110 0 14 * > * " 100000 > " 1000 1! OIbbbdddd]
Assembler
asr rSrcl,rDest,#shift amount
Operation

Reg(Dest) < Reg(Src1)>> shift amount (See below for explanation of shift amount)
The high order bits are sign extended.

Description

The contents of Source 1 are arithmetically shifted right by shift amount. The sign of the result is the same as the
sign of Source 1. The result is stored in Destination. The range of shiftsisfrom 1 to 32.

To determine the encoding for the shift amount, first subtract the shift amount from 32. The result can be encoded as

5 bits. Assume the 5-bit encoding is bbbef, where bbb is used in the final encoding. The bottom two bits (ef) are fully
decoded to yield dddd in the following way:

of dddd)
00 0001
01 0010
10 0100
1 1000

For example, to determine the bits required to specify the shift amount for the shift instruction
asr r4,13,#5
first do (32-5) to get 27 and then encode 27 according to the above to get 1101000.

asr Arithmetic Shift Right asr

53

4.4.14. rotlb - Rotate Left by Bytes

TY OP Srcl Src2 Dest Comp Func(12)
0 1j00 1 > >y 2> >4 > 100001100000 0]

Assembler
rotlb rSrc1,rSrc2,rDest

Operation
Reg(Dest) < Reg(Srcl) rotated left by Reg(Src2)<30..31> bytes
Description

This instruction rotates left the contents of Source 1 by the number of bytes specified in bit 30 and bit 31 of Source 2.
For example,

Reg(Src1) = ABO1CD23#16
Reg(Src2) = 51#16

rotlbrSrc 1,rSrc2,rDest

Reg(Dest) = 01CD23AB#16

rotlb Rotate Left by Bytes rotlb

54

4.4.15. rotlcb - Rotate Left Complemented by Bytes

TY OP Srcl Src2 Dest Comp Func(12)
0 1100 1] > ’ ’ I ” 0 I > > 10000 10000000~
Assembler

rotlcbrSre 1,rSrc2,rDest
Operation

Reg(Dest) <= Reg(Srcl) rotated |eft by BitComplement[Reg(Src2)<30..31>] bytes
Description

Thisinstruction rotates | eft the contents of Source 1 by the number of bytes specified by using the bit complement of
bits 30 and 31 in Source 2. For example,

Reg(Srcl) = ABO1CD23#16
Reg(Src2) =51#16

rotlcbrSrc 1,rSrc2,rDest

Rotate amount is Bit-Complement of 01#2 =10#2 = 2.
Reg(Dest) = CD23AB01#16

rotich Rotate Left Complemented by Bytes rotlch

55

4.4.16. sh - Shift

TY oP Srcl Src2 Dest Comp Func(12)
|0 110 0. 1} *» *» * ° o > 10001 0 0lb b b dd d d!
Assembler

sh rSrc1,rSrc2,rDest, #shift amount

Operation
Reg(Dest) & Bottom shift amount bits of Reg(Src2) || Top 32-shift amount bits of Reg(Src1)
Description
The shifter is a funnel shifter that concatenates Source 2 as the high order word with Source 1 and the shift amount is
used to select a 32-bit field as the result. The range of shift amount is from 1 to 32.

The encoding of the shift amount is explained in the description of the asr instruction. For example, the instruction
sh r4,r2,15,#7
places in r5 the bottom 7 bits of 12 (in the high order position) concatenated with the top 25 bits of r4. The bits to
specify the shift amount are determined by first doing (32-7) to get 25. Then encode 25 to get 1100010.

The following table gives some more examples:

Assume
Reg(Srcl) = B89ABCDEF#16
Reg (Src2) = 12345670#16
Shift Amount bbbdddd Result
0 Not Valid
1 1111000 44D5E6F7
4 1110001 089ARCDE
16 1000001 567089AB
28 0010001 23456708
31 0000010 2468ACE1l
32 0000001 12345670

shift sh - Shift shift

56

4.4.17. nop - No Operation

TY oP CompPFunc(12)
JO 111 0 010 0 0 0 010 0 O O 010 0 O O 010 00 O 0 0 0O 1 10 0 1]

Assembler

nop
Operation

Reg(0) & Reg(0) + Reg(0)
Description

This instruction does do not much except take time and space. It isimplemented as
add r0,r0,r0

nop No Operation nop

57

4.5. Compute Immediate Instructions

The compute immediate instructions have one source and one destination register. They provide a means to load a
17-bit constant that is stored as part of the instruction. Some of the instructions are used to access the special registers
described in Section 2.3. In general, instructions that do not fit in with any of the other groups are placed here.

58

4.5.1. addi - Add Immediate

TY OP Srcl Dest Immed(17)
1 111 00y > > > > | > > > | > > >
Assembler
addi Src1,#Immed,Dest
Operation
Reg(Dest) < SignExtend(Immed) + Reg(Src1)
Description

The value of the signed immediate constant is added to Source 1 and the result is stored in Destination.

addi Add Immediate addi

59

4.5.2. jpc - Jump PC

TY OoP CompFunc(12)
{41410 110000 0J0 000010 00O0O0OI0O0O0O0O0O0O0O0O0O0 I 1]

Assembler
jpe
Operation
PCnext < PC-4
Description
The PC chain should have been loaded with the 3 return addresses. PCnext is loaded with the contents of PC-4
which should contain areturn address used for returning from an exception to user space.

Thisinstruction should be the second and third of 3 jumps using the addresses in the PC chain. The first jump in the
sequence should be jpers which al so causes some state bits to change.

jpc Jump PC jpe

60

4.5.3. jpcrs - Jump PC and Restore State

TY OP Comp Func(12)
11 111 1 110 6 0 O 010 O O O 010 O O O 01O O OOOOOOOO 1 1]

Assembler
jpers
Operation

PC shifting enabled
PSWcurrent & PSWother
PCnext & PC-4

Description
The PC chain should have been loaded with the 3 return addresses. PCnext is |oaded with the contents of PC-4
which should contain thefirst return address when returning from an exception to user space.

This instruction should be the first of 3 jumps using the addresses in the PC chain. The next two instructions should
be jpcs to jump to the 2 other instructions needed to restart the machine.

The machine changes from system to user state at the end of the ALU cycle of the jpcrs instruction. .The PSW is
changed at thistime aswell.

When thisinstruction is executed in user state, the PSW is not changed The effective result is ajump using the
contents of PC-4 as the destination address.

jpcrs Jump PC and Restore State jpcrs

61

4.5.4. jspci - Jump Indexed and Store PC

TY OP Srcl Dest Immed(17)
1 1] 0 0 0 | 4 ’ ’ 4 J ’ ’ 4 ’ J 3 ’ ’ ’ ’ 3 3 ’ » ’) y)) ’ ’
Assembler
jspci rSrcl,#Immed,rDest
Operation
PC & Reg(Src1) + SignExtend(Immed)
Reg(Dest) <= PCcurrent + 1
Description

This instruction has two delay slots. The address of the instruction after the two &lay dlots is stored in the
Destination register. Thisisthe return location. The immediate value is sign extended and added to the contents of
Source 1. This is the jump destination so it is jammed into the PC. The displacement is a 17-bit signed word
displacement.

Thisinstruction provides afast linking mechanism to subroutinesthat are called viaatrap vector.

jspci Jump Indexed and Store PC jspci

62

4.5.5. movirs - Move from Special Register

TY oP Dest CompFunc(12)
/1 1401 11000900} * > "* |00O0O0O0OO0OIOO0O0O0O0O0O0COOI " |
Spec

Assembler

movfrs SpecialReg,rDest
Operation

Reg(Dest) < Reg(Spec)
Description

Thisinstruction is used to copy the specia registers described in Section 2.3 into a general register. The contents of

the special register are put in the destination register. The value used in the Spec field for each of the special registersis
shown in the table below along with the assembler mnemonic.

SpecialReg Spec
psw 001 _

md 010

pcmd 100

The PSW (psw) can be read in both system and user state.

A move from pcm4 causes the PC chain to shift after the move.

movfrs Move from Special Register movfrs

63
4.5.6. movtos - Move to Special Register

TY OoP Srcl

CompFunc(12)
1 140 1 0] * * * ” |10 0 0O OI0O OOODOIOOOOODODODOM I

? 3

!
Spec

Assembler

movtos rSrc1,SpeciaReg
Operation

Reg(Spec) «= Reg(Src 1)
Description

Thisinstruction is used to load the special registers described in Section 2.3. The contents of the Source1 register is

put in the special register. The value used in the Spec field for each of the special registersis shown in the table below
along with the assembler mnemonic.

SpecialReg Spec
psw 001
md 010

pcml 100

Accessing the PSW (psw) requires the processor to be in system state. Otherwise the instruction isanop in user
state.

A move topcml causes the PC chain to shift after the move.

After amove to md, one cycle may be needed before an mstart or mstep instruction to settle some control lines to the
ALU.

movtos Move to Special Register movtos

64

4.5.7. trap - Trap Unconditionally

TY OoP Vector(8)
/1 111 1010 0 0 O OJO0 OO O OIOODOOOOY) » »»» > |01 1]

Assembler
trap Vector

Operation

Stop PC shifting
PC < Vector << 3
PSWother < PSWcurrent

Description
The shifting of the PC chain is stopped and the PC is loaded with the contents of the Vector field shifted left by 3
bits. The PSW of the user spaceis saved.

Thisis an unconditional trap. The instruction is used to go to a system space routine from user space. The state of
the machine changes from user to system after the ALU cycle of the trap instruction.

The trap instruction cannot be placed in the first delay slot of a branch, jspci, jpc, or jpers instruction. See Appendix
VI for more details.

The assembler should convert Vector to its one’s complement form before generating the machine instruction. ie.,
the machineinstruction containsthe one’s complement of the vector.

trap Trap Unconditionally trap

65

4.58. hsc - Halt and Spontaneously Combust

TY OoP
{11100 122 ¢ 1 1 110 0 0 0 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O]

Assembler
hsc
Operation

Reg(31) < PC
The processor stops fetching instructions and self destructs.

Note that the contents of Reg(31) are actudly lost.
Description

Thisis executed by the processor when a protection violation is detected. It is a privileged instruction available only
on the-NSA versions of the processor.

hsc Halt and Spontaneously Combust hsc

66

hsc

Halt and Spontaneously Combust

hsc

67

Appendix |
Some Programming Issues
This appendix contains some programming issues that must be stated but have not been included elsewhere in this

document.

1. Address 0 in both system and user space should have a nop instruction. When an exception occurs during
a squashed branch, the PCs for the instructions that have been squashed are set to 0 so that when these
instructions are restarted they will not affect any state. The nop at address 0 is aso convenient for some
sequenceswhen it is necessary to load anull instruction into the PC chain.

2. Theinstruction cache contains valid bits for each of the 32 buffers. There is also a bit to indicate whether
the buffer contains system or user space instructions. When it is necessary to invalidate the instruction
cache entriesfor acontext switch between user processes, a system space routine is executed that jumpsto
32 strategic locations to force all of the system bits to be set in the tags. Thus when the new user process
begins, the cache is flushed of the previous user process. An example code sequence is shown ét the end
of this appendix.

3. After an interrupt occurs, no registers should be accessed for two instructions so that the tags in the bypass
registers can be flushed. If aregister accessis done, then it is possible that the instruction will get values
out of the bypass registers written by the previous context instead of the register file. This should not be a
problem because the PCs must be saved first anyways. Since this happensin system space, the interrupt
handler can just be written so that the improper bypassing does not occur.

4. Thereis no instruction that can be used to implement synchronization primitives such as test-and-set. The
proposed method is to use Dekker's algorithm or some other software scheme [3] but if this provesto be
insufficient then a load-locked instruction can be implemented as a coprocessor instruction for the cache
controller. This instruction will lock the bus until another coprocessor instruction is used to unlock id
This can be used to implement aread-modify-write cycle.

5. A long constant can be loaded with the following sequence:

.data

labell:

.word OxABCD1234
.text

1d labell[r0}, 5

r5 now contains ABCD1234#16

6. If aprivileged instruction is executed in user space none of the state bits can be changed This means that
writing the PSW becomes anop. Reading the PSW returns the correct value. Trying to execute a jpcrs
only does a jump to the address in PC-4 and does not change the PSW. There is no trap taken for a
privilegeviolation.

7. Characters can beinserted and extracted with the following sequences:
For each of these exanples, assune
r2 initially contains stuv
r3 initially contains wxyz
where s, t, u, v, w, x, y and z are byte val ues.

; Byte insertion - byte u gets replaced by w

addi r0,#2,rl

rotlb r2,rl,r2 i r2 <-- uvst
sh r3,r2,r2,#24 ; r2 <-- vstw
rotlcb r2,rl,r2 7 r2 <-- stw

; Extract byte - extract byte u fromr2 and place it in r3
addi r0,4#2,rl

rotlb r2,rl,r3 ; r3 <-- uvst
sh r3,r0,r3,4$24 ; r3 <--u

Programming |ssues

sanssy Jurwwea3oag

Thu routine will jump thmugh low core 1o flusk the cacke by
setting all the tags 10 be in system space. Note that this
routine will also blow away the entry in the cache that called
this routine bis to make it be general it will have 1o since you
don't want 10 have to figure out where you came from.

This is called from a trap so & knows where to resn to.

 The of jump locations is designed 10 accours for the behaviow
H d’lltrvgwmelhﬂumdmddamﬂemnmvmm
i cache block 1o be replaced. It is not sfficient 1o access the locations

in sequence.
Tlc "makenop n” means that "n" nop instructions should be inserted.
,mm:wuwmammww.

text
Roreorg
cllags:
lehfsm:
pel 0#0x181010
pcl 1040x1820,10
pel 0A0x1830,10
am; 3
10x1810:
Ispel :(l)sammxo
10x1820:
fspel !(ll.s"(klsﬂlo
10x1830:
Jspcl !0.5'(“850.!0
1
10x1840:
Jspel 10,40x1870,10
makenop 15
10x1850:
Jspel 10,20x1890,10
15
IORIBE0: e At
1
10x1870;
Jspcl 10,#0x18b0,r0
15
10x1880;
Ipel :o,;mmo,ro
10x1890:
Japel ﬂ),;(h]&ﬂrﬂ
1
10x1820:
Jspet 040x18d0,0
makenop 15
10x [8b0:
]spcl ms«mseo,xo
lelek
Jspcl 10 40x18R010
makenop |S
10x1840:

Jspct 10,¥0x1880,0

hoxisao:

" jspel 10,40x1930,0
.makenop 15
Jspel 10,0x190,0
makenop 15
" Japel ;o,sto:mo,:o
1

Jspcl 100x1950,0
makenop 15

11930
Jspel 10,20x1960,0
makenop 1§

fspcl 10,#0x1970,10

.makenop 1§

10x1950: Jpcl 06190010
.m‘:ckenop 15

10x1960:
Jspcl 10,20x191000
.makenop 1§

10x1970: P
Jspel 10,#0x1960,10
makenop 15

10x1980:
sart retern
movfn pan4,x’31
.makenop 15

movtos 10, ?:ml

movtos rO.Pcm

mnuh\- »

10x1990:

10x190;

makenop 11
Jx19b0:

Jopel f0,#0x190,10

.makenop 15

10x19c0:
Jspcl r0FOXISMO0
Jmakenop 15

n0p
10x19d0:
Jspel 1019800

10x19%0:

fspel r0.50x1990,0
Jnakenop 1§
10K 1910;
Jspcl 10.20x1920,0
end

; save this for restart

; prepare for reten

+ ostant imetrisntinm oo toop

scitags.xs

89

69

Appendix I
Opcode Map
Thisis asummary of how the bits in the instruction opcodes have been assigned. The first sections will show how
the bits in the OP and Comp Func fields are assigned. Then the opcode map of the complete instruction set will be
given.

11.1. OP Field Bit Assignments

The OP bits are bits 24 in al instructions. For memory type instructions the bits have no particular meaning by
themselves. For branch type instructions the bitsin the OP field (also known asthe Cond field) are assigned asfollows:

Bit 2 Set to O if branch on condition true, set to 1 if branch on condition false

Bits 3-4 Condition upon which the branch decision ismade. 00 = unused, 01=Z7,10=C, 11=N®V
For compute type instructions the bits are assigned as follows:

Bit 2 Set to 1 if the ALU always drives the result bus for the instruction

Bit 3 Setto 0

Bit 4 Set to 1 if the shifter always drives the result bus for the instruction
For compute immediate type instructions the bits are assigned as follows:

Bit 2 Set to 1 if the ALU always drives the result bus for the instruction

Bits 3-4 These bits have no particular meaning by themselves

I.2. Comp Func Field Bit Assignments

The Comp Func bits are bits 20 through 31 in the compute and compute immediate type instructions. The bits are
assigned according to whether they are being used by the ALU or the shifter. The bits for the ALU are assigned in the
followingway:

Bits 20-22 Unused
Bit 23 Set to 1 for dstep, O otherwise
Bit 24 Set to 1 for multiply instructions (mstart, mstep), O otherwise
Bit 25 Carry in to the ALU
Bits 26-29 Input to the P function block.
Bit 26 Srcl - Src2
Bit 27 Srcl . Sre2
Bit 2% Srcl . Src2
Bit 29 Srcl « Src2
3its 30-31 Input to the G function block.
Bit 30 0 for ALU add operation, 1 otherwise
Bit 31 0 for ALU subtract operation, 1 otherwise
The bits for the shifter are assigned as follows:
Bits 20-21 Unused
Bit 22 Set to 1 for funnel shift operation (sh instruction)
Bit 23 Set to 1 for arithmetic shift operation (asr instruction)
Bit 24 Set to 1 for byte rotate instructions (rotlb, rotlch)

Opcode Map

70

Bit 25 For byterotate instructions, set to 1if rotlb, O if rotlch

Bits25-31 Shift amount for funnel and arithmetic shift operations (sh and asr instructions). The range is 0 to
31 hits. Although this can be encoded in five hits, the two low-order bits are fully decoded;
therefore, the field is seven hits. The two low-order bits are decoded as follows; 0 = bit 31, 1 = bit

30, 2 = hit 29, 3 = hit 28. For example, a shift amount of 30 would become 1110100 in this
seven-bit encoding scheme.

Opcode Map

11.3. Opcode Map of All Instructions

Menory Instructions

[nstruction
1d

st

| df

stf

| dt

stt

movfrec

novt oc

aluc

Branch Instructi

[nstruction
beq
bge
bhs
bl o
bl t
bne

Comput e Instructions

[nstruction
add
dstep
net art
st ep
sub
subnc
and
bic
not

or

xor
mov
asr
rotlb
rotlch

sh
nop

Conpute | mmedi ate Instructions

[nstruction
addi

i spci

jpc

jpcrs
movfrs

novt os

trap

unused

A star (*) indicates an instruction that has its Dest field in the position where the Src2 field normally sits. This can

TY
10
10
10
10
10
10
10
10
10

ons

TY
00
00
00
00
00
00

TY
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01

860
28
58
011
101

111
101

COND
001
111
010
110
011
101

OoP

100
000
000
000
100
100
100
100
100
100
100
100
001
001
001
001
100

OoP

100
000
101
111
011
010
110
001

gonnents

*

*

Srcl=0, *
Srcl=0

Src1=0, Dest =0

Conp Func

000000011001
000101100110
000011100110
000010011001
000001100110
000000100110
000000100011
000000001011
000000001111
000000111011
000000011011
000000011001
00010bbbdddd
000011000000
000010000000
00100bbbdddd
000000011001

Conp Func

| med

| med
000000000011
000000000011
00000000000,
00000000000,

Ovvvvvvvv0Oll

*

Coment s

Srcl=0

Src2=0
Src2=0

Sr
src2=0, bbbdddd=r ot at e anount

bbbdddd=rotate anount
Srcl=0, Src2=0, Dest=0

Comments
* (Imed is a 17-bit
signed constant)

*

rer = special register
rrr = special register
Srcl=0, VVVVVvVvVvv=vector

also be determined by decoding the MSB of the type field and the middle bit of the OPfield.

Opcode Map

Opcode Map

73

Appendix I
Floating Point Instructions
This describes the floating point opcodes and formats of the instructions implemented in the MIPS-X Instruction
Level Simulator (milsx).

lll.1. Format
All floating point numbers are represented in one 32-bit word as shown in Fig. I11-l. The fields represent the
following floating point number:
(-1)" x 2¢*P =127 x (1 + fraction) .
This is an approximate |EEE floating point format.

s exp (8 bits) fraction (23 hits)

Figure I11-l: Floating Point Number Format

111.2. Instruction Timing
All floating point instructions are assumed to take one cycle to execute. More redlistic timing- numbers can be
derived by multiplying the number output by mils by an appropriate constant

111.3. Load and Store Instructions

There are 16 floating point registers. They are loaded and stored using the ldf and sy instructions defined in the
instruction set. Moves between the floating point registers and the main processor are done using the movif and movfi
instructions. These use the movtoc and movfrc formats defined in the instruction set. Note that only 4 of the 5 bits that
specify afloating point register in the Idf, stf, movif and movfi instructions are used

111.4. Floating Point Compute Instructions

The format of the floating point compute instructions is the one shown in the description of the aluc coprocessor
instruction. The coprocessor number (COP#) is O for the floating point coprocessor. The Func field specifies the
floating point operation to be performed.

Floating Point

74

111.5. Opcode Map of Floating Point Instructions

In the following table:
rl,r2 are cpu registers fromr0..r31

fi,f2 are floating point

n is an integer

[nstruction

f add £1,f2
fsub £f1,£2
f mul £1,f£2
fdiv £f1,£2
cvtif f1,£2
cvtfi £i,f2
imul f1,£f2
idiv f1,£f2
nod f1,f2
mvif r1,fl
movf i fl,rl
|df nirl3],fl
stf nlrll,fl

TY OP
10 101
10 101
10 101
10 101
10 101

10 101
10 101
10 101
10 101
10 111
10 101

10 100
10 110

expressi on

Func Operation
000000 f2 & fl +f2
000001 f2 & fl - f2
000010 f2 &« fl xf2
000011 f2 < fl 7 f2
000100 f2 & float(fl)
000101 f2 & int(fl)
000110 f2 & fl x f2
000111 f2 & fl /7 f2
001000 f2 &« fl mod f2
001001 fl & rl

001010 rl <= fl

Floating Point

registers from £0..£15

Comment s

Srcl=0,
Srcl=0,
Srcl -0,
Srcl=0,
Srcl=0,
Convert
Srcl -0,
Convert
Srcl=0,
I nt eger
Srcl=0,
I nt eger
Srcl=0,
I nt eger
Srcl=0,
Srcl -0,

Dest=0
Dest =0
Dest=0
Dest=0
Dest=0
int to
Dest=0
fl oat
Dest-0
mul tiplication
Dest =0

di vi sion
Dest =0

nod

CS1=0

Cs2=0

fl oat

to int

See instruction page
See instruction page

75

Appendix IV
Integer Multiplication and Division
This appendix describes the multiplication and division support on MIPS-X. The philosophy behind why the current
implementation was chosen is described first and then the instructions for doing multiplication and division are
described.

IV.1. Multiplication and Division Support

The goal of the multiplication and division support in MIPS-X isto provide a reasonable amount of support with the
smallest amount of hardware possible. Speed ups can be obtained by realizing that most integer multiplications are
used to obtain a32-bit result, not a64-bit result. The result is usualy the input to another operation, or it is the address
of an array index. In either case a number larger than 32 bits would not make sense. Since the result is less than 32
bits, one of the operands is most likely to be less than 16 bits or there will be an overflow. In general this means that
only about 16 I-bit multiplication or division steps are required to generate the final answer. For very small constants,
instructions can be generated inline instead of using a general multiplication or division routine. Therefore, it was felt
that there was no great advantage to implement a scheme that could do more than 1 bit at a time such as Booth
multiplication.

The other advantage of only generating a32-bit result isthat it is possible to do multiplication starting at the MSB of
the multiplier meaning that the same hardware can be used for multiplication and division. The required hardwareis a
single register, the MD register, that can shift left by one bit each cycle, and an additional multiplexer at the source 1
input of the ALU, that selects the input or two times the input for the source 1 operand.

IV.2. Multiplication
Multiplication is done with the simple I-bit shift and add algorithm except that the computation is started from the
most significant bit instead of the least significant bit of the multiplier. The instruction that implements one step of the
agorithm is called mstep. For
msteprSrc 1,rSrc2,rDest
the operation is:

If the MSB of theMD registeris 1
then
rDest <= 2 xrSrcl + rSrc2
else
rDest & 2 X 1Srcl

Shift left MD

For signed multiplication, the first step is different from the rest. If the MSB of the multiplier is 1, the multiplicand
should be subtracted from 0. The instruction called mstart is provided for this purpose. For
mstartrSrc2,rDest
the operation is

* Multiplication and Division

76

If the MSB of the MD register is 1
then
rDest < 0-rSrc2
else
Dest <=0

Shift left MD

To show the simplest implementation of a multiplication routine assume that the following registers have been
assigned and loaded

rMer isthemultiplier,

rMand isthe multiplicand,

rDest isthe result register

rLink isthe jump linkage register.

Then,
movtos rMer, rMD ;Move the nultiplier into MD
nop ;Needed for hardware timng reasons--see novtos
nstart rMand, r Dest ;Do the first mstep. Result goes into rDest
nst ep r Dest, r Mand, r Dest ;Repeat 31 tines
j spci rLink,#0,rO ;Return

It is possible to speed up the routine by using the assumption described previously that the numbers will not both be
afull 32 bitslong. The simplest scheme isto check to see if the multiplier isless than 8 bits long. Some statistics
indicate that this occurs frequently.

The routine shown in Figure I V-1 implements multiplication with less than 32 msteps on average. It will actually do
afull 32 msteps if it isnecessary. Inthiscaseitismost likely that overflow will occur and this can be detected if the vV
bit in the PSW is clear so that atrap on overflow will occur. Assume that the registersrMer, rMand and rDest have
been assigned and loaded asin the previous example. Two temporary registers, rTempl and rTemp2 are also required

The number of cycles required, not including the instructions needed for the call sequenceis shown in Table IV-I.
Compare this with the simple routine using just 32 steps which requires 35 instructions to do the multiplication and a
Booth 2-bit algorithm that will need about 19 instructions. It can be observed that if most multiplications require 8 or
lessmsteps, then this routine will be faster than just doing 32 msteps all the time.

IV.3. Division

For division, the same set of hardware is used, except the ALU is controlled differently. The algorithm isarestoring
division algorithm. Both of the operands must be positive numbers. Signed division is not supported asit istoo hard to
do for the hardware required [2].

The dividend is loaded in the MD register and the register that will contain the remainder (rRem) is initiaized to 0.
The divisor is |loaded into another register called (rDor). The result of the division (quotient) will be in MD. For
ds tep rRem,rDor,rRem
the operation is:

Multiplication and Division

MUL

Se Ve e w.

fast,

Se Ne N SE %o Ne v e

MUL:
asr
bne
sh
novt os
nmet art
nst ep

lmul8bit:
net ep
net ep
net ep
net ep
j spci
nst ep
nst ep

I not 8:
addi
begsqg
net art
nst ep
novt os
nmet art
net ep
nst ep
nst ep
nst ep

24

nst ep
j spci
nst ep
nst ep

PP P I T IO TP I PP s b P T PR s P PRI T IO ITI il esss

unchecked, signed nultiply

rLink = link

rMand = src2

rDest = rMer = src
rTempl = tenp
rTemp2 = tenp

Thi s code has been

rMer, rTemp2, #7
rTenp2, r0,1lnot8
r0, rMer, rTempl, #24
rTempl, md

r Mand, r Dest

r Dest, r Mand, r Dest

rDest , rMand, r Dest
r Dest, r Mand, r Dest
r Dest, r Mand, r Dest
r Dest, r Mand, r Dest
rLink, #0,r0

rDest , rMand, r Dest
rDest, r Mand, rDest

rTemp2, #1, rTemp2
rTemp2,r0, lmul8bit
rMand, rDest

r Dest, r Mand, r Dest
rDest, md

r Mand, r Dest

r Dest, r Mand, r Dest

r Dest, r Mand, r Dest

r Dest, r Mand, r Dest

r Dest, r Mand, r Dest

et eps

r Dest, r Mand, r Dest
rLink, #0,r0

r Dest, r Mand, r Dest
r Dest, r Mand, r Dest

Figure

1/dest
reorgani zed
; Test for positive 8-bit

; assume 8 bit

; may need nop before this

; 8 bit negative

; do full 32 bits
; may need nop before this

IV-l: Signed Integer Multiplication

Multiplication and Division

nunber

77

78

Number of msteps needed 8 32
Number of cycleswith positive multiplier 13 42
Number of cycleswith negative multiplier 15 42

Table 1V-I: Number of Cycles Needed to do aMultiplication

Set ALUsrcl input to 2x rRem + MSB(rMD)
Set ALUsrc2 input to rDor
ALUoutput <& ALUsrcl - ALUsrc2

If MSB(ALUoutput) is 1
then
rRem & ALUsrcl
™MD < 2 x ™MD
else
rRem < ALUoutput
™MD &2 %MD +1

At the end of 32 dsteps the quotient will be in the MD register, and the remainder is in rRem.

A routine for doing division is shown in Figure IV-2. The dividend is passed in rDend and the divisor in rDor. At
the end, the quotient isin MD and rQuot and the remainder isin rRem. Note that rDend and rRem can be the same
register, and rDor and rQuot can be the same register. The dividend and divisor are checked to make sure they are
positive. This routine does a 32-bit by 32-bit division so no overflow can occur.

The number of cycles needed, not including the calling sequence and assuming the operands are positive, isshown in
Table IV-2.

Number of dsteps needed 8 32

Number of cycles needed 34 60

TableV-2: Number of Cycles Needed to do aDivide

Multiplication and Division

P R R A R R N A A R :
IR RN NN

FIIRRIPIIIFIRIENINIIIRIIIIIIIIIIGG

’

~

.
’

~
~
~.
~
~
~e
~
~e
.
~.
~.
~
~

|,
<

fast, unchecked, signed divide (should check for zero divide)
rLink = |ink
rDend, rRem = srcl (divi dend)
rDor = rQuot = src2/dest (divisor/quotient)
rTempl = tenp (trashed)
rTenp2 = tenp (trashed)

~e we

Not e: This code has been reorgani zed

[e ¢ %0 Ne Se N Ne N N Seo-- SeSe
S Ne N N e Se o,

2 I iiiiiFiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiing
|V

nmov rDend, rTemp2 ; dividend > 0 ?
bge rDend, r0, lcinitl
nop
nop
sub r0, rDend, rDend ; make dividend > 0

Icinitl:
bgesqg rDor,r0,lcinit2 ; divisor > 0 ?
addi r0, #0xff, rTempl ; check for 8-bit dividend
nop
sub r0, rTemp2, rTemp2 ; rTenp2 > 0 if positive result
sub r0, rDor, rDor ; make divisor > 0
addi r0, #0xff, rTempl

lcinit2:
bl tsq rTempl, rDend, 1divfull ; do 8-bit check
nmovtos rDend, nd ; start 32-bit divide
ndv r0 , rRem
sh r0, rDend, rDend, #8 ; shift up divisor to do 8 bits
nmovtos rDend, nd ; start 8-bit divide
beg r0,r0,1divloop
nmv r0, rRem
addi r0, #8, rTempl ; loop counter

I divfull

addi r0, #32, rTempl
| di vl oop

dstep rRem, rDor, rRem

dstep rRem, rDor, rRem

do full 32 dsteps

~

| di vl oopr:
dstep rRem, rDor, rRem
dstep rRem, rDor, rRem

dstep rRem, rDor, rRem

dstep rRem, rDor, rRem

dstep rRem, rDor, rRem

addi rTempl, #-8, rTempl ; decrenent [oop counter
dstep rRem, rDor, rRem

bnesq rTempl, r0, ldivlicopr

dstep rRem, rDor, rRem

dstep rRem, rDor, rRem

novfrs nd, r Quot ; get result
bge rTemp2,r0, lcinit3 ; check if need to adjust sign of result
nop
nop
sub r0, rQuot, rQuot ; adjust sign of result
lcinit3:
j spci rLi nk, #O, r Li nk , return
nop
nop

Figure W-2: Signed Integer Division

Multiplication and Division

Multiplication and Division

8l

Appendix V
Multiprecision Arithmetic
Multiprecision arithmetic is not a high priority but it is desirable to make it possible to do. The minimal support
necessary will be provided. The most straightforward way to do this would seem to be the addition of a carry bit to the
PSW. However, this turns out to be extremely difficult.

The following program segments are examples of doing double precision addition and subtraction. The only
addition required to the instruction set is the Subtract with No Carry (subnc) instruction. Thisis only an addition to the
assembly language and not to the hardware.

Assume that there are 2 double precision operands (A and B) and a double precision result to be computed (C).

Assume that the necessary registers have been loaded.
;Double precision addition

add r Ahi, r Bhi, r Chi ;add high words
sub r0,rBlo, rClo ;get -rBlo; branch does subtract
bhssq rAlo, rClo, 11 :icheck to see if carry generated
;branch if carry set
addi rChi, #l, rChi ;add 1 to high word if carry
neop
11: add rAlo, rBlo, rClo ;add | ow words

;Double precision subtraction

subnc r Ahi , r Bhi, r Chi ;subtract hi gh words

bhssq rAlo, rBlo, 11 ;check if subtract of |ow
;words generates a carry
;branch if carry set

addi rChi, #l, rChi ;add 1 to high word if carry
nop
11: sub ralo, rBlo,Clo ;subtract | ow words

Multiprecision Arithmetic

82

Multiprecision Arithmetic

83

Appendix Vi
Exception Handling
An exception is defined as either an event that causes an interrupt or a trap instruction that can be thought of as a
software interrupt. The two sequences cause similar actions in the processor hardware. Because there is a branch delay
of 2, three PCs from the PC chain must be saved and restarted on an interrupt. Three PCs are needed in the event that a
branch has occurred and fallen off the end of the chain. The two branch slot instructions and the branch destination are
saved for restarting. Restarting atrap is slightly different and is explained later. See Section 2.4 for a description of the
PSW during interrupts, exceptions, and traps.

VL1. Interrupts

Interrupts are asynchronous events that the programmer has no control over. Because there are severa instructions
executing at the sametime, it is necessary to save the PCs of all the instructions currently executing so that the machine
can be properly restarted after an interrupt. The PCs are held in the PC chain. When an interrupt occurs, the PC chain
is frozen (stops shifting in new values) to alow the interrupt routine to save the PCs of the three instructions that need
to be restarted These are the PCs of the instructions that are in the RF, ALU and MEM cycles of execution. This
means that no further exceptions can occur while the PCs are being saved. When the interrupt sequence begins, the
interrupts are disabled, PSWcurrent is copied into PSWother and the machine begins execution in system state. The
contents of PSWother should be saved if interrupts are to be enabled before the return from the interrupt. The contents
of the MD register must also be saved and restored if any multiplication or division isdone. If the interrupt routineis
very short and interrupts can be left off, it is possible to just Ieave the PC chain frozen, otherwise the three PCs must be
saved. To save the PCs use movfrs with PC-4 as the source. The PC chain shifts after each read of PC-4.

The interrupt routine will start execution at location 0. It must look at a register in the interrupt controller to
determine how to handle the interrupt. This sequenceisyet to be specified.

To return from an interrupt, interrupts must first be disabled to alow the state of the machine to be restored. The
PSW must be restored and the PC chain loaded with the return addresses. The PC chain is loaded by writing to PC-I
and it shifts after each write to PC-I. The instructions are restarted by doing three jumps to the address in PC4 and
having shifting of the PC chain enabled This means that the addresses will come out of the end of the chain and be
reloaded at the front in the desired order.

The first of the three jumps should be a jpcrs instruction. It will cause PSWother to be copied to PSWcurrent with
the interrupts turned on and the state returned to user space. The machine state changes after the ALU cycle of the first
jump. The last two instructions of the return jump sequence should bejpc instructions.

A problem arises because an exception could occur while restarting these instructions. The PC chain is now in a
state that it is not possible to restart the sequence again using the standard sequence of first saving the PC chain. The
start of an exception sequence should first check the e bit in the PSW to see whether it is cleared. The e bit will be set
only when the PC chainis back in anormal state. If it is clear, then the state of the machine should not be resaved. The
state to use for restart should still be available in the process descriptor for the process being restarted when the

Exception Handling

84

lret: i nst a
i nst b
i nst c
--- interrupt ---
i nst d
i nst e

inthlr: bra to save if e bit set
Do necessary fixes
bra nosave
save: Save PSWot her
Save MD
nmovfrs pcmé4, ra
novfrs pcmé4, rB
movfrs pemd, rC
nosave: Enable interrupts

Process interrupts

Di sable interrupts
Restore M

Rest ore PSWt her
novtos rA pcm
novtos rB,pcml
novtos rC, pcm
jpcrs

jpe

jpe

execution begins at |abel Iret

;Instructions a, b and c are restarted

;Start of interrupt handl er
;e bit clear so don't save PC chain

;do save if interrupts to be enabled
;if necessary
;save PCs if necessary

;if necessary and above saving done

;if necessary
;if necessary
;restore PCs

;This changes the PSW as wel
;Doesn’t touch PSW

Figure VI-I: Interrupt Sequence

exception occurred. The sequence for interrupt handling is shown in Figure VI-I.

VI.2. Trap On Overflow

A trap on overflow (See Section 2.4.1) behaves exactly like an interrupt except that it is generated on-chip instead of

externaly. Thisinterrupt can be masked by setting the V bit in the PSW.

When atrap on overflow occurs, the O hit is set in the PSW. The exception handling routine must check this hit to
seeif an overflow isthe cause of the exception.

VL.3. Trap Instructions

Besides the Trap on Overflow, thereis only one other type of trap available. It is an unconditional vectored trap to a
system space routine in low order memory. After the ALU cycle of the trap instruction the processor goes into system
state with the PC chain frozen. The instruction before the trap instruction will complete its WB cycle. The PSW is
saved by copying PSWecurrent to PSWother as described in Section 2.4. PSWeurrent is loaded as if this were an

interrupt.

Exception Handling

85

Before interrupts can be turned on again, some processor state must be saved. The return PCs are currently in the PC
chain. Three PCs must be read from the PC chain and the third one saved in the process descriptor. It isthe instruction
that isin the RF cycle. The instruction corresponding to the PC in MEM completes so it need not be restarted. The PC
inthe ALU cycle should not be restarted because it is the trap instruction. PSWother must be saved so that the state of
the prior process s preserved. If PSWother is not saved before interrupts are enabled, then another interrupt will smash
the PSW of the process that executed the trap before it can be saved

All trap instructions have an 8-bit vector number attached to them. This provides 256 legal trap addressesin system
space. These addresses are 8 locations apart to provide enough space to store some jump instructions to the correct
handler. If thisis not enough vectors, one of the traps can take aregister as an argument to determine the action
required.

The return sequence must disable interrupts, restore the contents of PSWother and MD if they were saved and then
disable PC shifting so that the return address can be shifted into the PC chain. Two more addresses must be shifted in
aswell so that the restart will look the same as an interrupt. This can be done by loading the addresses of two nop
instructions into the PC chain ahead of the return address. Three jumps to the addresses in the PC chain are then
executed using jpers and twojpcs. The first jump will copy the contents of PSWother into PSWcurrent and turn on PC
shifting. The processor state changes after the ALU cycle of the jpcrs. The change of state also enables interrupts and
puts the processor in user space.

If an interrupt occurs during the return sequence then the interrupt handler will look at the e bit in the PSW to
determine whether the state should be saved.

The flow of codefor taking atrap and returning is shown in Figure VI-2.

Exception Handling

86

lret:

vecnum

trap

vecnum
nmovfrs pemé4, r0
novfrs pemd, r0
movfrs pcmd,r3l
Save PSWother
Save MD

Enabl e interrupts
Process requested trap

Di sabl e interrupts

Restore MD

Rest ore PSWother
novtos r0,pcml

movtos r0,pcml

movtos r31l,pcml
jpcrs

Jpe

jpe

execution begins at | abe

;instruction before trap

;trap instruction

;save this one to restart

;if necessary
;1f necessary

;1f necessary and above saving done

;movtos X, pswc where X has M bit

;if necessary
;if necessary
;assume a nop at O

Xinstruction after

I ret

trap

set

Figure VI-2: Trap Sequence

Exception Handling

87

Appendix VIi
Assembler Macros and Directives

Thisappendix’ describes the macros and directives used by the MIPS-X assembler. Also provided is afull grammar
of the assembler for those that need more detail.

VIL.1. Macros
Several macros are provided to ease the process of writing assembly code. These alow low level detailsto be
hidden, and ease the generation of code for both compilers and assembly language programmers.

VIl.1.1. Branches
bgt, ble The assembler synthesizes these instructions by reversing the operands and using a it or abge
instruction.

VIL.1.2. Shifts

sr, 1sl Theseinstructions are synthesized from thesa instruction. For example:
Isr rl,r2,#4
shiftsrl four bitsright and putsthe result in r2.

VII.1.3. Procedure Call and Return

pjsr subroutine,#expl,reg2 A simple procedure call. The stack pointer is decremented by expl. The return addressis
stored on the stack. On return, the stack pointer is restored. Reg2 is used as atemporary.
No registers are saved.

ipjsrreg 1l #exp1,reg2

ipj srexp2,reg 1 #expl,reg2 A call to a subroutine determined at run time. The particular subroutine address must be
inaregister (regl) or be addressable off aregister (exp2 + regl). The stack pointer and
the return address handling isidentical to pjsr. Reg2 is used as atemporary.

ret Jump to the return address stored by a pjsr or ipjsr macro.

VIl.2. Directives

text Signals the beginning or resumption of the text segment. This alows code to be grouped into one
area. Labelsin the text segment have word values.

.data Signals the beginning or resumption of the data segment. Labels in the data segment have byte
values. Ordering within the data segment is not changed.

.end Signalsthe end of the module.

.eop Signals the end of aprocedure. No branches are alowed to cross procedure boundaries. This

directive was added to reduce the memory requirements of the assembler. Reorganization can be
done by procedure instead of by module.

ascii “xxx” Allows a string literal to be put in the data segment..
.word exp Initializesaword of memory.

‘Provided by Scott McFarling

Assembler Macros and Directives

88

float number Initializes a floating point literal.

id=exp Sets an assembly-time constant. This allows a code generator to emit co& before the value of
certain offsets and literals are known. The assembler will resolve expressions using this identifier
for aliasing calculationsetc.

.def id=exp Sets a link-time constant The identifier will be global.

.noreorg Allows reorganization to be turned off inlocal aress.

reorgon Turns reorganization back on.

.comm id,n Defines alabeled common area of n words. Common areanames are alway's global.

.globlid Makes an identifier global or accessible outside the module. The .globl statement must appear
before the id is otherwise used. All procedure entry points should be made global, otherwise the
code may be removed as dead.

Jit rl,r2,...

Jifr5,r10,... Givealist of registers that are live for the following branches. .lit isfor registersliveif the branch
istaken and .lif isfor registersliveif the branch is not taken. Liveness information is used for
interblock reorganization and branch scheduling.

VII.3. Example

;program 1+1 = 2?

.data

labell:

~word 1

.text

.glpbl -main

mal n:

- 1d labell[r0],rl
addi rl,#1,rl
addi r0,4%2,r2
bne rl,r2,error
ret

error:
trap 1
ret

.end

VIl.4. Grammar

file

line

st at enent

 file line

:\n

| COVMENT \n { coomment = ;.* }
stat enent COVMENT \n
statenent \n

| abel

binALUState
monALUState
specState

nopState

addistate

jspciState
shiftState

loadState

storeState
branchState

copState

miscState
directState

Assembler Macros and Directives

| macroState
| abel : 1D { ID nmust be in colum 1 }
binALUState : binALUOp reg,reg,reg
binALUOp - ADD
| SUB
| AND
| OR
| XOR
| ROTLB
| ROTLCB
| MSTEP
| DSTEP
| SUBNC
| BIC
monALUState - monOp reg,reg
| MSTART reg,reg
monOp - NOT
| MOV
specState - MOVTOS reg, speci al Reg
| MOVFRS speci al Reg, reg
specialReg - MD
| PSW
| PCv4
| PCM1
nopState . NOP
addistate . BADDI reg, #exp, reg
jspciState . JSPCl reg, #exp, reg
shiftState - ASR reg, reg, #exp
| SH reg,reg,reg, #exp
| LSR reg,regq, #exp
| LSL reg,reg, #exp
loadState - LD exp[reg],reg
| LD #exp,reg
{ adds constant to literal pool and loads it }
| LDT explregl,reg
| LDF explreg],freg
storeState - ST explreg],reg
| STT explregl,reg
| STF explregl,freg
branchState © branchOp reg, reg, | D
| branchSqOp reg,reg,|D
| BRAID
branchOp . BEQ
| BNE
| BGE
| BGT
| BH
| BHS
| BLE
| BLO
| BLS
| BLT
branchSqOp © BEQSQ
| BNESQ
| BGESQ
| BGTSQ
| BHI SQ
| BHSSQ
| BLESQ
| BLOSQ
| BLSSQ
| BLTSQ
copState - MOVTQC exp, reg

Assembler Macros and Directives

90

MOVERC exp, I eg
ALUC exp
floatBinOp freg, freg
floatMonOp freg, freg
MWV F reg,freg
MOVFI freg, reg
floatBinOp : FADD
FSUB
FMUL
FDI V
[MUL
DIV
MOD
floatMonOp : CVITIF
CVTHI
miscState : TRAP exp
| JPC
| JPCRS
directState : TEXT
| DATA
| END
EOP]
| ASCII STRING { string: ".*"}
| WORD exp
FLOAT FLOATCONSTANT
{ 1D = exp
| DEF ID = exp
| REORGON
NOREORG
coMM | D, I NT
GOoBL ID
LI T liveList
LI F livelist
livelist reg
livelist, reg

macroState - PJSR I D, #exp, reg
| 1PIJSR reg, #exp,reg
| IPJSR exp,reg, #exp,reg
T

| RE
exp ' eXP addOp term

| - tactor

| term
addOp I +
term + termmultOp factor

| factor
multOp .
factor D exp)

| ID

| I NT _

| HEXI NT {like C o0x12fc)
reg . REG { r0..r31 }
freg . FREG { £0..£15 }
not es:

1) only labels and directives may start in col um

2) Keywords are shown In upper case just to make them
stand out. Inreality, they MUST be |ower case.

3)directives begin with a " .’

Assembler Macros and Directives

(1]

(2]

(3]

References

Cohen, Danny.
On Holy Warsand aPleafor Peace.
IEEE Computer 14(10):48-54, October, 1981.

Gill, J., Gross, T., Hennessy, J., Jouppi, N., Przybylski, S. and Rowen, C.

Summary of MIPS Instructions.
Technical Note 83-237, Stanford University, November, 1983.

Lamport, Ledlie.
A Fast Mutual Exclusion Algorithm.
Technical Report 7, DEC Systems Research Center, November, 1985.

91

