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Abstract

This paper describes a processor architecture
called OneChip, which combines a fixed-logic
processor core with reconfigurable logic resources.
Using the programmable components of this
architecture, the performance of speed-critical
applications can be improved by customizing
OneChip’s execution units, or flexibility can be added
to the glue logic interfaces of embedded controller
applications. OneChip eliminates the shortcomings of
other custom compute machines by tightly integrating
its reconfigurable resources into a MIPS-like
processor. Speedups of close to 50 over strict software
implementations on a MIPS R4400 are achievable for
computing the DCT.

1. Introduction

Most computationally complex applications
spend 90% of their execution time in only 10% of their
code [1]. The core functions executed in this 10% of
the code of a given program naturally differ from
application to application making it difficult to
provide special-purpose instructions to accelerate
these core functions and still maintain the notion of a
general-purpose CPU. The custom compute machine
(CCM), whose execution units can be customized on a
per application basis, appears to be the solution to the
contradiction of general purpose computing and high
performance processing.

Many present day applications utilize a
processor and other logic on two or more separate
chips. However, with the anticipated ability to build
chips with over ten million transistors, it will become
possible to implement a processor within a sea of
programmable logic, all on one chip. Such a design
approach would allow a great degree of
programmability freedom, both in hardware and in
software: CAD tools could decide which parts of a
source code program are actually to be executed in
software and which other parts are to be
implemented with hardware. The hardware may be
needed for application interfacing reasons or may
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Fig. 1: Reconfigurable Logic Integration Scheme

simply represent a coprocessor used to improve
execution time,

Independent of the size of the reconfigurable
compute element(s), all of the early CCMs are loosely
coupled systems with a clearly identifiable processor-
coprocessor frontier that always crosses the boundary
of one or more chips. However, loose coupling is one of
the main limitations for obtaining high speed ups
from reconfigurable compute engines. From previous
work [2] it is known that achieving reasonable
performance from CCMs hinges on two crucial issues
that can be identified as:

* the inflexible coprocessor access protocol
* the processor-coprocessor bandwidth limitation

Programmable logic need not only be used for
application speed-up, it can also be employed as
intelligent glue logic for custom interfacing purposes
such as in embedded controller applications. Current
single-chip embedded processors attempt to provide
very flexible interfaces that can be used in a large
number of applications. However, they can often
result in interfaces that are less efficient than
intended. Furthermore, it might be desirable to
perform some bit-level data computations in-between
the main processor and the actual /O interface.
OneChip’s architecture provides the flexibility
required for a general purpose field-configurable
interface for embedded processor applications.

In this paper, we present a scheme that couples
a 32-bit fixed-logic core RISC processor with the
reconfigurable logic more closely than in any of the



current CCM systems. As illustrated in Figure 1, it is
envisioned to place both types of logic onto a single
chip - a system called OneChip. We have also built a
working prototype system that emulates the OneChip
configuration. This allows us to examine the specifics
of the interfacing requirements of such a system. We
are then able to make estimates on the performance
potential of a true OneChip system.

In Section 2, we discuss previous work and point
out some architectural shortcomings. In Section 3, we
discuss the details of our architecture as well as
implementation issues. Section 4 describes the
prototyping environment and the OneChip prototype
used to evaluate our architecture. Section 5 presents
two applications and describes area and performance
results. Section 6 concludes our work and Section 7
suggests areas for continuing CCM research.

2. Previous Work

Various research organizations have recently
studied the benefits of using reconfigurable logic for
building CCMs [2][3][4][5][6][7]. Many interesting
systems have been designed, spanning a broad range
of interconnection architectures and usable gate
counts. They can be broadly categorized by their
degree of processor-coprocessor coupling and by the
size of the applications to be executed on the
reconfigurable part of the CCM:

* systems loosely linking reconfigurable logic to a
fixed, front-end host computer

¢ systems loosely linking reconfigurable logic to a
fixed, integrated CPU

* systems closely linking reconfigurable logic to a
fixed, integrated CPU
An overview of representative systems is given

below.

unified, general purpose,
external /O interface bus

Array of FPGAs with|
Front End General Purpose
Host Computer Interconnection
Architecture

Fig. 2: Loosely Coupled CCM With Front End Host

2.1. Loosely Coupled CCMs With Front End Host

CCM systems of this category follow the
configuration depicted in Figure 2. Systems include
DEC’s PeRLe [6], SRC’s Splash{7] and NCSU’s
AnyBoard [5]. These three systems are referred to
here, because they have been very successful at
speeding up a broad range of applications.
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2.2. Loosely Coupled CCMs V/ith Integrated CPU

Employing a somewhat closer degree of coupling
than the systems presented in the previous section,
the CCMs of this category utilize separate, dedicated
interconnect resources for control and data flow
signals. Also, as illustrated in Figure 3, both types of
signals no longer pass through a general IO
interface, but rather directly attach to the local bus
and/or dedicated pins of the integrated CPU. Typical
CCM systems include BU’s Prism [3] and UofT’s
Reconfigurable Coprocessor [2].

ir}lgivid al %ontrol and data flow
external interconnection resources

Array of FPGAs with
General Purpose
Interconnection
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Fig. 3: Loosely Coupled CCM With Integrated CPU

2.3. Closely Coupled CCMs With Integrated CPU

In general, systems of this category attempt to
link reconfigurable resources with fixed logic on a
single chip as shown in Figure 4. Work of this
category includes Harvard’s PRISC [8], MIT’s DPGA
coupled microprocessori9] as well as BYU’s Nano
Processor [10] and DISC system [11].

While MIT’s work does not present a detailed
new fixed / reconfigurable logic interface, it clearly
identifies the communication bandwidth and latency
of such an interface as the throughput limiting
factors.
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Fig. 4: Closely Coupled CCM With Integrated CPU

Harvard’s proposed CCM has only been explored
in simulations, though its architecture is clearly
defined. It is restricted to small grain hardware
functions that can be evaluated in a single clock cycle
of the fixed logic CPU.

BYU’s work is not limited to single cycle
latencies. However, the fixed-logic core processor or
static control constructs are only considered to be
another module to be downloaded into an FPGA.
Issues dealing with explicit fixed silicon are not
considered and the eight-bit core processor is not very
powerful.



2.4. Comments On CCM Architectures

While the above sampling of CCM systems is by
no means complete - an up to date list can be obtained
from [12] - most of the existent reconfigurable
compute engines can be included into one of the
presented  fixed/reconfigurable logic interface
categories. When analyzing the architectural
concepts and the shortcomings of the three classes,
several interesting observations can be made.

Amongst the loosely integrated systems,
application granularity is particularly important.
Significant speedups and super-computer like
performance are only achieved with systems where
the amount of computation done in the reconfigurable
hardware is relatively large compared to the required
communication overhead of the functions of the
particular application being realized in hardware. To
quantify this relative measure one must consider the
following equation. It must be satisfied for any
speedup to occur:

T Tov<Ts

TH = time to execute function in hardware

= time tQ communjcate data and
’IbV contro overﬂlead

Ts =time tg e)§ecute func)tion in software
u

(or main funct. unit

This equation may be rewritten as follows:

TH TOV
_T_S-+—T-S_ <1

The first fraction represents the actual hardware
computational speedup and the second fraction is
indicative of the granularity of a given application on
a given CCM. A small Toy/Tg ratio (say < 0.1)
indicates a larger grain size, while a larger Toy/Tg
ratio (say > 0.5) represents a smaller grain size. The
actual ratio depends on the characteristics of a given
application running on a given CCM system. The sum
of both Ty/Tg and Toy/Tg is indicative of the overall
speedup - the smaller this sum, the larger the overall
speedup of a particular application on a particular
CCM system (for sums less than one).

Clearly, CCM systems with a small Tqy/Tg ratio
require only a smaller hardware speedup (Ty/Tg) to
achieve the same overall speedup (Tyg + Tov) / Tg
than CCM systems whose Tgy/Ty is larger, similar to
Amdah?’s law [1]. In closely coupled CCMs, where the
communication overhead is lower, the grain size of
the functions implemented in hardware can be
reduced. To enhance the performance of as wide a
variety of applications as possible, the minimum
required grain size for application speedup must be
made relatively small by keeping the pertinent
communication overhead associated with the CCM
architecture at a minimum.

The architecture and structure of the
reconfigurable logic required for CCMs has not been
studied in detail. Most CCMs described above utilize
general purpose FPGA structures to build their
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flexible logic resources. Only the recently proposed
tightly integrated CCM systems stray from this path.
Issues like configuration context switching for
multitasking and time-sharing applications [8]1[9][13]
and reconfigurable structures for special purpose
applications ranging from very fine grain [14] to
datapath oriented [15] designs have to be considered.

The explicit use of reconfigurable logic in
embedded controller applications has not yet been
explored by present CCM systems. Issues involved in
the attachment of customizable preprocessing glue
logic to a microprocessor have yet to be identified and
addressed.

3. Architecture

As outlined in the introduction, the motivation
behind this work is to investigate the benefits of a
tight integration of reconfigurable resources into
fixed logic, inspired by the shortcomings of existent
loosely-coupled CCM systems. However, when
confronted with the opportunity to add reconfigurable
resources into the heart of a processor, instead of just
to an external bus, the question of where and how to
do so arises.

3.1. Requirements

Based upon the observed limitations of the fixed
to reconfigurable logic interfaces discussed in Section
2.4, the following interfacing strategies should be
avoided:

» reconfigurable logic attached to the memory bus or
any other kind of processor external bus

* a problem specific interfacing solution requiring
reconfiguration of the complete processor

* reconfigurable resources not controllable by the
standard scheduling and forwarding modules of the
core processor

¢ approaches resulting in an instruction format
change/incompatibility with a MIPS-like processor!

The data flow and control flow bandwidths of
both fixed and reconfigurable execution units must be
matched closely. Any kind of interfacing scheme that
attaches reconfigurable resources to a slow bus
operating either asynchronously or at a lower
clocking frequency than the internal datapath of the
processor will always be a bottleneck for the
computing operations of a CPU, Using a bus that
operates slower than the processor’s internal
datapath as an interfacing point must be avoided.

Only those processor resources required to
enhance the computing performance of a particular
application should be built using reconfigurable logic.

1. We chose MIPS, because the basic architecture and instruction
set are simple to modify and adapt to, and because of the availbale
software. Other architectures would also be suitable.



Customizing the whole processor and not just some
execution units as suggested in [16] can be costly, as
the development time, if done manually, for
customized control and datapath structures is
considerable. Also, on a direct comparison basis, the
implementation of common structures required by
most processors like the program counter and the
register file using reconfigurable resources is less
dense and slower than a custom silicon design, unless
such structures are also optimized on a per
application basis. This fact has caused the designers
of a low resource processor to stress the need for
minimizing the use of reconfigurable resources [10].

With the addition of reconfigurable logic to the
instruction decode (ID) or the memory access (MEM)
stages of the basic five-stage MIPS processor pipeline
it would be possible to perform some limited amount
of pre and/or post execute (EX) stage data processing.
The main computations would still be handled by the
execution unit in the EX stage. However, extra
control logic would be required to manage ID and
MEM stage processing and extra routing resources
would be needed to provide the forwarding of data to
these new processing elements. It remains
questionable whether this extra logic and routing
hardware justifies the small performance
improvement expected from ID and MEM stage
processing.
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Fig. 5: Integration of ReconfigurableLogic
into Programmable Functional Units

Apart from integrating reconfigurable resources
into the regular datapath of the existing pipeline
stages of the CPU, other more creative interfacing
strategies have also been considered. They involved
sacrificing the standard MIPS-like six-bit opcode [17]
in favour of an application-specific instruction
encoding scheme. This change in instruction format
and the resulting loss of binary compatibility with
basic, unenhanced MIPS executables is not desirable.
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Recompilation of any code should not be required,
unless a performance gain through the use of the new
reconfigurable features is desired.

3.2. Fixed | Reconfigurable Logic Interface

All the experience gained from the above
considerations have led to the selection of an
interfacing scheme as illustrated in Figure 5. The
reconfigurable resources are added in parallel to the
already existing basic functional unit (BFU) in the
form of programmable functional units (PFU). The
BFU is responsible for some elementary, arithmetic
and logical operations required by many programs. It
is built from fixed logic. The PFUs, however, can
implement many application specific functions: any
combinational or sequential circuit. They can also be
used as programmable glue logic with some minimal
pre- and/or post /O processing features. The number
and the boundaries of the PFUs depicted in Figure 5
may vary depending on the needs of a particular
application. The above interfacing strategy has the
following advantages:
¢ Tight integration: equally high data bandwidths

for both BFU and PFU

* Use of standard MIPS datapath and functional
modules: logic other than reconfigurable resources
can be made small and fast

¢ Standard control and forwarding schemes: the
control logic (FU cntrl) can be easily extended to
address reconfigurable resources; the data
dependency analysis check and the forwarding are
performed as in a standard MIPS CPU; even multi-
cycle PFU latency is handled at the minimal cost of
an extension of the forwarding unit (fwd unit)

Binary code compatibility with standard MIPS

processors: a BFU plus default PFU configurations

can implement all standard functions found in a

regular CPU; the PFU configuration can be traded

for different computaiional or interfacing
requirements

A similar reconfigurable logic interfacing scheme
can be found in Harvard’s PRISC project [8].
However, their PFUs can only implement small
combinational functions that have an overall logic
delay limited to one CPU clock period. This limitation
makes their architecture only interesting for
applications exhibiting opportunities for bit-level
optimizations. Also, the lack of flip flops limits the
usefulness of the PFUs as glue logic in micro-
controller applications, because the frequently
required synchronization of I/O signals cannot be
performed.

3.3. Custom Implementation

The prototype of the OnzChip system, developed
as part of this work, is implemented on the



Transmogrifier-1 (TM-1) field-programmable system
using .commercially available FPGA technology [18].
However, in a custom silicon implementation, TM-1
specific issues need no longer be considered and
problem specific physical features can be crafted. The
following  discussion  deals  with  physical
implementation issues involved in:

¢ the design of the reconfigurable logic structures

* the relative placement of the pins and the various
fixed and flexible logic blocks

¢ the structuring and layout of the routing resources
¢ the silicon area requirements relative to a XC4010

The custom silicon implementation of OneChip
provides for a means of switching between PFU
contexts as a new PFU image is required. Time-
domain multiplexed FPGA architectures have also
been proposed by Jones [19] and Bolotski, et al [13]. A
tightly packed configuration memory is used to
efficiently store the pre-compiled PFU images. This
approach is much more area efficient than the
selective run-time disabling of pre-compiled, static
PFU images using the general-purpose Xilinx logic
structures. Jones reports area savings by a factor of
four over Xilinx look-up table mapped designs.

In addition to these optimizations of the
configuration memory, a restructuring of the circuit-
state or computational memory is used to further
reduce the' required silicon area. Should a given
circuit require larger amounts of storage elements,
the distributed style of memory found in the XC4010s
does not represent a very area efficient design
approach. This issue has been realized by the
designers of Altera Corporation, who have included
embedded circuit-state memory arrays into their new
Flex 10k CPL device [20]. The custom silicon
implementation of OneChip employs an embedded,
area efficient, circuit-state memory array to be
shared by all PFUs.

Further area reductions are gained through the
use of a mixture of conventional XC4010-style
reconfigurable  resources employed for the
implementation of single bit-based control constructs
as well as datapath-style resources utilized for
repeated logic structures where programming bit
sharing can be employed. Cherepacha [15] notes that
silicon area savings of up to 50% over an FPGA
architecture not employing programming bit sharing
may be obtained.

The proportions of control-style, datapath-style
and embedded RAM-type logic of typical OneChip
applications are yet to be determined. However, the
proposed relative placement of the logic structures
and the pins is depicted in Figure 6. It is known (see
below) that the area of the PFUs implementing
complex functions in reconfigurable logic resources
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will be much larger than the area of the fixed logic
structures inside the processor core. This observation
leads to a central placement of the smaller processor
core immersed in the middle of a relatively larger sea
of reconfigurable logic, where the distances between
points in the fixed and in the reconfigurable
structures are symmetrically balanced.
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Fig. 6: Physical Layout of OneChip Logic Resources

The two internal memory blocks are tightly
packed, regular structures that are placed to the side
of the reconfigurable resources block where they can
be accessed most easily by the routing resources
interconnecting them with the sea of reconfigurable
logic. The large number of external I/O pads is placed
on the circumference of the block outlined by the
previously mentioned structures.

The routing resources of OneChip are similar to
the ones found in Xilinx devices. Local and
intermediate length resources are evenly spread
throughout the logic resources. Additional global
routing tracks are provided for fast access to the PFU
memory and the pad routing ring.

The die area of a 0.8 um Xilinx 4010 FPGA has
been measured from a broken device and found to be
approximately 144 mm?. An early 32-bit MIPS-like
processor implementation described in [17] measures
6.24 mm? when appropriately scaled to account for
the improved process technology. These figures
indicate that a complete MIPS-X processor will fit
into only 4.33% (6.24 / 144) of the area required by a
X(C4010, assuming that OneChip employs the same
amount of reconfigurable resources found on a
XC4010.

4. Prototype Setup

Even though the OneChip architecture described
in the previous section employs fixed hardware
resources for the implementation of its core processor,
a different implementation approach was taken



during the development phase. For the evaluation of
architectural issues, a field-programmable system
consisting of multiple FPGAs was used.

4.1. Prototyping Environment

The  Transmogrifier-1 (TM-1) field-
programmable system (FPS) developed at the
University of Toronto [18] consists of four Xilinx 4010
FPGAs, two Aptix AX1024 field-programmable
interconnect chips (FPIC) and four 32k x 9 SRAMs. It
is connected to the SBus of a Sparc5 workstation from
where the board can be configured. When
programmed, circuit behaviour can be monitored on
an additional set of connectors using the SBus
connection or other external circuitry including
oscilloscopes and logic analyzers.

4.2. Design Flow and Prototype Implementation

The OneChip prototype was implemented using
an automated VHDL to TM-1 design flow. High-level
language synthesis [21] was chosen as the design
entry mechanism over a schematic based approach,
because the latter can be time consuming for bigger
designs and can require extensive work when
regular, repetitive structures must be rewired.

Our core processor is completely described in
VHDL [22]. Its functionality is based upon the MIPS-
like processor outlined in P&H [23]. Due to the
limited amount of logic resources of our prototyping
system, only six of the processor’'s 32 registers are
implemented. However, our design includes the
hooks required for a full processor implementation.
The use of VHDL synthesis allowed rapid
architectural changes to explore interfacing issues
and the quick addition of hardware functions
representing configured PFU images.
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Fig. 7: TM-1 Processor Partitioning And Device
Utilization
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Figure 7 illustrates the final implementation of
the basic OneChip system along with the logic
resource utilization for each of the TM-1 FPGAs. The
implementation of the static processor core uses all
the resources of FPGA 1 (routing problems for > 66%
logic utilization) as well as a small part of each of
FPGAs 2 and 3. The remaining resources of FPGAs 2,
3 and 4 can be used to implement customized
functional units. Examples will be discussed in
Section 5.

4.3. Core Processor Performance

Interconnect related delays limits the
performance of the processor. Pin constraints on the
partitioned OneChip core required the use of time-
division multiplexing to feed up to eight signals
across a shared physical wire, similar to MITs
Virtual Wires project [24]. The maximum clocking
frequency for the virtual wire, time-division
multiplexing logic on the TM-1 is 10 MHz which
results in a 1.25 MHz operation of the main system.

5. Results

To demonstrate the benefits of OneChip’s tight
integration scheme several applications have been
coded into PFU images. Typically, OneChip is useful
for two types of applications:

¢ embedded controller type problems requiring
custom glue logic interfaces

e application  specific  accelerators  utilizing

customized computation hardware

For both types of applications, the TM-1 field-
programmable system is configured with the basic
MIPS-like processor which is augmented with one or
more programmable functional units (PFU). Note
that the TM-1 based prototype does not allow for the
use of any of OneChip’s optimized features described
in Section 3.3. Also, the PF1Js of the processor are
configured uniquely at the time of TM-1 power-up,
depending on the needs of the given application. For
either application type, a multiplexer is used to select
amongst the basic functional unit (BFU) and the PFU
images.

5.1. Embedded Controller Type Applications

Well established, cheap, easily programmable
CPUs like Motorola’s 68000 series have become the
basic building block for the cost sensitive yet large
and lucrative embedded controller applications
market. These generic embedded processors attempt
to provide as much interfacing functionality as a
target application field may require. With the
availability of reconfigurable logic in between the
external pads and the processor core, OneChip is not
only able to reduce the logic complexity of the general-
purpose controller interfaces, but can also provide



those interfacing solutions which may not at all be
conceivable with a fixed, generic embedded controller.

To demonstrate the usefulness of OneChip’s
PFU-based reconfigurable logic integration scheme
for embedded controller type applications, several
glue logic configurations are considered. The
Motorola MC68306 applications [25] have been
implemented, because VHDL code describing their
functionality could be obtained from another project
undertaken in the same research department [26].

The efficiency of OneChip’s tight glue logic
integration scheme is best illustrated by a simple
code sequence. Assuming that one of the PFUs is
programmed as a universal asynchronous receiver
and transmitter (UART), OneChip would only
execute two instructions to receive a data word into
memory:

URTR $reg
SW mem_loc, $reg

(UART read instr.)
(STORE WORD instr.)

URTR represents a new instruction which sends the
appropriate control signals to the UART PFU and
receives a data word from the PFU. In a traditional
memory mapped processor, more instructions would
have to be executed in a loop to test status bits and to
access data. The PFU scheme is much more efficient.

Simple models of the parallel port, the DRAM
controller and the universal asynchronous receiver
and transmitter (UART) modules of the MC68306

micro-controller  are  implemented in  the
reconfigurable structures of a Xilinx 4010 FPGA to
obtain area estimates. o

Clearly, the major advantage of using

reconfigurable controller glue logic lies in the
flexibility of being able to customize interfacing logic
on an application basis and in the possibility of
reusing one CCM system for several different
embedded controller-type applications. However, the
implementation of logic in reconfigurable structures
is not as dense as in full custom layouts. The
customization of glue logic interfaces can reduce the
overall logic resource requirements by omitting
unused structures found in general, fixed interfaces,
but an overall penalty of a larger silicon area for the
glue logic interface must be paid when reconfigurable
resources are utilized for its implementation.

Table 1 presents a comparison of the area of
equivalent custom silicon and reconfigurable logic
implementations of the presented applications.
Entries include unoptimized UART and DRAM
controller circuits as well as several implementations
of a Parallel Port (PP). The first PP entry represents
the unoptimized case. The second PP entry has been
optimized by simplifying the addressing scheme as
well as the port directionality logic. The third entry
represents a generic case to illustrate the achievable
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Custom Silicon FPGA
Implementation Implementation
Application
#of
area (mmz) 1 packed area (mm?) *
CLBs
UART 2.88 124 44.6
DRAM Controller 2.17 141 50.8
Parallel Port
memory addressed, 0.80 53 19.1
16x1-bit /O ports
bit-wise programmable
Paraile! Port
instruction addressed, 0.23 8 288
8 input, 8 output ports,
fixed directionality
Parallel Port
instruction addressed, 0.394 14 5.040
9 input, 19 output ports,
fixed directionality
*1 Synopsys’ Design Analyzer
I gie area of XC4010 (144 mm?) muitiptied by (# of CLBs utilized / 400)

Table 1: Logic Resource Utilization of
Embedded Controller-Type Applications

tlexibility with
architecture.

The area of the custom silicon implementations
was obtained by synthesizing the minimal VHDL
code constructs of the controller-glue applications
into a 0.8 um BiCMOS standard cell library using the
Synopsys Design Analyzer [27] along with an
estimate for the routing area. The resource
requirements of the FPGA implementations of the
given applications are obtained by multiplying the
total FPGA die area by the ratio of the number of
actually required CLBs to the number of available
CLBs.

Considering the logic optimization achievable
through the use of reconfigurable resources, the
implementation related area penalty can be reduced.
A comparison of the areas of the unoptimized custom
implementation of the parallel port versus the area of
the optimized FPGA implementation of the same
module results in the following calculation. The area
penalty is evaluated to be 3.60, corresponding to 2.88
mm? divided by 0.80 mm? Clearly, the design
flexibility introduced with the use of reconfigurable
logic can be employed to significantly reduce the

the reconfigurable OneChip



implementation technology related area penalty from
a factor of 23.8 (19.1/0.80) to another factor as low as
3.60 with the benefit of being able to implement the
exact logic interface required.

The third parallel port example represents a PP
configuration that cannot be realized in the existing
controller logic, showing the advantage of the
reprogrammable OneChip approach.

5.2. Performance Enhancement Applications

In this section it will be shown that the tight
integration of reconfigurable resources into
OneChip’s architecture makes it useful for enhancing
the performance of even those applications in which
the required communication bandwidth is relatively
high and the grain size is relatively small.

The sample application chosen for
implementation is the Discrete Cosine Transform
(DCT). In its one-dimensional form (1-D DCT), it
performs several sequential add and multiply
operations on eight-bit quantities, requires multiple
clock cycles to complete and never fully utilizes the
32-bit datapath found in OneChip’s core processor.
The convolution of the two-dimensional DCT (2-D
DCT) may be separated and implemented as two sets
of eight 1-D DCTs separated by a transpose [28], an
operation exceeding the amount of local store
provided by the register file of OneChip’s core. The 2-
D DCT is responsible for most of the computations
performed in typical JPEG coders and still amounts
to about 40% of the computations performed during
MPEG playback [29].

Clearly, the DCT represents an application that
can benefit from customized hardware constructs.
Furthermore, the grain sizes of the one-dimensional
and the two-dimensional versions represent a small
grain and a large grain problem in one application,
respectively. The former can be used to demonstrate
that OneChip’s tightly integrated architecture does
not suffer from an I/O bandwidth bottleneck and the
latter can be used to demonstrate significant
performance enhancements, which are achievable
with customized execution units of larger functional
grain sizes.

For comparison purposes, it is desirable to
evaluate the performance of hardware-only OneChip
DCT variants with the equivalent software-only DCT
implementations. Realizing that the TM-1 based
OneChip system with its extremely slow processor
clocking frequency does not represent a commercially
viable system, the following comparison setup will be
used:

* a MIPS R4400-based machine enhanced with
reconfigurable features configured for DCT
computations versus a fixed MIPS R4400 machine

Such a system is expected to employ an existing,
realistically fast MIPS R4400 processor that has been
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augmented with the reconfigurable structures used
by the OneChip architecture.

The pertinent performarice information required
for the comparisons outlined above are the execution
times of both a memory access and the actual DCT
operation of systems. The following setups were used
to obtain the individual times:

* the prototype OneChip environment configured
with a hardware DCT PFU image (to determine
execution time of actual DCT operations)

an SGI Indy workstation using a 150Mhz R4400
CPU with 512 MB main memory, 16 kB
instruction and data caches and a 1MB unified L2
cache (to determine execution time of memory
accesses)

With the above execution times, system B can be
compared to system A (see Table 2).

Memory DCT
System .
Access Computation
A commercial R4400 specific R4400 generai-
R4400 (fast) purpose ALU
(slow)
B envisioned R4400 specific TM-1 DCT-
commercial (fast) optimized PFU
OneChip (fast)

Table 2: Overview Of CCM Systems
Used In Performance Evaluation

Several different DCT variants were included in
the comparison study to uniquely identify the effects
of two other optimization features besides the already
mentioned hardware evaluation of the DCT
algorithm. These additional features include loading
or storing numerous bytes per memory operation
{(four bytes on the 32-bit prototype OneChip system,
eight bytes on the 64-bit R4400 based systems) and
the use of 512 (= eight rows times eight columns of
eight-bit intermediate picture element data) PFU
internal registers to reduce memory access
requirements of the 2-D DCT. The core processor’s
register file is not large enough to locally store this
intermediate data. The resulting register spill would
require several memory accesses. Incorporating the
two new features, the following five unique DCT
versions can be studied: :
¢ a one-dimensional DCT that loads or stores one
byte per memory access (Version I)

* a one-dimensional DCT that loads or stores
numerous bytes per memory access (four bytes for
a 32-bit system, eight bytes for a 64-bit system)
(Version IT)



* a two-dimensional DCT that loads or stores one
byte per memory access and performs the
"transpose operation using the regular processor
registers (Version III)

a two-dimensional DCT that loads or stores
numerous bytes per memory access (four bytes for
a 32-bit system, eight bytes for a 64-bit system)
and performs the transpose operation using the
regular processor registers (Version IV)

a two-dimensional DCT that loads or stores
numerous bytes per memory access (four bytes for
a 32-bit system, eight bytes for a 64-bit system)
and performs the transpose operation using the
PFU internal registers (Version V)

It is expected that improvements in FPGA
technology in conjunction with the architectural
optimizations discussed in Section 3.3 will allow the
DCT PFU pipeline to be clocked at faster frequencies
than the lower bound of 1.5 Mhz quoted for the
interconnect limited TM-1 prototype. PFU clocking
frequencies chosen for this study include 2.5, 25 and
50 Mhz, representing rates achievable on the TM-1,
in a single present-day technology FPGA with an
unpartitioned design, and in an anticipated future
technology FPGA, respectively. Figure 8 presents the
speedup results obtained with the envisioned
commercial OneChip CCM relative to the software-
only R4400 execution of the various DCT versions.

Using the speedup results just calculated,
several interesting observations can be made.
Clearly, the clocking frequencies of the fixed and the
reconfigurable parts of a OneChip-like CCM system
must be matched. It makes little sense to augment a
150 Mhz CPU with extra computational hardware
operating only at 2.5 Mhz. The speedups of the
OneChip system with the slow processor are limited
and may only be improved upon by increasing the
clocking frequencies of both the core processor and
the PFU logic. The performance gains of the
enhanced R4400, OneChip-like machine, however,
can be further raised as faster programmable logic
resources become available. Figure 8 suggests
diminishing returns as the operating frequencies of
the core processor and the reconfigurable structures
get closer to one-another.

A more significant observation concerns the
grain size of the enhanced application. It is noted that
even for the one-dimensional DCT, which represents
the small grain application, speedups of more than a
factor of ten-are achieved with the tightly integrated
OneChip architectures. Optimizations, such as the
use of multiple data packed in a single memory word,
that are only realizable with a tight reconfigurable
logic interfacing scheme make the PFU model
interesting for the speedup of even relatively small
size problems. The extension of the DCT PFU with
local store for intermediate results brings the
achievable speedup to a factor of more than forty
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Fig. 8: DCT Speedup Using
Envisioned Commercial OneChip System

while the granularity of the given problem is
increased. Overall, the complexity of the hardware of
the application presented in this section, represents a
much smaller grain size than required by typical
applications of more loosely coupled systems [4]{6].

6. Conclusions

Early work in the area of reconfigurable
computing presented promising speedup figures for
large grain applications with low processor to
reconfigurable logic communication requirements.
The OneChip architecture overcomes these
bandwidth  limitations by directly linking
reconfigurable structures into a functional block
called a programmable functional unit (PFU). The
PFU is tightly integrated into the processor pipeline
in parallel to the basic functional unit (BFU) and can
operate with an arbitrary latency.

Sample PFU images have been crafted to
demonstrate the advantages of the OneChip
architecture. For embedded controller applications
the silicon area penalty to be paid for the added
interface flexibility can be kept at a factor of less than
3.5 times the area of custom silicon implementations
for fixed logic applications. For performance
enhancement applications the OneChip architecture
is also successful at overcoming bandwidth
limitations of earlier CCM systems. In an example
using the DCT as the application, it was shown that a
speedup of close to 50 could be achieved using state-
of-the-art technology to implement the OneChip
system.

7. Future Work

Qur paper has only investigated one small part
of the area of reconfigurable computing. Before a



user-friendly OneChip processor will be found in the
heart of future commercial products the following
issues must be addressed.

The architectural requirements of OneChip’s core
processor should be analyzed in greater detail. It
has not been studied how much functionality of the
fixed part of the OneChip system is actually used.
A simpler, more compact core processor than the
MIPS-like CPU employed in this work might be
sufficient.

The presented architecture has yet to be
implemented in custom silicon to overcome the
limitations of the inherently slow TM-1 prototype.
It can be expected that sharing of custom hardware
constructs across a set of processes will reduce
hardware resource requirements.

For the application of the OneChip architecture in
multitasking environments some means of
handling the computational state of several
processes sharing one particular PFU must be
provided.

The software environment required for the
programming and execution of application
programs on the OneChip system has yet to be
developed. It will be nontrivial.

The design of a run-time operating system that
handles dynamic PFU image compilation and
automated context switching amongst multiple
PFU images on a superscalar, time-shared system
will be challenging.
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