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Abstract

Recently it has been shown that a simple learning paradigm, the support vector ma-

chine (SVM), outperforms some of the most elaborately tuned expert systems and neural

networks in object recognition tasks. In run-time, the SVM operates by computing a kernel-

based distance between the object’s vector at the input and a set of support vectors selected

from the training set, and weighting the results to produce the oracle at the output. Real-

time SVM recognition of complex objects in streaming video incurs an excessive amount

of computation, well beyond even the most powerful digital signal processors available

today. This calls for a radically different computational paradigm to efficiently compute

kernels in very large dimensions.

I present a massively parallel, fine-grain distributed architecture for real-time kernel

“machines” and its efficient implementation in mixed-signal VLSI technology. At the core

of the externally digital architecture is a high-density, low-power analog array perform-

ing binary-binary matrix-vector multiplication, as the elementary operation in computing

inner-product based kernels between presented input and stored support vectors. The three-

transistor unit cell in the analog array combines a charge injection device (CID) binary mul-

tiplier and analog accumulator with embedded dynamic random-access memory (DRAM).

I present various schemes to obtain precise digital results from the internal analog com-

putation in a distributed, parallel fashion, using analog-to-digital quantization of partial

binary-binary products computed over the array. High output resolution is achieved with

low complexity quantizers by oversampling in the input binary representation combined

with delta-sigma modulated quantization at the output. In addition, stochastic encoding of

the digital inputs relaxes the precision requirements of the quantizers by the square root of

the vector dimension owing to the Central Limit in the accumulation of binary terms in the

inner-product.
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My dissertation research has resulted in the Kerneltron, the first support vector “ma-

chine” in silicon. A 3mm by 3mm 0.5 micron CMOS chip features 256 inputs and 128

support vectors, delivering over 1 trillion (1012) multiply-accumulates-per-second for every

Watt of power. An integrated bank of 128 delta-sigma modulated algorithmic analog-to-

digital converters produce for each output 8 bits of resolution in 32 cycles. Applications

of the Kerneltron include artificial vision, automated surveillance, and human-computer

interfaces.
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Chapter 1

Pattern Recognition with Kernel

Machines

1.1 Introduction

Support vector machines (SVM) [1] offer a principled approach to machine learning

combining many of the advantages of artificial intelligence and neural network approaches.

Underlying the success of SVMs are mathematical foundations of statistical learning the-

ory [2]. Rather than minimizing training error (empirical risk), SVMs minimizestructural

risk which expresses an upper bound on the generalization error,i.e., the probability of

erroneous classification on yet-to-be-seen examples. This makes SVMs especially suited

for adaptive object detection and identification with sparse training data.

Real-time detection and identification of visual objects in video from examples is gener-

ally considered a hard problem for two reasons. One is the large degree of variability in the

object class,i.e., orientation and illumination of the object or occlusions and background

clutter in the surrounding, which usually necessitates a large number of training examples

to generalize properly. The other is the excessive amount of computation incurred during

training, and even in run-time.

Support vector machines have been applied to visual object detection, with demon-
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strated success in face and pedestrian detection tasks [3, 4, 5, 6]. Unlike approaches to

object detection that rely heavily on hand-crafted models and motion information, SVM-

based systems learn the model of the object of interest from examples and work reliably in

absence of motion cues. To reduce the computational burden of real-time implementation

to a level that can be accommodated with available hardware, a reduced set of features are

selected from the data which also result in a reduced number of support vectors [5]. The

reduction in implementation necessarily comes at a loss in classification performance, a

loss which is more severe for tasks of greater complexity.

The run-time computational load is dominated by evaluation of a kernel between the

incoming vector and each of the support vectors. For a large class of permissible kernels,

which include polynomial splines and radial kernels, this computation entails matrix-vector

multiplication in large dimensions. For the pedestrian detection task in unconstrained en-

vironments [5], highest detection at lowest false alarm is achieved for very large numbers

(thousands) of input dimensions and support vectors, incurring millions of matrix multiply-

accumulates (MAC) for each classification. The computation recurs at different positions

and scales across each video frame.

TheKerneltron, a massively parallel mixed-signal VLSI kernel machine introduced in

this chapter, offers a factor 100-10,000 improvement in computational efficiency (through-

put per unit power) over the most advanced digital signal processors available today. It

affords this level of efficiency at the expense of specificity: the VLSI architecture is dedi-

cated to massively parallel kernel computation. Speed can be traded for power dissipation.

Lower power is attractive in portable applications of kernel-based pattern recognition, such

as visual aids for the blind [7].

The rest of the chapter is organized as follows. Section 1.2 provides background infor-

mation about feature extraction and SVM classification for object detection in streaming

video. Section 1.3 argues for applicability of the approach taken. Section 1.4 describes the

architecture and circuit implementation of theKerneltron. The organization of the remain-

der of the dissertation is outlined in Section 1.5.
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1.2 Background: Object Detection with Support Vector

Machines

A support vector machine is trained with a data set of labeled examples. For pattern

classification in images, relevant features are typically extracted from the training set ex-

amples using redundant spatial filtering techniques, such as an overcomplete wavelet de-

composition [4]. The classifier is trained on these feature vectors. In run time, images

representing frames of streaming video are scanned by moving windows of different di-

mensions. For every unit shift of a moving window, a wavelet feature vector is computed

and presented to the SVM classifier to produce a decision. The general block diagram of

such a system is outlined in Figure 1.1. A brief functional description of the major compo-

nents follows next.
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CORE RECOGNITION PROCESSOR

WAVELET

DECOMPOSITION

SUPPORT

VECTOR

MACHINE

sr Anr Xn Xmn y

Figure 1.1: Functional block diagram of the SVM classifier. The core of the system is a
support vector machine processor for general object detection and classification. An over-
complete wavelet decomposition of the incoming sensory data at the input generates redun-
dant input features to the SVM, providing for robust and relatively invariant classification
performance.

1.2.1 Overcomplete Wavelet Decomposition

An overcomplete wavelet basis enables the system to handle complex shapes and achieve

a precise description of the object class at adequate spatial resolution for detection [4]. The
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transformation of the sensory datas into the feature vectorX is of the linear form

Xn =
RX
r=1

Anr sr; n = 1; � � � ; N; (1.1)

where the wavelet coefficientsAnr form an overcomplete basis,i.e., N > R.

In visual object detection overcomplete Haar wavelets have been successfully used on

pedestrian and face detection tasks [4, 5]. Haar wavelets are attractive because they are

robust and particularly simple to compute, with coefficientsAnr that are either�1 or 1.

1.2.2 Support Vector Classification

Classification of the wavelet transformed features is performed by a support vector

machine (SVM) [1]. From a machine learning theoretical perspective [2], the appealing

characteristics of SVMs are:

1. The learning technique generalizes well even with relatively few data points in the

training set, and bounds on the generalization error can be directly estimated from

the training data.

2. The only parameter that needs tuning is a penalty term for misclassification which

acts as a regularizer [8] and determines a trade-off between resolution and general-

ization performance [9].

3. The algorithm finds, under general conditions, a unique separating decision surface

that maximizes the margin of the classified training data for best out-of-sample per-

formance.

SVMs express the classification or regression output in terms of a linear combination

of examples in the training data, in which only a fraction of the data points, called “support

vectors,” have non-zero coefficients. The support vectors thus capture all the relevant data

contained in the training set. In its basic form, a SVM classifies a pattern vectorX into
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classy 2 f�1;+1g based on the support vectorsXm and corresponding classesym as

y = sign(
MX
m=1

�m ym K(Xm;X)� b); (1.2)

whereK(�; �) is a symmetric positive-definite kernel function which can be freely chosen

subject to fairly mild constraints [1]. The parameters�m andb are determined by a lin-

early constrained quadratic programming (QP) problem [2, 10], which can be efficiently

implemented by means of a sequence of smaller scale, subproblem optimizations [3], or

an incremental scheme that adjusts the solution one training point at a time [11]. Most of

the training dataXm have zero coefficients�m; the non-zero coefficients returned by the

constrained QP optimization define the support vector set. In what follows we assume that

the set of support vectors and coefficients�m are given, and we concentrate on efficient

run-time implementation of the classifier.

1.2.3 Kernel Machines

Support vector machines belong to a broader class of kernel machines. Kernel machines

use a nonlinear kernel function to map the data space into a higher-dimensional feature

space. In the case of classification the goal is to make the data more linearly separable in

the feature space (Figure 1.2). Kernels extend any inner-product-based linear classifier to

the non-linear case. A kernel on a data space satisfying Mercer condition [2, 8] implicitly

computes inner-products in the feature space:

K(Xm;X) = �(Xm) � �(X); (1.3)

where�(�) is a nonlinear map from the data space into the feature space.

Several widely used classifier architectures reduce to special valid forms of kernels

K(�; �) in (1.2), like polynomial classifiers, multilayer perceptrons1, and radial basis func-

tions [12]. The following forms are frequently used:

1with logistic sigmoidal activation function, for particular values of the threshold parameter only
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Figure 1.2: Kernel machines use a nonlinear kernel function to map the data space to a
higher-dimensional feature space.

1. Inner-product based kernels (e.g., polynomial; sigmoidal connectionist):

K(Xm;X) = f(Xm �X) = f(
NX
n=1

Xmn Xn) (1.4)

2. Radial basis functions (L2 norm distance based):

K(Xm;X) = f(kXm �Xk) = f((
NX
n=1

jXmn �Xnj2)
1

2 ); (1.5)

wheref(�) is a monotonically non-decreasing scalar function subject to the Mercer condi-

tion onK(�; �) [2, 8].

With no loss of generality, we concentrate on kernels of the inner-product type (1.4),

and devise an efficient scheme of computing a large number of high-dimensional inner-

products in parallel. Computationally, the inner-products comprise the most intensive part

in evaluating kernels of both types (1.4) and (1.5). Indeed, radial basis functions (1.5) can

be expressed in inner-product form:

f(kXm �Xk) = f((�2Xm �X+ kXmk2 + kXk2) 12 ); (1.6)

where the last two terms depend only on either the input vector or the support vector.

These common terms are of much lower complexity than the inner-products, and can be

easily pre-computed or stored in peripheral registers.
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1.3 Relevance: Real-Time Object Detection in Video

The computation of inner-products in parallel takes the form of matrix-vector multipli-

cation (MVM),
P

N

n=1Xmn Xn; m = 1; : : :M , whereM is the number of support vectors.

For large-scale problems as the ones of interest here, the dimensions of the matrixM �N

are excessive for real-time implementation of kernel machines even on a high-end proces-

sor. As a point of reference, consider the pedestrian and face detection task in [5], for

which the feature vector lengthN is 1,326 wavelets per instance, and the number of sup-

port vectorsM is in excess of 4,000. To cover the visual field over the entire scanned

image at reasonable resolution (500 image window instances through a variable resolu-

tion search method) at video rate (30 frames per second), a computational throughput of

75�109 multiply-and-accumulate operations per second, is needed. The computational re-

quirement can be relaxed through simplifying and further optimizing the SVM architecture

for real-time operation, but at the expense of classification performance [4, 5].

Conventional general-purpose processors and DSPs lack parallelism and memory band-

width needed for efficient real-time implementation [13, 14, 15]. Multiprocessors and net-

worked parallel computers in principle are capable of high throughput, but are costly, and

impractical for embedded real-time applications. Dedicated parallel VLSI architectures

have been developed to speed up MVM computation,e.g., [16]. The problem with most

parallel systems is that they require centralized memory resources,i.e.,, RAM shared on

a bus, thereby limiting the available throughput. A fine-grain, fully-parallel architecture,

that integrates memory and processing elements, yields high computational throughput and

high density of integration [17, 18, 19]. The ideal scenario (in the case of matrix-vector

multiplication) is where each processor performs one multiply and locally stores one co-

efficient, with a throughput scaling linearly with the dimensions of the implemented array.

This is the approach taken in the design of theKerneltron, a massively parallel mixed-signal

VLSI kernel machine, introduced next.
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1.4 Approach: The Kerneltron — Massively Parallel VLSI

Kernel Machine

TheKerneltronoffers the computational power required for the unabridged SVM archi-

tecture to run in real time, for optimal out-of-sample classification performance, and energy

efficiency needed for implementations on portable platforms. Its fine-grain massively par-

allel architecture is described next.

1.4.1 Core Recognition VLSI Processor

At the core of the system is a recognition engine, which very efficiently implements

kernel-based algorithms, such as support vector machines, for general pattern detection

and classification. The implementation focuses on inner-product computation in a parallel

architecture.

Both wavelet and SVM computations are most efficiently implemented on the same

chip, in a scalable VLSI architecture as illustrated schematically in Figure 1.3. The dia-

gram is the floorplan of theKerneltron, with matrices projected as 2-D arrays of cells, and

input and output vector components crossing in perpendicular directions alternating from

one stage to the next. This style of scalable architecture also supports the integration of

learning functions, through local outer product parameter updates [20], compatible with

the recently developed incremental SVM learning rule [11]. The architecture maintains

low input/output data rate. Digital inputs are fed into the processor through a properly

sized serial/parallel converter shift register. A unit shift of a scanning moving window in

an image corresponds to one shift of a new pixel per classification cycle, while a single

scalar decision is produced at the output.

The classification decision is obtained in digital domain by thresholding the weighted

sum of kernels. The kernels are obtained by mapping the inner-productsX �Xm through

the functionf(�) stored in a look-up table.
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Figure 1.3: The architecture of the core recognition processor, combining overcomplete
wavelet decomposition with generalized support vector machine classification. Communi-
cation with outside modules is through a serial digital input/output interface for maximal
flexibility and programmability, while the core internal computations are parallel and ana-
log for optimal efficiency.

By virtue of the inner-product form of the kernel, the computation can be much sim-

plified without affecting the result. Since both the wavelet feature extraction and the inner-

product computation represent linear transformations, they can be collapsed into a single

linear transformation by multiplying the two matrices:

Wmr =
NX
n=1

XmnAnr: (1.7)

Therefore the architecture can be simplified to one that omits the (explicit) wavelet trans-

formation, and instead transforms the support vectors.2 For simplicity of the argument,

we proceed with the inner-product architecture excluding the overcomplete wavelet feature

extraction stage, bearing in mind that the approach extends to include wavelet extraction

by merging the two matrices.

2Referred to the input prior to wavelet transformation, support vectorssm need to be transformedtwice:
Wmr =

P
N

n=1

P
S

p=1AnpAnrsmp.
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Computing inner-products between a high-dimensional input vectorX and a large num-

ber of template vectorsWm in parallel is equivalent to the operation of matrix-vector mul-

tiplication (MVM) in large dimensions:

Ym =
N�1X
n=0

WmnXn; (1.8)

withN -dimensional input vectorXn,M -dimensional output vectorYm, andM�N matrix

of coefficientsWmn. The matrix elementsWmn denote the support vectorsXmn, or the

wavelet transformed support vectors (1.7) for convenience of notation.3

1.4.2 Choice of Technology

The recurring problem with digital implementation of kernel machines is the latency in

accumulating the result over a large number of cells. Also, the extensive silicon area and

power dissipation of a digital multiply-and-accumulate implementation make this approach

prohibitive for very large (1,000-10,000) matrix dimensions.

Analog VLSI provides a natural medium to implement fully parallel computational

arrays with high integration density and energy efficiency [21]. By summing charge or cur-

rent on a single wire across cells in the array, low latency is intrinsic. Analog multiply-and-

accumulate circuits are so small that one can be provided for each matrix element, making

it feasible to implement massively parallel implementations with large matrix dimensions.

Fully parallel implementation of (1.8) requires anM � N array of cells, illustrated in

Figure 1.4. Each cell(m;n) computes the product of input componentXn and matrix el-

ementWmn, and dumps the resulting current or charge on a horizontal output summing

line. The device storingWmn is usually incorporated into the computational cell to avoid

performance limitations due to low external memory access bandwidth. Various physi-

cal representations of inputs and matrix elements have been explored, using synchronous

charge-mode [22, 23, 24, 25], asynchronous transconductance-mode [26, 27, 28], or asyn-

chronous current-mode [29] multiply-and-accumulate circuits.

3In the wavelet transformed case,s should be substituted forX in what follows.
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Figure 1.4: General architecture for fully parallel matrix-vector multiplication (MVM).

The main problem with purely analog implementation is the effect of noise and com-

ponent mismatch on precision. To this end, we propose the use of hybrid analog-digital

technology to simultaneously add a large number of digital values in parallel, with care-

ful consideration of sources of imprecision in the implementation and their overall effect

on the system performance. Furthermore, we introduce algorithms achieving full digital

resolution of mixed-signal VLSI computation. Our approach combines the computational

efficiency of analog array processing with the precision of digital processing and the con-

venience of a programmable and reconfigurable digital interface.

1.5 Organization

The remainder of the dissertation describes our contributions in detail, and is organized

by Part as follows:

Part II Kerneltron I: Massively Parallel VLSI Kernel Machine describes a massively

parallel processor for matrix-vector multiplication combining the efficiency of ana-

log computation with the precision of digital processing.Chapter 2 introduces a
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massively parallel charge-mode analog array architecture performing digital matrix-

vector multiplication (MVM) (1.8) in high dimensions.Chapter 3 covers circuits

and architecture of flash quantizers used to convert analog outputs of the computa-

tional array back into the digital domain.

Part III Kerneltron II: Oversampling Kernel Machine presents a new generation of

Kerneltronprocessors where delta-sigma analog-to-digital conversion of the analog

array outputs combined with oversampled unary coding of the digital inputs relaxes

precision requirements in the quantization.Chapter 4 describes the oversampling

MVM architecture.Chapter 5 elaborates on circuits and architecture of delta-sigma

algorithmic analog-to-digital quantizers.

Part IV Algorithmic Enhancements covers algorithms enhancing the performance of

Kerneltronprocessors.Chapter 6 utilizes redundant data encoding to enhance com-

putation resolution in kernel machines with Nyquist quantizers (e.g., Kerneltron I).

Chapter 7 presents a stochastic encoding scheme relaxing precision requirements in

the analog implementation by one bit for each four-fold increase in vector dimension,

N in (1.8), while retaining full digital system-level resolution.

Part V Conclusions briefly summarizes our contributions and discusses their impact.
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Part II

Kerneltron I: Massively Parallel VLSI

Kernel Machine
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Chapter 2

Charge-Mode Parallel Architecture for

Matrix-Vector Multiplication

In Chapter 1 we gave an overview of kernel machines for pattern recognition. We

identified the limitation of existing kernel machine implementations – insufficient compu-

tational efficiency in real-time object detection in video. The architecture of theKernel-

tron, a massively parallel kernel machine, has been introduced, that achieves significantly

higher throughput while maintaining low power dissipation. This chapter describes the first

mixed-signal VLSI implementation of this architecture,Kerneltron I.

2.1 Introduction

As shown in the previous chapter, Support Vector Machine (SVM) data classification

and function approximation incur a significant amount of computation, in excess of even the

most powerful processors available today. The most computationally intensive operation

in SVM decision rule is computing large number of inner-products in parallel in high-

dimensional spaces. This amounts to the operation of matrix-vector multiplication (MVM)
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in large dimensions:

Ym =
N�1X
n=0

WmnXn (2.1)

withN -dimensional input vectorXn,M -dimensional output vectorYm, andM�N matrix

elementsWmn. The matrix elementsWmn denote the support vectorsXmn, or the wavelet

transformed support vectors (1.7) for convenience of notation (see the footnote on page 11).

As argued in Chapter 1, analog computational arrays [21, 25, 27, 30] for neural infor-

mation processing offer very large integration density and throughput as needed for real-

time high-dimensional MVM computation. Despite the success of adaptive algorithms and

architectures in reducing the effect of analog component mismatch and noise on system

performance [20, 31], the precision and repeatability of analog VLSI computation under

process and environmental variations is inadequate for some applications. Digital imple-

mentation [16] offers absolute precision limited only by word-length, but at the cost of

significantly larger silicon area and power dissipation compared with dedicated, fine-grain

parallel analog implementation,e.g., [25, 30]. Mixed-signal solutions combine the advan-

tages of analog efficiency and digital precision in the implementation.

In this chapter we present a mixed-signal VLSI implementation of theKerneltronar-

chitecture as follows. A mixed-signal MVM array architecture with binary decomposed

matrix and vector elements is described in Section 2.2. VLSI implementation with exper-

imental results from fabricated silicon are presented in Section 2.3. Section 2.4 quantifies

the improvements in system precision obtained by postprocessing the quantized outputs

of the array in the digital domain. An expanded architecture using multiple processors and

compensating for analog computation offset errors is discussed in Section 2.5. Conclusions

are presented in Section 2.6.
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Figure 2.1: Top level architecture ofKerneltron Iprocessor.

2.2 Mixed-Signal Architecture

2.2.1 Internally Analog, Externally Digital Computation

Kerneltron I is internally implemented in analog VLSI technology, but interfaces ex-

ternally with the digital world. This paradigm combines the best of both worlds: it uses

the efficiency of massively parallel analog computing (in particular: adding numbers in

parallel on a single wire), but allows for a modular, configurable interface with other dig-

ital preprocessing and postprocessing systems. This is necessary to make the processor a

general-purpose device that can tailor the matrix-vector multiplication task to the particular

application where it is being used.

The digital representation is embedded, in both bit-serial and bit-parallel fashion, in

the analog array architecture as shown in the top level diagram in Figure 2.1. Inputs are

presented in bit-serial fashion, and matrix elements are stored locally in bit-parallel form.
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Digital-to-analog (D/A) conversion at the input interface is inherent in the bit-serial im-

plementation, and row-parallel analog-to-digital (A/D) converters are used at the output

interface.

For simplicity, an unsigned binary encoding of inputs and matrix elements is assumed

here, for one-quadrant multiplication. This assumption is not essential: it has no binding

effect on the architecture and can be easily extended to a standard one’s complement for

four-quadrant multiplication, in which the significant bits (MSB) of both arguments have

a negative rather than positive weight. Assume furtherI-bit encoding of matrix elements,

andJ-bit encoding of inputs:

Wmn =
I�1X
i=0

2�i�1w(i)
mn

(2.2)

Xn =
J�1X
j=0

2�j�1x(j)
n

(2.3)

decomposing (2.1) into:

Ym =
N�1X
n=0

WmnXn =
I�1X
i=0

J�1X
j=0

2�i�j�2Y (i;j)
m

(2.4)

with binary-binary MVM partials:

Y
(i;j)
m

=
N�1X
n=0

w
(i)
mn
x
(j)
n

: (2.5)

The proposed mixed-signal approach is to compute and accumulate the binary-binary par-

tial products (2.5) using an analog MVM array, and to combine the quantized results in the

digital domain according to (2.4).

2.2.2 Array Architecture and Data Flow

To conveniently implement the partial products (2.5), the binary encoded matrix ele-

mentswmn
(i) are stored in bit-parallel form, and the binary encoded inputsxn

(j) are pre-

sented in bit-serial fashion as shown in Figure 2.2. This figure represents a detailed block

diagram of one slice of the top level architecture marked with a dashed line in Figure 2.1.
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Figure 2.2: Block diagram of one row in the matrix with binary encoded elementswmn
(i),

for a singlem and withI = 4 bits. Data flow of bit-serial inputsxn(j) and corresponding
partial outputsYm

(i;j), with J = 4 bits.

The bit-serial format was first proposed and demonstrated in [23], with binary-analog par-

tial products using analog matrix elements for higher density of integration. The use of

binary encoded matrix elements relaxes precision requirements and simplifies storage [24].

One row ofI-bit encoded matrix elements usesI rows of binary cells. Therefore, to

store anM � N digital matrixWmn, an array ofMI � N binary cellswmn
(i) is needed.

One bit of an input vector is presented each clock cycle, takingJ clock cycles of partial

products (2.5) to complete a full computational cycle (2.1). The input binary components

xn
(j) are presented least significant bit (LSB) first, to facilitate the digital postprocessing to

obtain (2.4) from (2.5) (as elaborated in Section 2.4).

Figure 2.2 depicts one row of matrix elementsWmn in the binary encoded architecture,

comprisingI rows of binary cellswmn
(i), whereI = 4 in the example shown. The data
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Figure 2.3: CID computational cell with integrated DRAM storage (top). Charge transfer
diagram for active write and compute operations (bottom). Transistor sizes: M1 - 6/2,
M2 - 6/6, M3 - 6/6.

flow is illustrated for a digital input seriesxn(j) of J = 4 bits, LSB first (i.e.,descending in-

dexj). The corresponding analog series of outputsYm
(i;j) in (2.5) obtained at the horizontal

summing nodes of the analog array is quantized by a bank of analog-to-digital converters

(ADC), and digital postprocessing (2.4) of the quantized series of output vectors yields the

final digital result (2.1).

The quantization scheme used is critical to system performance. As shown in Sec-

tion 2.4, appropriate postprocessing in the digital domain to obtain (2.4) from the quan-

tized partial productsYm
(i;j) can lead to a significant enhancement in system resolution,

well beyond that of intrinsic ADC resolution. This relaxes precision requirements on the

analog implementation of the partial products (2.5). A dense and efficient charge-mode

VLSI implementation is described next.
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2.3 Charge-Mode VLSI Implementation

2.3.1 CID/DRAM Cell and Array

The elementary cell combines a CID computational unit [23, 24], computing one argu-

ment of the sum in (2.5), with a DRAM storage element [32]. The cell stores one bit of a

matrix elementwmn
(i), performs a one-quadrant binary-binary multiplication ofwmn

(i) and

xn
(j), and accumulates the result across cells with commonm andi indices. The circuit

diagram and operation of the cell are given in Figure 2.3. An array of cells thus performs

(unsigned) binary multiplication (2.5) of matrixwmn
(i) and vectorxn(j) yielding Ym

(i;j),

for values ofi in parallel across the array, and values ofj in sequence over time.

The cell contains three MOS transistors connected in series as depicted in Figure 2.3.

Transistors M1 and M2 comprise a dynamic random-access memory (DRAM) cell, with

switch M1 controlled byRow SelectsignalRSm
(i). When activated, the binary quantity

wmn
(i) is written in the form of charge stored under the gate of M2. Transistors M2 and M3

in turn comprise a charge injection device (CID), which by virtue of charge conservation

moves electric charge between two potential wells in a non-destructive manner [23], [24],

[33], [34], [35], [36]. The cell operates in two phases:Write andCompute. When a matrix

element value is being stored,xn(j) is held atV dd andV out at a voltageV dd=2. To

perform a write operation, either an amount of electric charge is stored under the gate of

M2, if wmn
(i) is low, or charge is removed, ifwmn

(i) is high. The amount of charge stored,

4Q or 0, corresponds to the binary valuewmn
(i).

Once the charge has been stored, the switch M1 is deactivated, and the cell is ready to

compute. The charge left under the gate of M2 can only be redistributed between the two

CID transistors, M2 and M3. An active charge transfer from M2 to M3 can only occur

if there is non-zero charge stored, and if the potential on the gate of M2 drops below that

of M3 [23]. This condition implies a logical AND,i.e.,unsigned binary multiplication, of

wmn
(i) andxn(j). The multiply-and-accumulate operation is then completed by capacitively

sensing the amount of charge transferred onto the electrode of M3, the output summing
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Figure 2.4: Voltage transfer characteristic (top) and integral nonlinearity (bottom) for a row
of 512 CID/DRAM cells, simulated usingSpectreSwith MOS model parameters extracted
from a 0.5�m process.

node. To this end, the voltage on the output line, left floating after being pre-charged to

V dd=2, is observed. When the charge transfer is active, the cell contributes a change in

voltage

4Vout = 4Q=CM3 (2.6)

whereCM3 is the total capacitance on the output line across cells. The total response

is thus proportional to the number of actively transferring cells. After deactivating the

input xn(j), the transferred charge returns to the storage node M2. The CID computation

is non-destructive and intrinsically reversible [23], and DRAM refresh is only required to

counteract junction and subthreshold leakage.

The bottom diagram in Figure 2.3 depicts the charge transfer timing diagram for write

and compute operations in the case when bothwmn
(i) andxn(j) are of logic level 1. A logic

level 0 forwmn
(i) is represented asV dd, and a logic level 1 is represented asV dd=2, where

V dd is the supply voltage. Forxn(j), logic level 0 is represented asV dd, and logic level 1

as GND.

Transistor-level simulation of a 512-element row indicates a dynamic range of 43 dB,

as illustrated in Figure 2.4, and a computational cycle of 10�s with power consumption of

50 nW per cell. Experimental results from a fabricated prototype are presented next.
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2.3.2 Experimental Results

A VLSI prototype ofKerneltron Imatrix-vector multiplier, integrated on a3� 3 mm2

die in 0.5�m CMOS technology was fabricated and tested. The chip contains an array

of 512 � 128 CID/DRAM cells, and a row-parallel bank of 128 gray code flash ADCs.

Figure 2.5 depicts the micrograph and system floorplan of the chip. The layout size of the

CID/DRAM cell is 8� � 45� with � = 0:3�m.

The mixed-signal MVM processor interfaces externally in digital format. Two separate

shift registers load the matrix elements along odd and even columns of the DRAM array.

Integrated refresh circuitry periodically updates the charge stored in the array to compen-

sate for leakage. Vertical bit lines extend across the array, with two rows of sense amplifiers

at the top and bottom of the array. The refresh alternates between even and odd columns,

with separate select lines. Stored charge corresponding to matrix element values can also

be read and shifted out from the chip for test purposes. All of the supporting digital clocks

and control signals are generated on-chip.

Figure 2.6 shows the measured linearity of the computational array. The cases shown

are when all binary weight storage elements are actively charged and discharged, and an

all-ones sequence of bits is shifted through the input register, initialized to all-zeros bit

values. For every 1-bit shift, a computation is performed and the result is observed on the

output sense line. The experimentally observed linearity agrees with the simulation results

in Figure 2.4. The feed-through input dependent offsets are compensated for as described

in Section 2.5.

The chip contains 128 row-parallel flash ADCs,i.e.,one dedicated ADC for eachm

and i. In the present implementation,Ym is obtained off-chip by combining the ADC

quantized outputsYm
(i;j) overi (rows) andj (time) according to (2.4). Issues of precision

and complexity in the implementation of (2.4) are studied below.
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Figure 2.5: Micrograph of aKerneltron I prototype, containing an array of512 � 128

CID/DRAM cells, and a row-parallel bank of128 flash ADCs. Die size is3 mm� 3 mm

in 0.5�m CMOS technology.
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Figure 2.6: Measured linearity of the computational array. Two cases are shown: all
binary weight storage elements are actively charged (left) and discharged (right). All logic
“1” sequence of bits is shifted through the input register, initialized to all-“0” bit values.
For every 1-bit shift, a computation is performed. Waveforms shown,top to bottom: the
analog voltage output on the sense line; input data - on an input pin in common for both
input and weight shift register; clock for weight shift register.

2.4 Quantization and Digital Resolution Enhancement

Significant improvements in precision can be obtained by exploiting the binary repre-

sentation of matrix elements and vector inputs, and performing the computation (2.4) in

the digital domain, from quantized estimates of the partial outputs (2.5). The effect of av-

eraging the quantization error over a large number of quantized values ofYm
(i;j) boosts the

precision of the digital estimate ofYm, beyond the intrinsic resolution of the analog array

and the analog-to-digital converters used.

2.4.1 Accumulation and Quantization

The outputsYm
(i;j) for a singlem obtained from the analog array overJ clock cycles

can be conceived as anI � J matrix, shown in Figure 2.2. Elements of this matrix located

along diagonals (i.e.,elements with a common value ofi+ j) have identical binary weight
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in (2.4). Therefore, the summation in (2.4) could be rearranged as:

Ym =
I�1X
i=0

J�1X
j=0

2�(i+j+2)
Y

(i;j)
m

=
K�1X
k=0

2�(k+2)
Y
0(k)
m

(2.7)

wherek = i+ j, K = I + J � 1 and

Y
0(k)
m

=

k��(k;I)X
i=�(k;J)

Y
(i;k�i)
m

(2.8)

with �(k; I) � max(0; k � I + 1) and�(k; J) � max(0; k � J + 1).

Several choices can be made in the representation of the signals being accumulated and

quantized. One choice is whether to quantize each array output,Ym
(i;j), and accumulate

the terms in (2.8) in the digital domain, or accumulate the terms in the analog domain and

quantize the resultingY 0

m

(k). Clearly, the former leads to higher precision, while the latter

has lower complexity of implementation, as discussed in more detail in Chapter 6. We

opted for the former, and implemented a parallel array of low-resolution flash ADCs, one

for each row outputi.

2.4.2 Row-parallel Flash A/D Conversion

Consider the case of row-parallel flash (i.e.,bit-parallel) A/D conversion, where allI�J
values ofYm

(i;j) are fully quantized. Figure 2.7 presents the corresponding architecture,

shown for a single output vector componentm. Each of theI horizontal summing nodes,

one for each bit-planei of componentm, interfaces with a dedicated flash A/D converter

producing a digital outputQm
(i;j) of L-bit resolution. The summations (2.8) and (2.7) are

then performed in the digital domain:

Qm =
I�1X
i=0

J�1X
j=0

2�(i+j+2)
Q

(i;j)
m

=
K�1X
k=0

2�(k+2)
Q
0(k)
m

; (2.9)

and

Q
0(k)
m

=

k��(k;I)X
i=�(k;J)

Q
(i;k�i)
m

: (2.10)
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Figure 2.7: Diagram for the A/D quantization and digital postprocessing block in Fig-
ure 2.2, using row-parallel flash A/D converters. The example shown is for a singlem,
LSB-first bit-serial inputs, andI = J = 4.

A block diagram for a digital implementation is shown on the right of Figure 2.7, assuming

LSB-first bit-serial inputs (descending indexj). With radix 2, a shift-and-accumulate oper-

ation avoids the need for digital multiplication. The LSB-first bit-serial format minimizes

latency and reduces the length of the register accumulatingQm.

If the ADC is capable of resolving each individual binary term in the analog sum (2.5),

then the sum is retrieved from the ADC with zero error, as if computed in the digital do-

main. Forzero-errordigital reconstruction, the ADC requires (at least)N +1 quantization

levels, that coincide with the levels of the charge transfer characteristic for any number (0

to N ) of active cells along the output row of the analog array. Provided nonlinearity and

noise in the analog array and the ADC are within one LSB (at thelog2(N + 1)-bit level),

thequantization errorthen reduces to zero, and the outputQm is obtained at the maximum

digital MVM resolution ofI + J + log2(N + 1) bits. For large arrays, this is usually more

than needed, and places too stringent requirements on analog precision,L � log2(N + 1).

In the remainder of this section we study the error of the digitally constructed output

Qm in the practical case where the resolution of the ADC is below that of the dimensions
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of the array,L < log2(N + 1). In particular, we study the properties ofQm assuming

uncorrelated statistics of quantization error. The analysis yields an estimate of the gain in

resolution that can be obtained relative to that of the ADC quantizers, independent of the

matrix and input representationN , I, andJ . The quantization is modeled as:

Q
(i;j)
m

= Y
(i;j)
m

+ e
(i;j)
m

; (2.11)

wheree(i;j)
m

represents the quantization error, modeled as uniform randomi.i.d. within one

LSB. Conceptually, the error terme(i;j)
m

in (2.11) could also include effects of noise and

nonlinear distortion in the analog summation (2.5), although in practice the precision of

the array exceeds the ADC resolution, as shown in the experimental data of Section 2.3.2.

From (2.9) and (2.11), the error in the digitally constructed output

Qm = Ym + Em; (2.12)

can then be expanded as

Em =
I�1X
i=0

J�1X
j=0

2�(i+j+2)
e
(i;j)
m

: (2.13)

Defines the full-scale range of the ADC acquiringQm
(i;j), andS the corresponding

range of the constructed digital outputQm. Then according to (2.9),

S = s

I�1X
i=0

2�(i+1)
J�1X
j=0

2�(j+1) = s (1� 2�I)(1� 2�J) (2.14)

which approachess for I; J !1. Therefore, the full signal range is approximately equal

to the output signal range of each of the ADCs for largeI andJ .

Let the variance of the uniform quantization noisee in (2.11) be�2
e
, identical8i; j.

In the Central Limit, the cumulative quantization errorE can be roughly approximated

as a normal process, with variance equal to the sum of the variances of all terms in the

summation (2.13). Each signal component,Qm
(i;j), with quantization noisee but scaled

with binary weight2�(i+j+2), contributes a variance2�2(i+j+2)
�
2
e

in the sum (2.13), and the

total variance�2
E

of the output errorE is expressed as:

�
2
E
= �

2
e

I�1X
i=0

2�2(i+1)
J�1X
j=0

2�2(j+1) = �
2
e

1� 2�2I

3

1� 2�2J

3
(2.15)
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which approaches(�e=3)2 for I; J !1. Therefore, the signal-to-quantization-noise ratio

(SQNR) approaches
S

�E
� 3

s

�e
(2.16)

for largeI andJ . In other words, by quantizing each array outputYm
(i;j) instead of the

combined totalYm, we obtain an improvement in signal-to-quantization-noise ratio of a

factor 3.

To characterize the improved precision in terms ofeffective resolution(in bits), it is

necessary to relate the second order statistics of the quantization errore orE to a measure

of the error indicative of resolution. There is a certain degree of arbitrariness in doing

so, but in what follows we define resolution as themedianof the absolute error,i.e.,the

(symmetric) extent of the 50 % confidence interval of the error. The choice of convention

matters, because the distributions fore andE are different—e is approximately uniform,

andE in theCentral Limit is normal.

Let e be uniformly distributed in the interval[��;�]. The median absolute value is

thenMe =
1
2
�, and the variance�2

e
= 1

3
�2, yielding the relation

Me =

p
3

2
�e (2.17)

for the uniform distribution. The median absolute value for a normal distribution, in terms

of the standard deviation, is approximately

ME = 0:675�E (2.18)

This allows to express the SQNR gain in (2.16) as a gain inmedian resolution:

S

ME

� 3

p
3=2

0:675

s

Me

� 3:85
s

Me

(2.19)

or, in other words, a gain of approximately 2 bits over the resolution of each ADC.

For a flash ADC architecture, two “free” extra bits of resolution above the precision

available from the analog array and quantization are significant, since the implementation

cost is exponential in the number of bits. Additional gains in resolution of computation
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on a MVM architecture with low-resolution Nyquist-rate ADCs can be made by redundant

data coding and utilizing algorithmic quantization schemes as presented in Chapter 6.

2.5 Multi-Chip Architecture with Offset Compensation

2.5.1 Multi-Chip Architecture

The method of on-chip MVM computation described above allows for an array size

of 1000� 1000 cells, in a 0.35�m CMOS technology implemented on a 6� 6 mm die.

Computations on matrices of higher dimensionality, at maximum possible precision, can

be performed by using multiple MVM chips. Processors can be cascaded to expand matrix

row or column spaces beyond the limits of a single chip capacity.

In the ideal case, to extend matrix row space, digital outputs of systems with shorter

input vector lengths can be combined to perform a computation in a higher dimensional

input space. Extension of column space is in principle also unlimited (assuming high read-

out speeds). Cascading along rows of the matrix (allowing for higher dimensionality of

input vectors) requires addition of digital numbers, while cascading along columns (in

order to increase the number of matrix elements for a fixed input vector dimensionality)

only necessitates multi-chip output multiplexing in time.

In reality, there are a number of sources of error that contribute offsets to the output of

each MVM chip. These offset terms can be compensated for in the multi-chip architecture

as described in the next section.

2.5.2 Offset Compensation

In Section 2.3 we already considered some of the sources of computation error. They

are imprecision of binary multiplications through charge sharing between potential wells

in a CID unit with capacitively coupled output, and of charge-mode analog addition on

a single node. Because of linearity errors the result of such a computation is valid up to
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Table 2.1: Input-output mapping of CID/DRAM computational cell. The input-output
feedthrough error and charge leakage related offset are introduced when the input is
logic “1”.

x
(j)
n w

(i)
mn mn

00 0
0 1

01
1 1

0
ε(t)
+ε(t)1

y
(i,j)

approximately 7 bits. We have discussed the effect of these errors and ADC resolution on

the overall system precision in Section 2.4.

Other significant sources of error in analog array-based computation are input-output

feedthrough and leakage current in DRAM storage cells. The architecture described here

is capable of compensating for these analog computation errors in digital domain by using

an extra reference MVM chip as shown in Figure 2.8.

The input-output feedthrough error is a result of capacitive coupling of input (vertical)

lines onto the output (horizontal) lines through parasitic capacitances (e.g.,metal lines over-

lap capacitance, gate-to-diffusion capacitance). From Section 2.3 we know that the output

of the analog cell ideally changes by�Vout only when both matrix element coefficient and

input vector component coefficient are logic “1”:wmn
(i) = V dd=2 (charge is stored) and,

in the computation phase,xn(j) = 0V (input is reset). Any other combination of input ar-

guments should produce zero voltage change at the output. The cell is effectively an analog

AND gate. In practice, switching the input linexn(j), even when no charge is stored in CID

cell, causes a small change in the output voltage,�, as a result of input-output capacitive

coupling. This effect is modeled here as shown in Table 2.1. The output of a single cell is

denoted asymn
(i;j).

From equations (2.5) and (2.11), taking into account the input-output feedthrough error,

the MVM quantized output partials of thep-th processor in aP -processor architecture can
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now be expressed as:

Q
(i;j;p)
m

=
N�1X
n=0

y
(i;j;p)
mn

+ e
(i;j;p)
m

= (1 + �)
N�1X
n=0

w
(i;p)
mn

x
(j)
n

+ �

N�1X
n=0

(1� w
(i;p)
mn

)x(j)
n

+ e
(i;j;p)
m

=
N�1X
n=0

w
(i;p)
mn

x
(j)
n

+ �

N�1X
n=0

x
(j)
n

+ e
(i;j;p)
m

: (2.20)

The term�
P

N�1
n=0 x

(j)
n

in equation (2.20) is an offset term proportional to the number of

active vector components. To compensate for this term an identical extra, reference, chip is

used in the multi-chip architecture as shown in Figure 2.8. The same inputs are presented

to all chips in the system while only logic “0” matrix element coefficients are stored in the

reference chip. It outputs quantized partials of the form:

Q
(i;j)
m REF

= �

N�1X
n=0

x
(j)
n

+ e
(i;j)
m REF

: (2.21)

In order to compensate for feedthrough offsets, once computation has been performed on

chips, the output of the reference chip is subtracted from the output of processors in digital

domain:

Q
(i;j;p)
m COMP

= Q
(i;j;p)
m

�Q
(i;j)
m REF

=
N�1X
n=0

w
(i;p)
mn

x
(j)
n

+ e
0

m

(i;j;p)
; (2.22)

where

e
0

m

(i;j;p)
= e

(i;j;p)
m

� e
(i;j)
m REF

: (2.23)

Another important source of errors requiring specific consideration is DRAM leakage

current. In a standard two-level DRAM cell, the exact amount of charge stored is not

crucial. It is used only for binary operations of readout and refresh, and a slow refresh

scheme can be used. In contrast, the CID/DRAM cell produces an analog output which

is proportional to the amount of charge stored in the charge injection device (2.6). Over

multiple computation cycles, different rows are being refreshed, producing differences in

the temporal decay profile of charge stored along rows of cells.



CHAPTER 2. CHARGE-MODE PARALLEL ARCHITECTURE FOR MVM 34

In the multi-chip configuration shown in Figure 2.8, the refresh clock of the same fre-

quency as in standard DRAMs is used. It is fed to all processors, including the reference

chip. Using a reference chip with all cells containing logic “0” coefficients and refreshed

synchronously with processor chips ensures the same charge decay profile in its cells and

voltage increase profile at its outputs. To compensate for charge decays caused by leakage

current, the outputs from the reference chip are subtracted from the outputs of the corre-

sponding rows of each of the processors.

Therefore, both input-output feedthrough input-dependent offset and charge decay in-

put and time-dependent offset are compensated for in the multi-chip MVM architecture

by using one reference chip supplied with identical inputs, synchronous refresh clock and

all logic “0” matrix elements. Subtraction of outputs of equivalent rows in digital domain

eliminates both input-dependent and temporal errors.

2.6 Conclusions

A charge-mode VLSI architecture ofKerneltron Ifor parallel matrix-vector multiplica-

tion in large dimensions (N;M = 100–10,000) has been presented. An internally analog,

externally digital architecture offers the best of both worlds: the density and energetic

efficiency of an analog VLSI array, and the noise-robustness and versatility of a digital

interface. A three-transistor unit cell combines a single-bit dynamic random-access mem-

ory (DRAM) and a charge injection device (CID) binary multiplier and analog accumula-

tor. Digital multiplication of variable resolution is obtained with bit-serial inputs and bit-

parallel storage of matrix elements, by combining quantized outputs from multiple rows of

cells over time. The combination of analog array processing and digital postprocessing en-

hances the precision of the digital MVM output, exceeding the resolution of the quantized

analog array outputs by 2 bits. Additional enhancements in resolution can be obtained by

utilizing redundant data coding and employing other (e.g.,algorithmic) Nyquist-rate quan-

tizers as discussed in Chapter 6. Significantly larger gains in precision could be achieved
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by exploiting the statistics of binary terms in the analog summation (2.5) as demonstrated

in Chapter 7. A reference subtraction scheme with one additional processor compensates

for clock feedthrough and charge leakage in the array.

Fine-grain massive parallelism and distributed memory, in an array of CID/DRAM

cells, provides a computational efficiency (bandwidth to power consumption ratio) exceed-

ing that of digital multiprocessors and DSPs by several orders of magnitude. A 512� 128

MVM prototype fabricated in 0.5�m CMOS offers2� 1012 binary MACS (multiply-and-

accumulates per second) per Watt of power. This opens up possibilities for low-power

real-time implementations of kernel machines for pattern recognition in human-machine

interfaces [5], artificial vision [37] and vision prostheses [38].

Requirements on the resolution of analog-to-digital converters can be relaxed by utiliz-

ing single-bit quantizers in the delta-sigma loop as described in Chapter 4, while the VLSI

implementation of row-parallel flash analog-to-digital converters inKerneltronarchitecture

is presented in the next chapter.
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Chapter 3

Flash Analog-to-Digital Converter with

Charged-Based MOS Folding Circuit

In the previous chapter we assumed computational array quantizers to be generic flash

analog-to-digital converters (ADCs). This chapter provides a thorough treatment of the

architecture and circuits of charge-based flash ADCs developed forKerneltron Iarray pro-

cessor.

3.1 Introduction

High-performance data conversion can be achieved either by expending power and area

to achieve high precision in a single analog architecture, or by distributing the architecture

over multiple low-resolution quantization tasks each implemented with relatively impre-

cise analog circuits, and combined in the digital domain. The latter approach has proven

superior in attaining very high precision, by distributing the quantization process over time

using delta-sigma modulation [39]. Both high speed and high resolution can be achieved

by distributing the quantization process in space. To this end, it is necessary to implement

very space efficient, low-resolution quantizers.

We present a charge-based circuit that implements an offset-compensated comparator



CHAPTER 3. FLASH ADC WITH CHARGED-BASED MOS FOLDING CIRCUIT37

with one capacitor and fournMOS transistors. The design targets applications in hybrid

analog-digital computing using large-scale analog arrays [40], specificallyKerneltron I,

where parallelism, redundancy in information representation (Chapter 6), and statistical

data coding ( [41], Chapter 7) can be used to compensate for imperfections in analog com-

putation.

3.2 Charge-Domain Correlated Double Sampling

Comparator

3.2.1 Capacitor-nMOS Integrator

To obtain high density and high speed in a comparator and folding circuit, the chal-

lenge is to design a single stage producing a current-mode or charge-mode signal that is

a saturating high-gain and offset-compensated function of a difference in input voltage.

We show that in the charge domain this can be achieved using a circuit incorporating a

capacitor and an exponential element, such as a diode [42] or a MOS transistor operating

in subthreshold regime [43], [44], where the differential voltage is presented as an initial

condition at the input. Offset compensation is achieved in the charge domain, as for the

CMOS charge-transfer comparator described in [45].

In the circuit of Figure 3.1(a) thenMOS transistor is source coupled to a capacitor. In

the subthreshold and saturation region, the drain current is exponential in gate and source

voltage, and the large-signal dynamics of the integrator are described by:

C
dVs

dt
= Is =

W

L
Ioe

(�Vg�Vs)=Vt; (3.1)

whereVt is the thermal voltage. Integrating the differential equation (3.1) yields:

CVte
Vs

Vt =
W

L
Ioe

�Vg=Vtt+ c1; (3.2)

wherec1 is an integration constant. Direct substitution yields:
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Figure 3.1: (a) Capacitor-nMOS integrator and(b) charge-based comparator. Transistor
sizes: M1 - 20/2, the other are minimum size.

Is(t) =
CVt

t+ c1
W

L
Ioe

�Vg=Vt

: (3.3)

At time t = 0, the input voltage is switched fromVg(0�) to Vg(0+) while the capacitor in-

stantly retains the source voltageVs(0). The source current therefore switches fromIs(0�)

to Is(0+) over the transition at the gate:

Is(0
+) = Is(0

�)e�4Vg=Vt ; (3.4)

where4Vg = Vg(0
+)�Vg(0

�). The output current (3.3) can thus be expressed in terms of

initial conditions:

Is(t) =
Is(0+)

Is(0+)

CVt
t+ 1

=
Is(0�)

Is(0�)

CVt
t+ e��4Vg=Vt

: (3.5)

Interestingly, fort� CVt=Is(0
+), Is(t) becomes independent of initial conditions:

Is(t) � CVt

t
: (3.6)
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Figure 3.2: Control signal timing diagram for the comparator circuit in Figure 3.1(b).

3.2.2 Comparator

Saturation of the output current of the circuit in Figure 3.1(a) as a function of a change

in the input voltageVg is utilized in the design of the charge-based comparator as shown

in Figure 3.1(b). ThenMOS capacitor is initially charged by pulsingRST as shown in

Figure 3.2. Over a time interval4t1, the capacitor discharges to raiseVs until M1 reaches

well into the subthreshold region. The end of the interval defines the initial condition for

the source currentIs(0�). The differential input voltage is presented as a transient on the

gate,4Vg = Vref � Vin, implemented using an analog multiplexer M2-M3 and controlled

by inSel/inSel timing signals in Figure 3.2. In subthreshold1, this gate voltage transition

produces a change in source current according to (3.5). By combining equations (3.4)

and (3.5), the input-output characteristic of the comparator can be expressed as:

Is(t) = Isat �(A(4Vg � Vo�(t))); (3.7)

where

�(x) =
1

1 + e�x
(3.8)

1For large values of4Vg, thenMOS may initially enter the strong inversion region. This affects the
timing but not the operation of the circuit, since once the capacitor has raisedVs to reach subthreshold, the
asymptotic relationship (3.6) holds again.
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Figure 3.3: The input-output characteristics of the charge-based comparator at different
fixed time intervals4t2 after switching the inputs, calculated using equation (3.7) (dashed
line) and simulated using SpectreS for a 0.5�m CMOS process (solid line). (Top to bottom:
4t2 = 50, 250, 450, 650, 850 ns.)

is a logistic function, the amplitude saturates toIsat = CVt=t, the voltage is scaled by

A = �=Vt, and the offset voltage

Vo�(t) =
Vt

�
log

CVt

Is(0�)t
(3.9)

is a logarithmic function of time. Note that by virtue ofcorrelated double sampling[46] in

the differential transient4Vg by switching M2-M3, the offsetVo�(t) is independent of M1

threshold variations and, to first order,1=f noise.

Figure 3.3 illustrates the input-output characteristics of the comparator for different

time interval4t2 after switching the inputs, calculated using equation (3.7) and simulated

using SpectreS for a 0.5�m CMOS process. The offset of the comparator as a function of

time from (3.9) is plotted in Figure 3.4. It scales logarithmically in time. It also depends

onIs(0�) which is controlled by the time interval,4t1, between the momentVin is applied

(after the reset) and the timeVref is presented to the gate ofM1. Figure 3.5 illustrates

theoretical and simulated source current transients for different values of4Vg.
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Figure 3.4: The offset voltage of the comparator as a function of time after switching the
inputs (4t2 in Figure 3.2). Theoretical results obtained using equation (3.9) for different
values ofIs(0�). (Top to bottom: Is(0�) = 2, 4, 6, 8, 10nA.)
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Figure 3.5: Comparator output current transients for different values of4Vg. Thesolid
line shows the SpectreS simulation results for a 0.5�m CMOS process; thedashedline
was obtained using equation (3.7). The initial currentIs(0

�) = 6nA. EffectivenMOS
capacitor value is 45fF.
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3.3 Charge-Based Folding Circuit and Gray Code ADC

A number of solutions for gray code A/D conversion exist [47], [48], [49], [50]. Con-

ventional folded differential logic [49] (FDL) can eliminate code errors due to its wired

gray code encoding scheme. An improvement of FDL, folding cascoded differential logic

(FCDL), was introduced in [50]. It allows for higher number of comparators in an encode

block.

3.3.1 Gray Code Flash ADC Architecture

Figure 3.6(a) shows the architecture of a 3-bit gray code differential logic ADC. Com-

parators produce the output current

I
n

s
= Ib((f(V

n

ref � Vin) + 1)=2); (3.10)

whereIb is a bias current,Vref
n is a respective reference voltage level betweenVref

min and

Vref
max, n = 1; :::; 7, andf(:) is a decision function such assign(:) or a logistic function.

Each output bit,Di, i = 0; :::; 2, is obtained by connecting comparator outputs differentially

in a folding circuit, and then comparing the accumulated differential currents. The input-

output characteristics of the ADC are illustrated in Figure 3.6(b).

3.3.2 Folding Circuit

An LSB folding circuit for a 5-bit flash ADC is shown in Figure 3.7. The output currents

can be expressed as:

I+ = Isat

(N�1)=4X
n=0

�(A(Vin � V
4n+1
ref � Vo�(t))); (3.11)

I
�
= Isat

(N�1)=4X
n=0

�(A(Vin � V
4n+3
ref � Vo�(t))) + Ib=2; (3.12)

where

Ib = Isat�(A(V
max
ref � V

min
ref � Vo�(t))): (3.13)
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Figure 3.6: A 3-bit gray code flash A/D converter:(a) architecture;(b) characteristic.
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Figure 3.7: Folding circuit for a charge-based gray code flash ADC.

Theoretical and simulated output currents as a function of the input voltage for a folding

circuit of a flash ADC are demonstrated in Figure 3.8.

3.3.3 Integrating Sense Amplifier

Bit decisions are made on integrated, differentially folded comparator currents using a

correlated double sampling sense amplifier. The time-dependent comparator voltage off-

set (3.9) is inconsequential to the integration as it is in common to all comparator cells.

The integrating regenerative sense amplifier is shown in Figure 3.10. A cascode stage,

M9 � M10, controlled by the bias voltageVcasc, provides low impedance input to the

sense amplifier to improve the conversion speed and reduce the effect of the output con-

ductance of the comparator cells. Current-domain correlated double sampling is achieved

by swapping differential current inputs to the sense amplifier at start of integration using

multiplexersM5 �M6 andM7 � M8, from precharge to evaluate mode. In precharge

mode (time interval4t2 in Figure 3.2) capacitorsC are precharged through transistorsM3

andM4 to the difference in gate voltages of transistorsM1 andM2 set by currentsI
�

and

I+ (including any offsets in the threshold voltages). In evaluate mode (time interval4t3 in

Figure 3.2), the multiplexersM5�M6 andM7�M8 switch the input currents. The corre-

sponding change in gate voltages causes a change in the output voltagesVo� andVo+. The

correlated double sampling scheme compensates for sense amplifier input-referred offset
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Figure 3.8: Output currents of the folding circuit of Figure 3.7. The solid line represents
the SpectreS simulation results for a 0.5�m CMOS process; the dashed line corresponds
to equations (3.11) and (3.12). The time interval4t2=50 ns.

Figure 3.9: Recorded gray code flash ADC output waveforms as a function of input voltage.

and doubles its input dynamic range. An additional comparator stage, not shown, amplifies

the differenceVo+ � Vo� and latches the result at the output.
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Figure 3.10: Integrating Sense Amplifier.

3.4 Experimental results

A prototype 128-channel charge-based gray code ADC was fabricated in a 0.5�m

CMOS process. The die micrograph is shown in Figure 2.5 on page 24. The chip contains,

besides the parallel bank of flash ADCs, a massively parallel mixed-signal computational

array (Chapter 2). The ADC bank measures 0.75 mm� 2 mm, and dissipates 76 mW

of power at 128 MS/sec sampling rate. Output waveforms for a ramp input signal are

presented in Figure 3.9.

3.5 Conclusions

A flash analog-to-digital converter utilizing a novel charge-based comparator and a

folding circuit have been reported. Correlated double sampling comparison is performed

using a log-domain integrator, implemented by a subthresholdnMOS transistor with the

source coupled to a capacitor. The circuit produces a current that is a logistic function of

the change in voltage on the gate, with an input-referred offset voltage that is a logarith-
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mic function of time. Folding operation for analog-to-digital conversion is obtained by

differentially combining currents from a bank of these comparators. The circuit operates

in weak inversion and yields both high speed and low power. A prototype 128-channel

parallel gray code analog-to-digital converter has been implemented in a 0.5�m CMOS

process, delivering 128 MS/sec at 76 mW power dissipation.Kerneltron Iarchitecture pre-

sented in Chapter 2 utilizes the described flash quantizers with the overall precision of the

mixed-signal computation of 6 bits. The design is suited for parallel data conversion on

mixed-signal computational arrays, in particular massively parallel VLSI kernel machines

with Nyquist-rate quantizers.

Chapters 4 and 5 describe anotherKerneltronVLSI architecture where an oversampling

analog-to-digital converter, replacing flash quantizers, accumulates computational array

outputs in analog domain, with array inputs encoded in unary format.
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Part III

Kerneltron II: Oversampling Kernel

Machine
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Chapter 4

Oversampling Array Processor with

Delta-Sigma Quantizers

In Chapters 2 and 3 we describedKerneltron I processor comprised of an array of

charge-mode unsigned multiply-and-accumulate cells performing matrix-vector multipli-

cation. Array outputs were quantized by row-parallel flash analog-to-digital converters.

In this chapter we present a new generation ofKerneltronprocessors, with oversampled

inputs, and delta-sigma analog-to-digital converters accumulating outputs of an array of

signed multiply-and-accumulate cells in analog domain.

4.1 Introduction

As in Chapter 2 we focus on the computational core of template matching operations

in image processing and pattern recognition – the operation of matrix-vector multiplication

(MVM) in high dimensions:

Ym =
N�1X
n=0

WmnXn (4.1)

withN -dimensional input vectorXn,M -dimensional output vectorYm, andM�N matrix

elementsWmn. The matrix elementsWmn denote the support vectorsXmn, or the wavelet

transformed support vectors (1.7) for convenience of notation.
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The VLSI architecture for matrix-vector multiplication described in Chapters 2 and 3

employs flash analog-to-digital converters to quantize partial inner-products (2.5) which

are subsequently combined in digital domain according to (2.4) to yield a digital output

resolution exceeding the analog precision of the array and the quantizers. In this chapter,

an oversampling analog-to-digital converter (ADC) accumulates the inner sum in (2.4) in

the analog domain, with inputs encoded in unary format. This avoids the need for high-

resolution flash ADCs, which are replaced with single-bit quantizers in the delta-sigma

loop. High throughput is maintained by oversampling ADCs averaging across all input

vector unary bit planes in a single quantization cycle. The mixed-signal oversampling

processor presented in this chapter contains a fine-grain parallel array of signed multiply-

and-accumulate charge-mode cells, eliminating input-output feedthrough and enhancing

analog accumulation linearity.

4.2 Mixed-Signal Computation

4.2.1 Internally Analog, Externally Digital Computation

The approach combines the computational efficiency of analog array processing with

the precision of digital processing and the convenience of a programmable and reconfig-

urable digital interface.

The digital representation is embedded in the analog array architecture, with matrix

elements stored locally in bit-parallel form

Wmn =
I�1X
i=0

2�i�1w(i)
mn

(4.2)

and inputs presented in bit-serial fashion

Xn =
J�1X
j=0


jx
(j)
n

(4.3)

where the coefficients
j are assumed in radix two, depending on the form of input encoding
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used. The MVM task (4.1) then decomposes into

Ym =
N�1X
n=0

WmnXn =
I�1X
i=0

2�i�1Y (i)
m

(4.4)

with MVM partials

Ym
(i) =

J�1X
j=0


jY
(i;j)
m

; (4.5)

and

Ym
(i;j) =

N�1X
n=0

w
(i)
mn
x
(j)
n

: (4.6)

The binary-binary partial products (4.6) are conveniently computed and accumulated, with

zero latency, using an analog MVM array [21], [22], [23], [24]. For this purpose we

developed a 1-bit signed multiply-and-accumulate CID/DRAM cell.

4.2.2 CID/DRAM Cell and Array

The unit cell in the analog array combines a CID (charge injection device [33]) com-

putational element [23, 24] with a DRAM storage element. The cell stores one bit of a

matrix elementwmn
(i), performs a one-quadrant binary-unary (or binary-binary) multipli-

cation ofwmn
(i) andxn(j) in (4.6), and accumulates the result across cells with common

m andi indices. The circuit diagram and operation of the cell are given in Figure 2.3 on

page 20. It performs a non-destructive computation since the transferred charge is sensed

capacitively at the output. An array of these cells thus performs (unsigned) binary-unary

multiplication (4.6) of matrixwmn
(i) and vectorxn(j) yielding Ym

(i;j), for values ofi in

parallel across the array, and values ofj in sequence over time as described in detail in

Chapter 2.

To improve linearity and to reduce sensitivity to clock feedthrough, we use differential

encoding of input and stored bits in the CID/DRAM architecture using twice the number

of columns and unit cells as shown in Figure 4.1. This amounts to exclusive-OR (XOR),

rather than AND, multiplication on the analog array, using signed, rather than unsigned,

binary values for inputs and weights,xn(j) = �1 andwmn
(i) = �1.
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Figure 4.1: Two charge-mode AND cells configured as an exclusive-OR (XOR) multiply-
and-accumulate gate.

In principle, the MVM partials (4.6) can be quantized by a bank of flash ADCs, and the

results accumulated in the digital domain according to (4.5) and (4.4) to yield a digital out-

put resolution exceeding the analog precision of the array and the quantizers as described

in Chapter 2. In the architecture presented here, an oversampling ADC accumulates the

sum (4.5) in the analog domain, with inputs encoded in unary format (
i = 1). This avoids

the need for high-resolution flash ADCs, which are replaced with single-bit quantizers in

the delta-sigma loop.

4.3 Oversampling Mixed-Signal Array Processing

The precision of computation is limited by the resolution of the analog-to-digital con-

verters (ADC) digitizing the analog array outputs. The conventional delta-sigma (��)

ADC design paradigm allows to reduce requirements on precision of analog circuits to

attain high resolution of conversion, at the expense of bandwidth. In the presented archi-

tecture a high conversion rate is maintained by combining delta-sigma analog-to-digital

conversion with oversampled encoding of the digital inputs, where the delta-sigma mod-

ulator integrates the partial multiply-and-accumulate outputs (4.6) from the analog array

according to (4.5).
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4.3.1 Array Architecture

Figure 4.2 depicts one row of matrix elementsWmn in the�� oversampling architec-

ture, encoded inI = 4 bit-parallel rows of CID/DRAM cells. One bit of a unary-coded

input vector is presented each clock cycle, takingJ clock cycles to complete a full compu-

tational cycle (4.1). The data flow is illustrated for a digital input seriesxj
(n) of J = 16

unary bits.

OverJ clock cycles, the oversampling ADC integrates the partial products (4.6), pro-

ducing a decimated output

Q
(i)
m
�

J�1X
j=0


jY
(i;j)
m

; (4.7)

where
j = 1 for unary coding of inputs. Decimation for a first-order delta-sigma modula-

tor is achieved using a binary counter.

4.3.2 Row-parallel �� Algorithmic ADC

Higher precision can be obtained in the same number of cyclesJ by using a higher-

order delta-sigma modulator topology. However this drastically increases the implementa-

tion complexity. Instead, we use a modified topology shown in Figure 4.3 that resamples

the residue of the integrator after initial conversion. A sample-and-hold resamples the

residue voltage of the integrator and presents it to the modulator input for continued con-

version at a finer scale. The principle is analogous to extended counting [51] but avoids

additional hardware by reusing the same�� modulator to quantize the residue.

Similar to residue resampling in an algorithmic (or cyclic) ADC, for each resampling

the scale of conversion subranges to the LSB level of the previous conversion. For a first-

order incremental�� ADC [52], resampling of the residue scales the range by a factorL,

whereL is the number of modulation cycles. IfL is of radix two, i.e., L = 2`, then the

subranging is conveniently accomplished in the architecture of Figure 4.3 by shifting the

bits in the decimating counter bỳpositions for every resampling of the residue.

Every resampling improves the output resolution by a factorL, or ` bits, limited by
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Figure 4.2: Block diagram of one row in the matrix with binary encoded elementsw
(i)

mn,
for a singlem and unary encoded inputs. Data flow of bit-serial inputsx

(j)
n and corre-

sponding partial product outputsY (i;j)
m, with J = 16 bits. The full product for a single

row Y
(i)

m is accumulated and quantized by a delta-sigma ADC. The final product is con-
structed in the digital domain according to (4.4).
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Figure 4.3: Block diagram of�� algorithmic ADC with residue resampling, including
decimator. One ADC is provided for each row in the array architecture.

noise and mismatch in the implementation. The effect of capacitance mismatch is mini-

mized by using a ratio-insensitive scheme for resampling the residue, shown in Figure 5.2

on page 65. The presented scheme is equivalent to algorithmic A/D conversion, but avoids

interstage gain errors without the need for precisely ratioed analog components.

The resampling of the residue in the oversampled ADC can be combined with corre-

spondingly rescaling the coefficients
j in the input encoding. In principle, higher resolu-

tion digital inputs can be presented by unary encoding bits in groups of`, each coveringL

modulation cycles of the subranging oversampled ADC. In the example of Figure 4.2, only

the first 4 bits are unary encoded and presented in the first algorithmic cycle, withL = 16.

With a single resampling of the residue, the�� modulator obtains2` = 8 bit effective

resolution in2L = 32 cycles.

Chapter 5 contains a more rigorous analysis of circuits, architecture and measured per-

formance of delta-sigma algorithmic analog-to-digital converters.

4.4 Experimental Results

A Kerneltron II prototype was integrated on a3� 3 mm2 die and fabricated in 0.5�m

CMOS technology. The chip contains an array of256� 128 CID/DRAM cells, and a row-

parallel bank of 128 algorithmic�� ADCs. Figure 4.4 depicts the micrograph and system

floorplan of the chip.

The processor interfaces externally in digital format. Two separate shift registers load
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Figure 4.4: Micrograph of aKerneltron II prototype, containing an array of256 � 128

CID/DRAM cells, and a row-parallel bank of128 �� algorithmic ADCs. Die size is
3 mm� 3 mm in 0.5�m CMOS technology.
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Table 4.1: Measured performance ofKerneltron II

Technology 0.5�m CMOS
Area 3mm� 3mm

Power 5.9 mW
Supply Voltage 5 V

Dimensions 256 inputs� 128 templates
Throughput 6.5 GMACS

Output Resolution 8-bit

the templates (support vectors) along columns of the DRAM array and download input

data. Integrated refresh circuitry periodically updates the charge stored in the array to

compensate for leakage. Vertical bit lines extend across the array, with two rows of sense

amplifiers at the top and bottom of the array. The refresh alternates between even and odd

columns, with separate select lines. Stored charge corresponding to matrix element values

can also be read and shifted out from the chip for test purposes. All of the supporting digital

clocks and control signals are generated on-chip.

Figure 4.5 shows the observed linearity of the computational array, configured differen-

tially for signed (XOR) multiplication. The case shown is where all complementary weight

storage elements are actively set, and an alternating sequence of bits in blocksN is shifted

through the input register.1 For every shift in the input register, a computation is performed

and the result is observed on the output sense line. The array dissipates 3.3 mW for a 10�s

cycle time. The bank of�� ADCs dissipates 2.6 mW yielding a combined conversion rate

of 12.8 Msamples/s. Table 4.1 summarizes the measured performance.

4.5 System-Level Performance

Figure 4.6 compares template matching performed by a floating point processor and

by theKerneltron, illustrating the effect of quantization and limited precision in the ana-

log array architecture. An ’eye’ template was selected as a16 � 16 fragment from the

1wmn
(i)

= 1; xn(j) = 1 for n = 1; : : :N ; andxn(j) = �1 for n = N + 1; : : : 2N .
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Figure 4.5: Measured linearity of the computational array configured for signed multipli-
cation on each cell (XOR configuration). Two cases are shown: binary weight storage
elements are all actively charged, and all discharged. Waveforms shown are,top to bot-
tom: the analog voltage output on the sense line; input data (in common for both input and
weight shift register); and input shift register clock.

Lenaimage, yielding a 256-dimensional vector. Figure 4.6 (c) depicts the two-dimensional

cross-correlation (inner-products over a sliding window) of the 8-bit image with the 8-bit

template computed with full precision. The same computation performed by theKernel-

tron, with 4-bit quantization of the image and template and 8-bit quantization of the out-

put, is given in Figure 4.6 (d). Differences are relatively small, and both methods return

peak inner-product values (top matches) at both eye locations in the image.2 The template

matching operation is representative of a support vector machine that combines nonlinearly

transformed inner-products to identify patterns of interest.

2The template acts as a spatial filter on the image, leaking through spectral components of the image at
the output. TheLenaimage was mean-subtracted.
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(a) (b)

(c) (d)

Figure 4.6: Cross-correlation of fragments ofLena (a)and the eye template(b) computed
by a 32-bit floating point processor with 8-bit encoded inputs(c) and byKerneltronwith
8-bit quantization and 4-bit encoded inputs(d).
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4.6 Conclusions

The oversamplingKerneltron II architecture for parallel matrix-vector multiplication

has been presented. An internally analog, externally digital architecture offers the best of

both worlds: the density and energetic efficiency of an analog VLSI array, and the con-

venience and versatility of a digital interface. The three-transistor CID/DRAM unit cell

combines single-bit dynamic storage, binary multiplication, and zero-latency analog accu-

mulation. Differential configuration of two such cells implements a signed multiply-and-

accumulate unit avoiding input-output feedthrough and improving linearity of analog sum-

mation. Delta-sigma analog-to-digital conversion of the analog array outputs performed in

synchrony with oversampled unary coding of the digital inputs relaxes precision require-

ments in the quantization.

Additional gains in precision could be obtained by exploiting binomial statistics of bi-

nary terms in the analog summation (4.6) as described in Chapter 7. In the present scheme,

this would entail stochastic encoding of the digital inputs prior to unary oversampled en-

coding.

A 256� 128 cell prototype was fabricated in 0.5�m CMOS. The combination of ana-

log array processing, oversampled input encoding, and�� algorithmic analog-to-digital

conversion delivers a computational throughput of over 1 GMACS per mW of power, while

maintaining 8-bit effective digital resolution.
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Chapter 5

Delta-Sigma Algorithmic

Analog-to-Digital Conversion

In Section 4.3 of the previous chapter we gave a brief overview of row-parallel quantiz-

ers in the oversampling CID/DRAM computational array. This chapter contains a more rig-

orous analysis of the architecture and circuits of delta-sigma algorithmic analog-to-digital

converters.

5.1 Introduction

Delta-sigma (��) modulation has emerged as the architecture of choice for high-

resolution analog-to-digital (A/D) conversion using low-precision analog components [39].

The increased resolution comes at the expense of reduced conversion bandwidth or in-

creased clock speed due to oversampling, and increased digital complexity to decimate the

modulator output stream. For very low bandwidth applications, lowest digital complexity

is achieved with a first-order�� incremental converter [53], where a counter implements

a rectangular decimation filter. Higher-order�� incremental converters [52] are capable

of attaining higher conversion bandwidth, using additional analog and digital circuitry. Al-

ternatively, higher bandwidth can be obtained from a first-order incremental converter by
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further refining the modulation residue on the integrator at the end of conversion using a

Nyquist A/D converter [54, 51, 55]. The principle is similar to dual-quantization oversam-

pled converters [56, 57], except the second quantizer operates at the conversion rate and

requires no decimation.

The presented architecture uses the same first-order modulator, with virtually no over-

head in analog and digital hardware, to incrementally convert the modulation residue of

preceding incremental conversion. By using the same signal path in ratio-insensitive man-

ner, precise matching between multiple quantization results is obtained. Matching is a

concern in the precision of multiple-quantization oversampled data converters [58], usu-

ally requiring compensation in the digital domain [59]. The presented scheme is similar to

algorithmic A/D conversion, but avoids interstage gain errors when precisely ratioed ana-

log components are not available. Very high integration density can be achieved by virtue

of the simple modulator and decimator architecture.

5.2 �� Incremental A/D Conversion

For clarity of exposition we start the formulation with that of the first-order incremental

A/D converter [53], depicted in Figure 5.1(a). A first-order�� modulator converts an

analog sequenceu[i] into a bitstreamy[i], using a ‘resetable’ (RST) analog accumulator

w[0] = 0 (5.1)

w[i+ 1] = w[i] + � (u[i]� y[i]) ;

i = 0; : : : N � 1 (5.2)

w[N + 1] = w[N ]� � y[N ] (5.3)

and a single-bit quantizer

y[0] = �1 (5.4)

y[i] = sign(w[i]) ; i = 1; : : : N : (5.5)
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Figure 5.1: (a) First-order�� incremental A/D converter.(b) �� algorithmic A/D
converter, with residue resampling across the accumulator, and shifting counter for the
decimator.

A binary counter accumulates the bits1
y[i] to produce a decimated output. The rectangular

decimation window, and initial reset of the accumulator, avoid tones in the quantization

noise spectrum at DC input that are characteristic of a conventional first-order�� mod-

ulator with lowpass decimation filter [53]. The quantization error (conversion residue)

is directly given by the final accumulator valuew[N + 1], as verified by summing (5.2)

and (5.3) overi:
NX
i=0

y[i] =
N�1X
i=0

u[i]� 1

�
w[N + 1] : (5.6)

For an inputu[i] within the conversion range[�1; 1] (in dimensionless units),w[N + 1]

in (5.3) is bounded by the range[��; �], and a worst-case resolution oflog2(N) bits is

warranted2.

Higher resolution at lower oversamplingN can be obtained using higher-order incre-

1y = �1 corresponds to logic 0 for notational convenience.
2Note that the last modulation cycle (5.3) contributes one full bit of resolution, sincew[i] for i � N

in (5.2) is bounded by2� in amplitude. The extra zero-input modulation cycle (5.3) can be avoided by
quantizingw[i] + �u[i] instead ofw[i] in (5.5).
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mental conversion [52]. A lower-complexity alternative is presented next.

5.3 �� Algorithmic A/D Conversion

The conversion residue1
�
w[N + 1] in (5.6) is converted further into digital form to

obtain higher resolution. As in other multiple-quantization oversampled converters [52],

[54], [51], [55], [56], [57], gain mismatch between quantization signal paths is a limiting

factor in the precision available [58]. Ratio-insensitive matching is achieved by resampling

the residue through the same signal path as used for accumulation (5.2), and employing the

same modulator to convert the residue.

Assume a constant input (or its average)x presented to the incremental converter forN

initial cycles,u[i] = x, i = 0; : : :N � 1,

NX
i=0

y[i] = N x� 1

�
w[N + 1] : (5.7)

At the end of conversion, the residuew[N + 1] is fed back to the input for subsequent

incremental conversion overN 0 additional cycles,u0[i] = �w[N + 1], i = 0; : : : N 0 � 1,

where� represents the residue resampling gain. Thus

N 0X
i=0

y
0[i] = N

0

� w[N + 1]� 1

�
w
0[N 0 + 1] (5.8)

which under the matching condition�� � 1 combines with (5.7) to cancel the first residue

w[N + 1]:

N
0

NX
i=0

y[i] +
N

0X
i=0

y
0[i] = NN

0

x� 1

�
w
0[N 0 + 1]: (5.9)

The left-hand side of (5.9) is readily available in digital form, and the right-hand terms con-

form to (5.6) with effectiveNN
0-level resolution. Therefore, the residue conversion (5.8)

enhances the resolution of (5.7) by an extralog2(N
0) bits. The algorithmic recursion can

be continued to producelog2(N) bits for every conversion of the preceding residue overN

incremental cycles. The recursion corresponds to a radix-N algorithmic A/D converter, but

without the need forN -ratioed analog components.
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Figure 5.2: Invertible, resetable analog accumulator.(a) Circuit diagram.(b) Operational
modes.

The matching condition�� � 1 for ratio-insensitive operation is met using an invertible

circuit topology for the analog accumulator, described next.

5.4 Implementation

The hardware complexity of the�� algorithmic A/D converter, depicted in Figure 5.1(b),

is essentially identical to that of the�� incremental converter in Figure 5.1(a). The ac-

cumulator is extended to sample the residue in ratio-insensitive manner, and the counter is

extended to shift bits in between residue conversions for proper scaling in the decimation.
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5.4.1 Invertible, Resetable Analog Accumulator

Critical to attaining ratio-insensitive sampling of the residue is the design of the ac-

cumulator. A simple circuit achieving multiple objectives is depicted in Figure 5.2(a),

with different modes of operation illustrated in Figure 5.2(b). The circuit is shown with

minimum number of components using an inverting amplifier, but can be directly extended

to differential designs for higher resolution. Correlated double sampling (CDS) in the ac-

cumulation of the differenceu[i] � y[i] according to (5.2) offers the advantage of1=f

noise and offset cancellation. The switched-capacitor accumulator has ratio-dependent gain

� = C1=C2 that is prone to mismatch; however this mismatch is immaterial in the opera-

tion of the first-order modulator with single-bit quantizer. For ratio-insensitive sampling of

the residue, the signal and feedback path of the accumulator is inverted by interchanging

theC1 andC2 components in the circuit topology, shown in Figure 5.2(b). As a result, the

matching condition�� � 1 between (5.7) and (5.8) is satisfied independent ofC1 andC2,

to a precision limited by the finite gain of the amplifier, and noise and charge injection in

the sampling.

5.4.2 Decimating Shifting Counter

For every algorithmic iteration, the preceding decimated output needs to be scaled by

a factorN , the number of incremental cycles in the residue conversion, prior to continued

counting. It is particularly convenient to assumeN to be radix-2, so that the scaling is

simply performed by a binary shift in the decimation count, as suggested in Figure 5.1(b).

A shift register is readily incorporated in a binary counter, with little overhead in the circuit

complexity of the implemented decimator.
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INPUT RESIDUE

Figure 5.3: Observed waveforms for two-step�� algorithmic A/D conversion.Top: Inte-
grator voltagew[i]. Center: Sample-and-hold voltageu[i]. Bottom: Output bitsy[i] prior
to decimation.

5.5 Experimental Results from Integrated A/D Array

A bank of 128�� algorithmic converters has been implemented as part ofKerneltron II

mixed-signal processor described in Chapter 4. A256�128 array performs externally dig-

ital matrix-vector multiplication using internally analog elements for very large energetic

efficiency (1012 multiply-accumulates per Watt of power). The array core performs analog

accumulation of binary-binary partial products, requiring row-parallel A/D conversion for

each of the 128 output vector components. The micrograph of the integrated system is

shown in Figure 4.4. Each of the 128 A/D channels measure 14�m by 850�m.

To maximize integration density, the analog path of the�� algorithmic architecture

of Figure 5.1(b) uses single-stage cascodednMOS inverting amplifiers throughout, with

nominal gain of�300. CapacitancesC1 andC2 are nominally 0.25 pF and 0.5 pF, respec-

tively, with � = 0:5. Sample-and-hold and comparator blocks are implemented in standard

switched-capacitor circuitry, with CDS1=f noise and offset compensation. Dynamic logic
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Figure 5.4: Integral quantization residue, recorded from a single channel of the VLSI A/D
array in Figure 4.4, configured for 8-bit conversion. Top: �� incremental conversion (N =

256). Bottom: �� algorithmic A/D conversion (N = 16, 2-step).

implements binary counter and registers.

Example conversion waveforms from the fabricated array are illustrated in Figure 5.3.

Least-squares fits of integral quantization error observed over one channel of the array, con-

figured both for 8-bit incremental and algorithmic �� conversion, are within the LSB level

as shown in Figure 5.4. However, incremental conversion requires 28 + 1 = 257 cycles,

while 2-step algorithmic conversion takes 2 � (24 + 1) = 34 cycles. With a 300 ns clock

in 2-step 8-bit algorithmic mode, the 128-channel A/D bank delivers 12.8 Msamples/s at

2.6 mW power dissipation, including decimation.

Resolutions larger than 10-bit require higher-gain amplifiers at the cost of decreased in-

tegration density and increased power dissipation. In large-scale kernel machine implemen-

tations (as well as in digital imaging and other integrated sensing modalities), maintaining

high spatial resolution is usually a more stringent requirement than increasing amplitude

resolution.
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Note that matching is at stake even at low (8-bit) resolution. Precise matching between

capacitors with up to 12-bit uncalibrated precision can be achieved through careful layout in

centroid geometry, but not within dimensions pitch-matched to a 45 � (14 �m) CID/DRAM

cell (Sections 2.3.1 and 4.2.2).

5.6 Conclusion

The delta-sigma algorithmic analog-to-digital converter used for quantization of analog

outputs of Kerneltron II CID/DRAM computational array (Chapter 4) has been presented.

Delta-sigma modulation for analog-to-digital conversion resolves a number of bits logarith-

mic in the number of modulation cycles, and linear in modulation order. As an alternative to

higher-order noise shaping, we presented an algorithmic scheme that iteratively resamples

the modulation residue, by feeding the integrator output back to the input. This yields a bit

resolution linear in the number of cycles, similar to an algorithmic analog-to-digital con-

verter. The scheme simplifies the design of the digital decimator to a single shifting counter,

and avoids interstage gain errors in conventional algorithmic analog-to-digital converters.

The proposed technique combines advantages of �� modulation and algorithmic (cyclic)

A/D conversion in a single, simple architecture. Both are included as special limiting cases:

a single algorithmic iteration reduces to �� incremental conversion, and N = 2 cycles per

iteration yield a ratio-insensitive form of algorithmic A/D conversion.

The reduced hardware complexity and improved component tolerance of the architec-

ture offer a major advantage in integrated applications calling for large-scale parallel quan-

tization at low to medium resolution (8 to 12 bits) but very high integration densities, with a

potential for extremely large combined quantization throughputs (Gsample/s range at mW

power levels). Bandwidth can be traded for resolution in reconfigurable manner through

external control of clock waveforms. Ratio-insensitive matching makes the architecture

especially suited for applications of integrated digital acquisition in spatial sensor arrays.

Experimental results from Kerneltron II processor containing a bank of 128 delta-sigma
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algorithmic analog-to-digital converters show the utility of the design for large-scale paral-

lel quantization in hybrid analog-digital kernel machines implementation.
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Part IV

Algorithmic Enhancements



72

Chapter 6

Resolution Enhancement in Nyquist-rate

Kernel Machines

In Chapter 2 we presented an internally analog, externally digital architecture for ded-

icated VLSI kernel-based array processing that outperforms purely digital approaches by

several orders of magnitude in throughput, density and energy efficiency. Section 2.4 intro-

duced the subject of computation resolution enhancement in a Kerneltron architecture em-

ploying low-resolution row-parallel flash analog-to-digital converters (ADC). In this chap-

ter we extend this analysis by utilizing a redundant data representation scheme to further

enhance digital resolution of the computation, and introduce other Nyquist-rate quantiza-

tion schemes offering advantages of lower power and area resources utilization.

6.1 Introduction

Redundant data representation techniques trade an overhead in inexpensive resources

for gains in a costly critical parameter in a system. Radix-less-than-2 data encoding has

been commonly used in mixed-signal VLSI systems to relax requirements on errors in-

troduced by system components, such as linearity or gain errors [60], [61]. Non-radix-2

designs typically require only a moderate increase in a number of homogeneous stages in
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Figure 6.1: Block diagram of one row in the matrix with binary encoded elements wmn
(i),

for a single m and with I = 4 bits (I 0 = 4 in radix-less-than-2 case). Data flow of bit-
serial inputs xn(j) and corresponding partial outputs Ym

(i;j), with J = 4 bits (J 0 = 4 in
radix-less-than-2 case).

a multi-stage architecture or in a number of time steps in a cyclic implementation. The

benefit is a boosted tolerance to imperfections of analog VLSI components resulting in

significant increases in costly precision.

In Chapter 2 we described an internally analog, externally digital architecture for par-

allel matrix-vector multiplication (MVM). A three-transistor unit cell combines a single-

bit dynamic random-access memory (DRAM) and a charge injection device (CID) binary

multiplier and analog accumulator. Digital multiplication of variable resolution is obtained

with bit-serial inputs and bit-parallel storage of matrix elements, by combining quantized

outputs from multiple rows of cells over time as we illustrate again in Figure 6.1.

In this chapter we use non-radix-2 data encoding to enhance the precision of MVM

computation on mixed-signal array processors which employ flash as well as other Nyquist-



CHAPTER 6. RESOLUTION OF NYQUIST-RATE KERNEL MACHINES 74

rate ADCs. In Section 6.2 we describe redundant binary representation of the input vector

and matrix coefficients in the context of Section 2.4 to obtain additional gains in precision

of MVM computation on the Kerneltron I architecture. In Section 6.3 we introduce an-

other Nyquist-rate quantization scheme, algorithmic partial analog-to-digital conversion,

where several algorithmic partial analog-to-digital conversion cycles are interleaved with

computation on the matrix-vector multiplying array. This allows to perform only one al-

gorithmic quantization for multiple computation cycles, making algorithmic partial ADCs

more area and power efficient than flash ADCs of equivalent precision. A row-cumulative

version of the algorithmic partial ADC, further reducing area and power requirements but

allowing for smaller gains in resolution, is presented in Section 6.4. Section 6.5 compares

row-parallel flash ADCs, and row-parallel and row-cumulative algorithmic partial ADCs,

with and without radix-less-than-2 data encoding, in terms of resolution gain, and discusses

implementation complexity issues.

6.2 Non-radix-2 Row-parallel Flash A/D Conversion

As shown in Section 2.4, significant improvements in precision can be obtained by

exploiting the binary representation of matrix elements and vector inputs, and perform-

ing the computation (2.4) in the digital domain, from quantized estimates of the partial

outputs (2.5) converted to digital domain by row-parallel flash quantizers. The effect of

averaging the quantization error over a large number of quantized values of Ym
(i;j) boosts

the precision of the digital estimate of Ym, beyond the intrinsic resolution of the analog

array and the A/D quantizers used.

Higher resolution, beyond the aforementioned enhancements, can be traded for a rela-

tively modest increase in implementation complexity (in terms of circuit area and compu-

tation time), by utilizing a non-radix-2 binary representation of the input vector and matrix

elements in Figures 6.1 and 6.2. Assume, in the case L < log2(N +1), a radix-
 encoding
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of matrix elements:

Wmn =
I

0
�1X

i=0



�(i+1)

w
(i)
mn
; (6.1)

and input vectors:

Xn =
J 0
�1X

j=0



�(j+1)

x
(j)
n
; (6.2)

with 1 < 
 � 2 in general, and 
 < 2 in particular. This representation is redundant

since 
 < 2 requires more binary coefficients in the encoding to obtain a given resolution,

than the corresponding number of bits for 
 = 2. For example, consider the number of

radix-2 bits I and number of radix-
 coefficients I0 in the encoding of weight coefficients.

It is shown that the quantization error in a radix-
 (algorithmic) representation (6.1) with

0 < 
 < 2 is bounded by 

�(I+1) [61]. Equating resolution in terms of (bounds on) the

worst-case quantization error in both radix-2 and radix-
 cases [61],



�I

0

= 2�I (6.3)
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produces an estimate for the (maximum) required number of radix-
 coefficients

I
0 = I

log 2

log 

=

I

log2 

; (6.4)

where thus I 0 > I for 
 < 2. This dependence is illustrated for a range of 
 values

in Figure 6.3. Two cases, I = 4 and I = 8, are shown. It can be observed that for


 =
p
2 � 1:41 the number of binary coefficients doubles to maintain resolution. The

same arguments hold for J and J 0 in the radix-
 encoding of the inputs:

J
0 = J

log 2

log 

=

J

log2 

: (6.5)

Following the derivations in the radix-2 case (Section 2.4), the signal range in the radix-
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 case:
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together with the noise variance:

�
2
E
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2
e

I0
�1X
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yields, for large I and J , an expression for signal-to-quantization-noise (SQNR) ratio in

terms of the radix 
:
S

�E
� 


2 � 1

(
 � 1)2
s

�e
=

 + 1


 � 1

s

�e
(6.8)

It is clear that a redundant representation, 
 < 2, leads to improved precision at the output,

although at a cost. By doubling the number of binary coefficients in the representation of

weights and inputs (
 =
p
2), the SQNR improves by a factor 3 + 2

p
2 = 5:83, almost

twice the improvement (by a factor 3) in the radix-2 case. Thus, coefficient doubling yields

an improvement of one bit in median resolution, which as in (2.19) is given by (6.8), (2.17)

and (2.18):

S

ME

�
p
3=2

0:675


 + 1


 � 1

s

Me

� 1:28

 + 1


 � 1

s

Me

(6.9)

The dependence on 
 of the improvement in resolution at the output relative to that of the

ADC is shown in Figure 6.4.

6.3 Row-parallel Algorithmic Partial A/D Conversion

Another choice of implementation of the A/D block is to accumulate computational

array outputs in analog domain and quantize the resulting sums for every row. These quan-

tized values can then be accumulated across multiple rows corresponding to a single matrix



CHAPTER 6. RESOLUTION OF NYQUIST-RATE KERNEL MACHINES 78

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

2

3
G

ai
n 

in
 R

es
ol

ut
io

n 
(b

it
s)

Radix, γ

Medium resolution
SQNR             

Figure 6.4: Overall resolution enhancement in a MVM architecture with row-parallel flash
ADCs with non-radix-2 binary weights. Improvement in bits in median resolution and
SQNR of overall system as compared to that of each of the row-parallel flash A/D convert-
ers with binary weights 
 < 2.

element in digital domain. We propose a row-parallel algorithmic partial A/D converter,

combining properties of both pipelined and iterative algorithmic ADCs by interleaving bit-

serial input signal with the previous cycle’s residue.

To design a row-parallel algorithmic partial A/D converter we use residue modula-

tors [52] comprising a quantizer and an adder. Its diagram and transfer function are shown

in Figure 6.5 (a). The digital code is generated as:

Dout1 := (Vin1 > Vref); (6.10)

with the signal range decreasing by a factor of two:

Vout1 = Vin1 � VrefDout1; (6.11)

as shown in the figure.
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A radix-
 iterative algorithmic A/D converter consisting of a residue modulator de-

scribed above, multiplier, and a delay element is shown in Figure 6.5 (b). The output code

is generated serially:

Dout := (
V 0

in
> Vref) (6.12)

The input signal is sampled once:

V
0(0)
in = Vin; (6.13)

producing MSB value in that clock cycle. The rest of the bits are obtained by performing

the cyclic A/D conversion on respective amplified residues:

V
0(i+1)
in = V

(i)
out (6.14)

The output voltage for a general radix-
 case is defined as:

Vout = 
V
0

in
�DoutVref ; (6.15)

where Vref is equal to the (effective) input range, s. The range of the residue signal is the

same as the input range as shown on the transfer characteristic plot in the same figure.

The inherent property of the analog array architecture is bit-serial representation of the

row outputs, Ym
(i;j). If the input vectors binary coefficients, xn(j), are presented MSB-first

over time, the outputs are generated MSB-first as well. We use this property in a design of

a residue-input additive algorithmic partial A/D converter presented in Figure 6.5 (c).

In this scheme, the input to the rightmost quantizer is not only the residue of the pre-

vious cycle computation, but a function of its sum with the row output produced in the

given cycle. This way, after a more significant bit is computed, the analog residue of this

computation is combined with the next (in a bit-serial stream) incoming binary coefficient

of the same weight. This addition doubles the signal range making it 2s. This calls for an

additional block which would perform extra 1-bit quantization and halve the range. For this

purpose we use a residue modulator shown in Figure 6.5 (a) with generated digital code

described in (6.10).
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The code for the second output bit of the algorithmic partial A/D converter is:

Dout2 := (
Vout1 > Vref) (6.16)

Substituting equation (6.10) into (6.11) and then into (6.16), we get:

Dout2 := [
(Vin1 �Dout1Vref) > Vref ]

:= [
(Vin1 � (Vin1 > Vref)Vref) > Vref ] (6.17)

The expression for the output voltage

Vout2 = 
Vout1 �Dout2Vref (6.18)

can be expanded, using equation (6.11), as

Vout2 = 
(Vin1 �Dout1Vref)�Dout2Vref ; (6.19)

describing a four-segment, double-range, gain-
 transfer characteristic shown in Figure 6.5 (c).

The 2-bit-per-iteration algorithmic partial A/D converter described is used in the row-

parallel architecture shown in Figure 6.6, implementing the A/D block of Figure 6.1.

After all of matrix elements are fed into the algorithmic partial A/D converter, the con-

version can be continued by operating on the signal residue (as in standard iterative al-

gorithmic ADCs). In this case the input signal is equal to zero and the residue is of the

range s, so the output of the first quantizer is always zero. The resolution in this case is

limited only by circuit implementation inaccuracies (i.e. gain error, second quantizer com-

parator offset). However, in order to perform precision analysis, equivalent to previously

considered row-parallel conversion schemes, we limit the number of conversion cycles to

L (for radix-2 case, or more for the same signal range for radix-
 case). Clearly, L should

be greater or equal to J
0. Otherwise, some LSB coefficients of X would be omitted from

computation. We consider the non-ideal case when the overall system precision is limited

by that of the ADC (as before), or L < log2(N + 1).

Assuming radix-
 matrix elements and input vector encoding as in (6.1) and (6.2), in

this scheme the A/D outputs Q00

m

(i) are full digital quantized outputs of i-th row computed



CHAPTER 6. RESOLUTION OF NYQUIST-RATE KERNEL MACHINES 82

ADC1

ADC2

ADC3

+ .+
+

+ +

+
+

+ +

+
+

+ +

+
+

+

+

+
Q

’’ (0)

m

m

m

m

γ

ANALOG DIGITAL

z
-1

z
-1

z
-1

z
-1

Q
’’ (1)

Q
’’ (2)

Q
’’ (3)

+ +
z

-1

.
+

-
+

+ .
γ+. +

.-

ADC0

+ +
z

-1

.
+

-
+

+ .
γ+. +

.-

+ +
z

-1

.
+

-
+

+ .
γ+. +

.-

+ +
z

-1

.
+

-
+

+ .
γ+. +

.-

Y
(0,0)Y

(0,1)
Y

(0,3)
Y

(0,2)

Y
(1,0)Y

(1,1)
Y

(1,3)
Y

(1,2)

Y
(2,0)Y

(2,1)
Y

(2,3)
Y

(2,2)

Y
(3,0)Y

(3,1)
Y

(3,3)
Y

(3,2)

mmmm

mmmm

mmmm

mmmm

Qm

Figure 6.6: Block diagram of the ADC block implemented with row-parallel algorithmic
partial A/D converters, in common for m-th output vector component with I-bit matrix
elements and J-bit input vector. The case of I0 = J

0 = 4 (I 0 = I = J
0 = J , when 
 = 2)

with MSB-first input vectors bit-serial representation.

over J 0 clock cycles, as opposed to J
0 binary coefficients, Qm

(i;j), for a given i, in the

row-parallel flash ADC architecture described in Section 6.2. Ideally, they relate as:

Q
00(i)
m

=
J

0
�1X

j=0



�(j+1)

Q
(i;j)
m

(6.20)

In the row-parallel algorithmic partial A/D conversion case coefficients Qm
(i;j) are not

explicitly computed. Instead analog residue from the previous cycle is added to the input

of the current one. The final inner-product computation result can be constructed off chip,

in digital domain as:

Qm =
I

0
�1X

i=0



�(i+1)

Q
00(i)
m

(6.21)

To asses the overall system resolution assume that after L conversion cycles the quanti-

zation error, e, is random and uniform. Let S be the signal range of the constructed digital

output Qm as before. According to equation (6.21), the latter can be expressed as:

S = s

I0
�1X

k=0

1


i+1
� s

1=


1� 1=

= s

1


 � 1
; (6.22)
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for large I 0. Similarly to the previous sections, the noise variances relate as:

�
2
E
= �

2
e

I
0
�1X

k=0

1


2(i+1)
� �

2
e

1


2 � 1
(6.23)

In terms of signal-to-quantization-noise ratio (obtained by dividing (6.22) by the square

root of (6.23)), this corresponds to:

S

�E
� 1=(
 � 1)q

1=(
2 � 1)

s

�e
=

s

 + 1


 � 1

s

�e
(6.24)

Thus, using row-parallel radix-
 algorithmic partial A/D conversion scheme, we achieve an

improvement in signal-to-quantization-noise ratio by the factor derived above. This result

is plotted in Figure 6.7.

To characterize the system performance in terms of median resolution, we substitute

the values of noise variances in both cases from equations (2.17) and (2.18) into equa-

tion (6.24):

S

ME

�
p
3=2

0:675

s

 + 1


 � 1

s

Me

� 1:28

s

 + 1


 � 1

s

Me

(6.25)

Figure 6.7 illustrates the resulting improvement in median resolution of the overall system

as compared with that of each A/D converter, as a function of radix. In radix-2 case, the gain

in median resolution is log2(2:22) � 1:1 bits. For smaller radixes, the median resolution

increases further. For instance, when the number of binary coefficients doubles (
 � 1:4),

the median resolution improves by 1.6 bits.

6.4 Row-cumulative A/D Conversion

Analog-to-digital conversion can also be performed by a single algorithmic partial A/D

converter described above for multiple analog array rows corresponding to a single matrix

row. Multiple analog outputs are added together to construct the inner-product computation

overall analog output value. This operation is performed in both analog and digital domains

by means of the cumulative architecture shown in Figure 6.8 (for the number of rows equal

to four).
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Figure 6.7: Overall resolution enhancement in a MVM architecture with row-parallel par-
tial algorithmic ADCs for non-radix-2 binary inputs and weights. Improvement in bits in
median resolution and SQNR of overall system as compared to that of each of the row-
parallel A/D converters with binary weights 
 < 2;

Row analog output values are first combined in analog domain. Assuming that the input

vector, X , is presented MSB-first in a bit-serial fashion, elements, Ym
(i;j), of the analog

array output matrix have the same weight for i + j = const (this corresponds to elements

on diagonals parallel to the main diagonal of the Ym
(i;j) matrix) with more significant bits

available first. A delay line of sample-and-hold cells ensures that the signals added are of

the same binary weight in the constructed final product. Assume again that a row output

signal range is s. Every addition of two equally weighted outputs produces a signal of range

2s. This could cause an overflow in the analog accumulative delay line. A mixed-signal

accumulator cell consisting of a resetable �� � converter and a digital delay element are

used to handle overflows for every addition in the analog delay line. Whenever the sum

is out of range, a carry-bit is generated and propagated by a digital accumulator through
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an equivalent delay line, now in digital domain. A similar mixed-signal mash � � �

architecture was reported in [52]. Effectively two goals are reached. The signal range is

kept constant, and the analog value is partially quantized.

By the time an analog value is accumulated over I0 rows, I 0 � 1 bits of its digital

representation are already available. Accumulated values are further processed by an al-

gorithmic partial A/D converter described in detail in the previous section. Here, they are

combined with the residue of a previous cycle’s conversion to generate the remaining bits.

In digital domain all of the bits are accumulated to produce the K-bit representation of the

constructed inner-product computation result, Qm, for m-th matrix row.

Once again, after all of matrix elements are fed into the partial algorithmic A/D con-

verter, the conversion can be continued by operating on the signal residue. The precision

would only be limited by circuit implementation inaccuracies. However, in order to per-

form comparative precision analysis, equivalent to the previous conversion schemes, we

limit the number of conversion cycles to K.

The cumulative algorithmic partial A/D conversion scheme uses one ADC per one out-

put vector component, Ym. This means that precision of the inner-product computation is

the same as that of an A/D conversions - L bits. Addition in analog domain prior to conver-

sion requires fewer ADCs per array. It also significantly simplifies digital postprocessing,

eliminating most of the need for addition and multiplication. The system however exhibits

lower precision and is not as versatile or scalable.

6.5 Comparative Study

The signal-to-quantization-noise ratio and the median resolution of kernel machines

with three types of Nyquist-rate quantizers, for 
 =
p
2, are plotted in Figures 6.9 and 6.10

respectively. When L < log2(N + 1) the SNR is enhanced by approximately 2.5 bits and

the median resolution improved by 2.9 bits in a flash ADC architecture, and by 1.3 bits and

1.6 bits, respectively, in a row-parallel algorithmic partial ADC architecture. The gains are
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Figure 6.8: Block diagram of the ADC block implemented with a single algorithmic A/D
converter in common for m-th output vector component with I-bit matrix elements and
J-bit input vector. The case of I0 = J

0 = 4 (I 0 = I = J
0 = J , when 
 = 2) with MSB-first

input vectors bit-serial representation.

due to averaging in digital accumulation of partial products,Q(i;j)
m

and Q00
(i)
m

, of redundantly

encoded input vectors and matrix row elements. When I0 = J
0 = 4, N = 511 and the ADC

resolution L is 9 bits, the resolution of ADC exactly matches the number of columns in the

array. In this case, assuming sufficient precision of analog array computation, an ideal

precision of 17 bits is obtained in all cases making the system truly transparent for the

outside digital world.

Algorithmic partial ADCs perform partial or full accumulation in analog domain and

therefore produce smaller gains in resolution caused by averaging quantized partial prod-

ucts in digital domain. They however have an advantage of lower area and power require-

ments and simplified digital postprocessing, allowing for higher resolution implementa-

tions using equivalent amount of resources and limited only by circuit implementation in-

accuracies.
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Figure 6.9: SQNR of three kernel machines with different types of Nyquist-rate quantizers
versus a single ADC resolution, L. Shown is the case for I = J = 4, N = 511, 
 =
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6.6 Conclusions

Parallelism in computation, bit-wise data encoding and redundancy in the data repre-

sentation offer ways to enhance the precision of the MVM computation an a Kerneltron

architecture with Nyquist-rate ADCs (e.g., Kerneltron I). Flash and algorithmic quantiza-

tion schemes trade off between higher resolution and lower implementation costs.

The resolution of computation on Kerneltron I architecture is enhanced by approxi-

mately 2 bits above each row-parallel flash quantizer resolution as was initially shown in

Section 2.4. Further enhancements are achieved by utilizing non-radix-2 redundant data

representation. Doubling the number of coefficients in the representation of inputs and

matrix elements yields an additional improvement of 1 bit in resolution, for a total of ap-

proximately 3-bit enhancement.

In the general framework of radix-
 data representation, row-parallel and row-cumulative

algorithmic partial ADCs have been introduced. Algorithmic partial ADCs produce smaller
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Figure 6.10: Median resolution of three kernel machines with different types of Nyquist-
rate quantizers versus a single ADC resolution, L. Shown is the case for I = J = 4,
N = 511, 
 =
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2.

gains in resolution, but have an advantage of lower area and power requirements and simpli-

fied digital postprocessing, allowing for higher resolution implementations with equivalent

resources usage.

In principle, virtually unlimited precision can be obtained by carefully configuring the

Kerneltron so that the resolution of the analog computation and the ADC matches the num-

ber of columns for each block. This makes the internal analog implementation of the ar-

chitecture truly transparent to the user at the digital interface. For high-dimensional input

spaces (e.g.,N = 1024), the nonlinearity in row-wise analog accumulation, as well as area

and power requirements in the ADC implementation make this approach impractical. In

Chapter 7 we present a stochastic technique allowing to significantly relax requirements

on quantizers resolution and to avoid limitations of analog accumulation nonlinearity in

high-dimensional kernel machines.
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Chapter 7

Stochastic High-Dimensional Kernel

Machines

In Chapters 2 - 5 we presented internally analog, externally digital architectures for ded-

icated VLSI kernel-based array processing that outperform purely digital approaches with

a factor 100-10,000 in throughput, density and energy efficiency. Chapter 6 was devoted

to methods of enhancing computation resolution in kernel machines with low-resolution

Nyquist-rate quantizers. In this chapter we unveil a stochastic technique allowing to im-

plement very high-dimensional kernel machines operating at full digital resolution. Re-

quirements on the resolution of quantizers and precision of the analog implementation are

significantly relaxed at the expense of a small overhead in data coding.

7.1 Introduction

As demonstrated in Section 1.4.1, the computational core of inner-product based kernel

operations in image processing and pattern recognition is that of matrix-vector multiplica-

tion (MVM) in high dimensions:

Ym =
N�1X
n=0

WmnXn (7.1)
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with N -dimensional input vector Xn, M -dimensional output vector Ym, and M�N matrix

elementsWmn. The matrix elementsWmn correspond to support vectors in a support vector

machine [2]. Kerneltron architectures are tailored to perform MVM operation with very

high computational efficiency and low area utilization.

Significant digital resolution enhancement in Kerneltron architectures implemented with

with low-resolution analog components can be obtained by exploiting Bernoulli random

statistics of binary vectors. Largest gains in system precision are obtained for high in-

put dimensions. The framework allows to operate at full digital resolution with relatively

imprecise analog hardware, and with minimal cost in implementation complexity to ran-

domize the input data.

In what follows we present a full-digital-resolution stochastic Kerneltron architecture.

Section 7.2 identifies sources of imprecision of MVM computation on mixed-signal arrays.

Section 7.3 demonstrates relaxed requirements on analog implementation due to reduction

of active range of analog array outputs when inputs are Bernoulli distributed, and describes

a method of pseudo-random encoding of real image data. Conclusions are given in Sec-

tion 7.4.

7.2 Kerneltron System-Level Computation Resolution

The Kerneltron architecture combines the computational efficiency of analog array pro-

cessing with the precision of digital processing and the convenience of a programmable and

reconfigurable digital interface.

As shown in Chapters 2 and 4, the digital representation is embedded in the analog array

architecture, with inputs presented in bit-serial fashion (2.3) or (4.3), and matrix elements

stored locally in bit-parallel form (2.2) and (4.2). The key is to compute and accumulate the

binary-binary partial products (2.5) and (4.6) using an analog MVM array, and to combine

the quantized results in the digital domain according to (2.4) or accumulate the sum (4.5) in

the analog domain using oversampling ADCs. The addends in (2.5) and (4.6) are computed
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using a single charge-mode AND cell in Figure 2.3, for unsigned multiply-and-accumulate

operation, or a complementary exclusive-OR cell in Figure 4.1, for signed multiplication

and accumulation.

The overall system resolution of Kerneltron I is limited by the precision in the (flash)

quantization of the outputs from the array. Through digital postprocessing, two bits are

gained over the resolution of row-parallel ADCs as shown in Chapter 2 and [40]. Kernel-

tron II architecture employs higher resolution oversampling quantizers. The overall system

resolution in this case is limited mainly by the linearity of analog accumulation (4.6). In

both of these kernel machines larger resolutions in high-dimensional implementations can

be obtained by accounting for the statistics of binary terms in the addition (2.5) and (4.6).

This allows to relax requirements on both quantizer resolution and analog accumulation

accuracy (e.g., linearity, noise) , as elaborated in the next section. While the approach is

suitable for both Kerneltron I and Kerneltron II processors, in the rest of this chapter we

concentrate on the former.

7.3 Resolution Enhancement Through Stochastic

Encoding

Since the analog inner-product (2.5) is discrete, zero error can be achieved (as if com-

puted digitally) by matching the quantization levels of the ADC with each of the N + 1

discrete levels in the inner-product. Perfect reconstruction of Ym
(i;j) from the quantized

output, for an overall resolution of I + J + log2(N + 1) bits, assumes the combined effect

of noise and nonlinearity in the analog array and the ADC is within one LSB (least signifi-

cant bit). For large arrays, this places stringent requirements on analog precision and ADC

resolution, L � log2(N + 1).

The implicit assumption is that all quantization levels are (equally) needed. A straight-

forward study of the statistics of the inner-product, below, reveals that this is poor use of
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available resources.

7.3.1 Bernoulli Statistics

For the purposes of this chapter we assume signed, rather than unsigned, binary values

for inputs and weights, xn(j) = �1 and wmn
(i) = �1. This translates to exclusive-OR

(XOR), rather than AND, multiplication on the analog array, an operation that can be easily

accomplished with the CID/DRAM architecture by differentially coding input and stored

bits using twice the number of columns and unit cells, as shown in Section 4.2.2. A single

row of such a differential architecture is depicted in Figure 7.1.

To show that equal spacing of quantization levels over the full range of the array output

Ym
(i;j) leads to poor use of resources, let us investigate statistics of the output when input

bits xn(j) are Bernoulli distributed (i.e., fair coin flips). For input bits xn(j) that are Bernoulli

distributed, the (XOR) product terms wmn
(i)
xn

(j) in (2.5) are Bernoulli distributed, regard-
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less of wmn
(i). Their sum Ym

(i;j) thus follows a binomial distribution

Pr(Y (i;j)
m

= 2k �N) =

 
N

k

!
p
k(1� p)N�k (7.2)

with p = 0:5, k = 0; :::; N , which in the Central Limit N ! 1 approaches a normal

distribution with zero mean and variance N . In other words, for random inputs in high

dimensionsN the active range (or standard deviation) of the inner-product is N1=2, a factor

N
1=2 smaller than the full range N .

Figure 7.2 illustrates the effect of Bernoulli distribution of the inputs on the statistics of

an array row output. Reduction of the active range of the inner-product to N1=2 allows to

relax the effective resolution of the ADC by a factor proportional to N
1=2, as the number

of quantization levels is proportional to N1=2, not N . This gain is especially beneficial for

parallel (flash) quantizers, as their area requirements grow exponentially with the number of

bits. Additionally, Bernoulli modulation of inputs allows to significantly relax requirements

on the linearity of the analog addition (2.5) by making non-linearity outside the reduced

active range irrelevant.

In principle, any reduction in conversion range will result in a small but non-zero proba-

bility of overflow. In practice, the risk of overflow can be reduced to negligible levels with a

few additional bits in the ADC conversion range. An alternative strategy is to use a variable

resolution ADC which expands the conversion range on rare occurrences of overflow.1

7.3.2 Experimental Results

While the reduced range of the analog inner-product supports lower ADC resolution

in terms of number of quantization levels, it requires low levels of mismatch and noise so

that the discrete levels can be individually resolved, near the center of the distribution. To

verify this, we conducted the following experiment.

Figure 7.3 shows the measured outputs on one row of 128 CID/DRAM cells, config-

ured differentially to compute signed binary (exclusive-OR) inner-products of stored and

1Or, with stochastic input encoding, overflow detection could initiate a different random draw.
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Figure 7.2: Output of a single row of the analog array, Y (i;j)
m

, in the stochastic architecture
with Bernoulli encoded inputs. Top: Y (i;j)

m
is a discrete random variable with probability

density approaching normal distribution for large N . In Central limit the standard deviation
is proportional to the square root of the full range,

p
N . The requirement on ADC resolu-

tion is relaxed by a factor
p
N , as the number of quantization levels is proportional to

p
N ,

not N . Bottom: The requirement on linearity of analog accumulation (2.5) is relaxed as the
range of Y (i;j)

m
is reduced by a factor

p
N .



CHAPTER 7. STOCHASTIC HIGH-DIMENSIONAL KERNEL MACHINES 95

(a)

0.2 0.4 0.6 0.8

−20

−10

0

10

20

Output Voltage (V)

In
ne

r 
Pr

od
uc

t

0.2 0.4 0.6 0.8
0

10

20

30

40

50

Output Voltage (V)

C
ou

nt

(b)

Figure 7.3: Experimental results from CID/DRAM analog array. (a) Output voltage on the
sense line computing exclusive-or inner-product of 64-dimensional stored and presented
binary vectors. A variable number of active bits is summed at different locations in the
array by shifting the presented bits. (b) Top: Measured output and actual inner-product
for 1,024 samples of Bernoulli distributed pairs of stored and presented vectors. Bottom:
Histogram of measured array outputs.
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presented binary vectors in 64 dimensions. The scope trace in Figure 7.3 (a) is obtained by

storing all +1 bits, and shifting a sequence of input bits that differ with the stored bits by

32� 4 bits. The left and right segment of the scope trace correspond to different selections

of active bit locations along the array that are maximally disjoint, to indicate a worst-case

mismatch scenario. The measured and actual inner-products in Figure 7.3 (b) are obtained

by storing and presenting 1,024 pairs of random binary vectors. The histogram shows a

clearly resolved, discrete binomial distribution for the observed analog voltage.

For very large arrays, mismatch and noise may pose a problem in the present imple-

mentation with floating sense line. A sense amplifier with virtual ground on the sense line

and feedback capacitor optimized to the N1=2 range would provide a simple solution.

7.3.3 Real Image Data

Although most randomly selected patterns do not correlate with any chosen template,

patterns from the real world tend to correlate, and certainly those that are of interest to

kernel computation 2. The key is stochastic encoding of the inputs, as to randomize the bits

presented to the analog array.

Randomizing an informative input while retaining the information is a futile goal, and

we are content with a solution that approaches the ideal performance within observable

bounds, and with reasonable cost in implementation. Given that “ ideal” randomized inputs

relax the ADC resolution by log2N=2 bits, they necessarily reduce the word-length of the

output by the same. To account for the lost bits in the range of the output, it is necessary to

increase the range of the “ ideal” randomized input by the same number of bits.

One possible stochastic encoding scheme that restores the range is N1=2-fold oversam-

pling of the input through (digital) delta-sigma modulation. This is a workable solution;

however we propose one that is simpler and less costly to implement. For each I-bit input

component Xn, pick a random integer Un =
P

J�1
j=0 2

�j�1
u
(j)
n

in the range�(N1=2�1), and

2This observation, and the binomial distribution for sums of random bits (7.2), forms the basis for the
associative recall in a Kanerva memory.
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Figure 7.4: Input modulation and output reconstruction scheme in the stochastic MVM ar-
chitecture. The input vector binary coefficients are modulated by subtracting from them
Bernoulli coefficients of a larger uniformly distributed random variable Un to produce
pseudo-Bernoulli coefficients (x(j)

n
� u

(j)
n
). The corresponding analog inner-product is

quantized by a ADC with resolution requirements relaxed by a factor
p
N . The analog

inner-product w(i)
m
� u(j) is computed once, quantized, and stored in a digital memory. It is

subsequently added to the inner-product of each modulated input vector with stored weights
to reconstruct the true partial inner-product Y (i;j)

m
.

subtract it to produce a modulated input ~Xn = Xn � Un with log2N=2 additional bits. It

can be shown that for worst-case deterministic inputs Xn the mean of the inner-product for

~Xn is off at most by �N1=2 from the origin.

Note that Un is uniformly distributed across its range, and therefore its binary coeffi-

cients u(j)
n

are Bernoulli random variables. Figure 7.4 illustrates this encoding method for

particular i and j. Two rows of the array are shown. Truly Bernoulli inputs u(j)
n

are fed into

one row. The inputs of the other row are stochastically modulated binary coefficients of

the informative input ~xn = xn � un. Inner-products of approximately normal distribution

are computed on both rows. Their smaller active range allows to relax the requirements
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Figure 7.5: Histograms of partial binary inner-products Y (i;j)
m for 256 pairs of randomly

selected 32 � 32 pixel segments of Lena. Left: with unmodulated 8-bit image data for
both vectors. Right: with 12-bit modulated stochastic encoding of one of the two vectors.
Top: all bit planes i and j. Bottom: most significant bit (MSB) plane, i = j = 0.
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on the resolution of the quantizer by a factor N1=2. The desired inner-products for Xn are

retrieved by digitally adding the inner-products obtained for ~Xn and Un. The random offset

Un can be chosen once, so its inner-product with the templates can be pre-computed upon

initializing or programming the array (in other words, the computation performed by the

top row in Figure 7.4 is only performed once). The implementation cost is thus limited

to component-wise subtraction of Xn and Un, achieved using one full adder cell, one bit

register, and ROM storage of the un(i) bits for every column of the array.

Figure 7.5 provides a proof of principle, using image data selected at random from

Lena. 12-bit stochastic encoding of the 8-bit image, by subtracting a random variable in

a range 15 times larger than the image, produces the desired binomial distribution for the

partial bit inner-products, even for the most significant bit (MSB) which is most highly

correlated.

7.4 Conclusions

We presented a mixed-signal paradigm for high-resolution parallel inner-product com-

putation in very high dimensions, suitable for efficient implementation of kernels in image

processing. At the core of the externally digital architecture is a high-density, low-power

analog array performing binary-binary partial matrix-vector multiplication described in

Chapters 2 - 5. Full digital resolution is maintained even with low-resolution analog-to-

digital conversion, owing to random statistics in the analog summation of binary products.

A random modulation scheme produces near-Bernoulli statistics even for highly correlated

inputs, relaxing precision requirements in the analog implementation by one bit for each

four-fold increase in vector dimension. The approach is validated with real image data, and

with experimental results from a CID/DRAM analog array prototype in 0.5 �m CMOS.



100

Part V

Conclusions
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Chapter 8

Contributions and Impact

8.1 Summary of Contributions

Detection of complex objects in streaming video poses two fundamental challenges:

training from sparse data with proper generalization across variations in the object class

and the environment; and the computational power required of the trained classifier running

real-time. The Kerneltron supports the generalization performance of a Support Vector

Machine (SVM) and offers the bandwidth and efficiency of massively parallel architecture.

This mixed-signal VLSI processor is dedicated to the most intensive of SVM operations:

evaluating a kernel over large numbers of vectors in high dimensions. An internally analog,

externally digital architecture offers the best of both worlds: the density and energetic

efficiency of an analog VLSI array, and the convenience and versatility of a digital interface.

8.1.1 Kerneltron I

At the core of Kerneltron I is an internally analog, fine-grain computational array per-

forming externally digital matrix-vector multiplication of an incoming vector and a set of

support vectors. The three-transistor unit cell in the array combines single-bit dynamic stor-

age, binary multiplication, and zero-latency analog accumulation. Analog partial products
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are quantized using low-resolution row-parallel flash analog-to-digital converters utilizing

a compact charge-based comparator and a folding circuit. Digital multiplication of variable

resolution is obtained with bit-serial inputs and bit-parallel storage of matrix elements, by

combining quantized outputs from multiple rows of cells over time. The combination of

analog array processing and digital postprocessing enhances the precision of the digital

MVM output, exceeding the resolution of the quantized analog array outputs by 2 bits. A

512� 128 Kerneltron I prototype fabricated in 0.5 �m CMOS offers 2�1012 binary MACS

(multiply-and-accumulates per second) per Watt of power.

8.1.2 Kerneltron II

In the Kerneltron II architecture an oversampling analog-to-digital converter accumu-

lates partial inner-products in the analog domain, with inputs encoded in unary format. This

avoids the need for high-resolution flash ADCs, which are replaced with single-bit quan-

tizers in the delta-sigma loop. High throughput is maintained by delta-sigma algorithmic

analog-to-digital converters averaging across all input vector unary bit planes in a single

quantization cycle. Iteratively resampling of the modulation residue, by feeding the inte-

grator output back to the input, yields a bit resolution linear in the number of cycles, similar

to an algorithmic analog-to-digital converter. A 256 � 128 cell prototype was fabricated

in 0.5 �m CMOS. The combination of analog array processing, oversampled input en-

coding, and delta-sigma algorithmic analog-to-digital conversion delivers a computational

throughput of over 1 GMACS per mW of power, while maintaining 8-bit effective digital

resolution.

8.1.3 Algorithmic Enhancements

Redundant data coding allows to further increase computational precision at the ex-

pense of relatively modest increase in implementation complexity of Nyquist-rate kernel

machines. This enhancement is especially important for high-dimensional kernel machines
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Table 8.1: Comparative analysis of Kerneltron II and other processors ([13], [14], [15], [18], [19], [17], [62]).
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Ultra Sparc II 1998 0.25 - 128 - 1(0.0031) 4 400 57,500 - - 2.6/3.3

TI DSP TMS320C6701 2000 0.18 169 32 0.3 1(0.021) 8 167 1,800 600 600 1.9/3.3

Motorola DSP StarCore 2000 0.13 225 16 0.3 - 4 300 15 0.13 0.13 0.9

Sony Linear Array 1996 0.4 226 1 - 5.4 4320 50 - 0.29 0.05 2/3.3

NEC IMAP 1997 0.55 219 8 1.28 - 256 40 1,600 0.78 0.78 3.3

MIT (Sodini) 1999 0.6 79 8 0.28 - 64x64 17 300 1.07 0.02 2.5/3.3

ACE16K 2001 0.35 143.96 8 (A) - 330 128x128 - 4,000 0.012 0.012 3.3

Kerneltron II 2001 0.5 9 1 6.6 - 128x256 0.1 5.9 0.014 0.0009 5

Kerneltron-III (prelim.) - 0.35 48 1 105 - 512x1024 0.1 34 0.005 0.0003 3.3
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(e.g.,N = 1024). In addition, an alternative Nyquist-rate quantization scheme, algorithmic

partial A/D conversion, allows to achieve precision higher than that of a flash ADC using

equivalent amount of area and power resources by performing several partial quantizations

in a single computation cycle.

Ultimately, high-resolution matrix-vector multiplication in very high dimensions is per-

formed using stochastic data encoding. Full digital resolution is maintained even with low-

resolution analog-to-digital conversion, owing to random statistics in the analog summation

of binary products. A random modulation scheme produces near-Bernoulli statistics even

for highly correlated inputs, relaxing precision requirements in the analog implementa-

tion by one bit for each four-fold increase in vector dimension. The approach is validated

with real image data, and with experimental results from a Kerneltron prototype in 0.5 �m

CMOS.

8.2 Comparative Study

A comparative analysis of Kerneltron II and other modern processors ([13], [14], [15],

[18], [19], [17], [62]) is presented in Table 8.1. The third last column represents power

efficiency (power in mW over throughput in millions of multiply-and-accumulates) for 4-

bit data encoding 2. Power efficiency accounts for both throughput and power making it

a good characteristic of performance of processors used in portable devices. Kerneltron II

outperforms all listed digital processors in terms of power efficiency by several orders of

magnitude 3. The power efficiency is comparable to ACE16K CNN-inspired mixed-mode

architecture which is implemented in a more advanced technology. In addition, Kerneltron

1From the previous page: Throughput is limited by memory access time, memory-processor communica-
tion bandwidth, and code and compiler efficiency.

2For object detection tasks 4-bit data encoding is deemed sufficient both for live and artificial classification
systems.

3Theoretically, Motorola StarCore DSP core power efficiency is a factor of 10 worse than that of Kernel-
tron II. However, the data for StarCore external memory access time and compiler overhead are not available
and are estimated to introduce significant additional degrade in attained throughput when performing matrix-
vector multiplication.
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II uses only a small fraction of other processors silicon area to deliver a significant through-

put. It is implemented in a conservative technology and operates at conservative frequency

and supply voltage.

Kerneltron processors achieve computational efficiency above 1GOPS/mWatt at full

digital resolution, a factor of 10,000 better than a modern multiscalar CPU. The rationale

behind such an advantage is based on the following set of principles: large-scale fine-grain

array processing – for high-dimensional matrix operations; massive-parallelism and em-

bedded memories – for real-time performance in computationally-intensive tasks; compact

mixed-signal implementation with parallel data converters – for autonomous low-power

operation with convenient digital interface; redundant and stochastic data coding schemes

– to achieve fully-digital computation precision with both analog and digital components.

Kerneltron massively parallel mixed-signal VLSI architecture is easily scalable and

capable of delivering 105 GMACS at 34 mW of power in a 0.35 �m technology (Kerneltron

III in Table 8.1) - a level of throughput and power efficiency by far sufficient for real-

time support vector detection of complex objects on a portable platform, with applications

ranging from artificial vision to automated surveillance to human-computer interfaces.
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