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ABSTRACT

Kernel-based pattern recognition paradigms such as support vector machines (SVM) require computationally intensive
feature extraction methods for high-performance real-time object detection in video. The CMOS sensory parallel proces-
sor architecture presented here computes delta-sigma (AX.)-modulated Haar wavelet transform on the focal plane in real
time. The active pixel array is integrated with a bank of column-parallel first-order incremental oversampling analog-to-
digital converters (ADCs). Each ADC performs distributed spatial focal-plane sampling and concurrent weighted average
quantization. The architecture is benchmarked in SVM face detection on the MIT CBCL data set. At 90% detection rate,
first-level Haar wavelet feature extraction yields a 7.9% reduction in the number of false positives when compared to clas-
sification with no feature extraction. The architecture yields 1.4 GMACS simulated computational throughput at SVGA
imager resolution at 8-bit output depth.
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1. INTRODUCTION

Real-time pattern recognition in video faces two essential challenges. One is the large degree of disparity between objects
within a class due to variations in images such as scale, orientation, and illumination variance. The other is the compu-
tational complexity of high-performance classification algorithms, such as support vector machines (SVM). For the latter,
the Kerneltron, a massively parallel 1 GMACS/mW VLSI array processor for kernel-based pattern recognition has been
recently developed by us.! Feature extraction methods resolve the first challenge. Invariant features of objects within a
class are extracted, improving the generalization ability of the classifier, and often reducing the requirements on the size of
the training set and memory.

Haar wavelet transform is a popular feature extraction method. It yields information about spatial gradient of image
intensity, not just its absolute value. Extracting Haar wavelet features from streaming video is very computationally inten-
sive, requiring vast computing resources. CMOS integrated imaging technologies allow to perform low-cost, low-power
signal processing directly on the focal plane, eliminating the need for an external processor. 2 The intrinsic parallelism of
such computing yields throughput and energy efficiency well above those of modern digital processors, allowing to extract
complex features in real time.

Various active pixel spatial filtering techniques suitable for on-focal-plane analog VLSI implementation of Haar wavelet
transform have been developed. Switched capacitor implementations use charge sharing to compute average sum and
difference but require matched capacitors and have limited scalability. 4 Current-mode implementations,® including
those with weighted averaging,® use zero-latency current-mode addition but deploy multiple matched current mirrors at
the expense of increased pixel area. Current integration and gain-stage voltage summation ” utilized in variable resolution
imaging do not allow for weighted averaging and require additional column-parallel amplifiers. All of the aforementioned
architectures perform computing in analog VVLSI domain and require an extra analog-to-digital converter (ADC) to provide
the digital output.

We present a mixed-signal VVLSI architecture of a digital CMOS imager and real-time Haar wavelet feature extractor
with focal-plane computing being an intrinsic part of the quantization process. Our approach combines weighted spatial av-
eraging and oversampling quantization in a single AX-modulated analog-to-digital conversion cycle. The approach yields
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Figure 1. Functional block diagram for a sensory pattern recognition system. The sensory wavelet processor consists of the imager pixel
array and the feature extractor.

no overhead in time and negligent overhead in area compared to a baseline raw image readout and oversampling quantiza-
tion architecture. The architecture yields 1.4 GMACS throughput with SVGA imager resolution at 8-bit output depth. The
rest of this paper is organized as follows. Section 2 gives an overview of a real-time visual pattern recognition microsystem
combining Haar wavelet feature extraction and support vector machine (SVM) data classification. Section 3 presents the
architecture and circuits of the sensory Haar wavelet processor. Section 4 presents SVM classification performance results
validating functionality of the sensory processor architecture.

2. REAL-TIME VISUAL PATTERN RECOGNITION MICROSYSTEMS

The block diagram of the real-time visual pattern recognition microsystem combining a sensory feature extractor and a
data classifier is shown in Fig. 1. The next sections present an overview of the feature extraction and data classification
functional blocks.

2.1. Haar Wavelet Feature Extraction

To enhance the performance of a classifier, set of features generalizing across variations in visual objects is extracted
from the input. Both training and classification are then performed on these extracted features. Haar wavelet transform
enhances classification performance of high-performance kernel-based learning paradigms such as support vector machines
(SVM),®? and is simple enough to be implemented in a mixed-signal VLSI technology.

By extracting horizontal, vertical and diagonal edges, Haar wavelets register the relationship between intensities among
neighboring pixels in different orientations and hence form a “ratio template”.® The ratio template is independent of
illumination conditions. It truly captures the ratio between various features of an object, which within a class exhibit
greater correlation than the absolute intensity values. Ratio templates effectively reduce the variability of objects within
a class. As a result, a more precise object description is generated at a cost of lower spatial resolution. This enables the
classifier to detect complex objects such as faces or pedestrians at higher detection rates with lower false positive.

The one-dimensional Haar wavelet is composed of the scaling function ¢(t), or the father wavelet, and the wavelet
prototype function 1 (t) also known as the mother wavelet:

1 if-1<t<1
ot) = { 0 otherwise,

1 ifo<t<1
P(t) =< —1 if-1<t<0
0 otherwise.



The combination of scaling and wavelet prototype functions in a two-dimensional space yields the following scalar,
horizontal, vertical, and diagonal two-dimensional Haar wavelet functions:
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where the i coefficient is applied so that the maximum value of the wavelet transform stays within the image intensity
range. The equivalent spatial kernels of the scalar and wavelet functions for the first-level Haar wavelet are:
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The transformation of the image fragment I into the feature X is of the linear form:
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where Cy,, € {—1,+1} are the Haar block matrix coefficients comprising a square spatial kernel; H and V are the image
fragment horizontal and vertical sizes, multiples of the kernel size K'; hand v are the horizontal and vertical Haar kernel
indices; ¢ and j are the indices of the Haar transformed image; L is the number of levels of Haar transform, and
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L-level Haar wavelet features for L > 1 can be obtained by repetitive use of level-one transform, or directly using 3L + 1
spatially averaging Haar wavelet coefficient kernels of size K = 2!, withl=1,..., L.

2.2. Support Vector Machine Classification

Support vector machine (SVM) is a kernel-based learning paradigm for data classification and function approximation
rooted in Vapnik’s statistical learning theory.'® SVMs outperform many of the existing pattern recognition methods in
complex tasks, even with sparse data. In the simple case of two-class separable data classification, support vector machine
maps the wavelet transformed input data into a higher dimensional space where the two classes are linearly separable and
classifies the data by constructing an optimal hyperplane that separates two classes. The unique separating hyperplane
is determined by maximizing its distance to the closest points of the training set called support vectors. Support vectors
typically comprise a small subset of the training set. Hence, only a subset of the training set is needed to construct the
separating hyperplane.



In its basic form, an SVM classifies a two-dimensional feature input X into class y € {—1, +1} based on the support
vectors W™ and their corresponding classes y.,, as

M
y = sign( D am ym K(W™, X) = b), (6)
m=1
where K (-, -) is a symmetric positive-definite kernel function chosen subject to fairly mild constraints. 1 The coefficients
am, and b are calculated in training by solving a linearly constrained quadratic programming (QP) problem, a ,,, being zero
for all the training set points with the exception of support vectors. 1°

Kernel function K (-, -) maps the input space into a higher dimensional space to realize a non-linear separating hyper-
plane for data classification. Inner-product based kernels perform well in classification and are simple to implement in
hardware:
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where f(-) is a monotonically non-decreasing scalar function subject to the Mercer condition on K (-, -), such as polynomial
or sigmoid.'°

The most computationally intensive part of the SVM decision rule (6) is inner-product calculation of the wavelet-
transformed input and the support vectors, which is equivalent to vector-matrix multiplication (VMM). While an energy-
efficient, compact, and real-time implementation of VMM was reported by us in® , in what follows we present a high-
throughput mixed-signal VLSI architecture of Haar feature extraction on the focal plane, as the necessary pre-processing
step.

3. SENSORY VLSl WAVELET PROCESSOR

Image acquisition and wavelet feature extraction are both performed on the focal plane of the sensory processor. Its
mixed-signal VLSI architecture is depicted in Fig. 2.

3.1. Analog Image Acquisition

Analog image acquisition is performed by the active pixel array, the row control and the correlated double sampling (CDS)
units. The active pixel comprises a resetable n T -diffusion—p-substrate photodiode and a selectable source follower with
shared column-parallel current source biased with IbiasCol current as shown in Fig. 3. The row control unit generates the
digital signals Reset and RowSelect controlling the integration and readout phases. Fixed pattern noise (FPN) due to pixel-
to-pixel transistor mismatch is one of the dominant noises in CMOS imagers. Switched-capacitor CDS unit suppresses
FPN by subtracting the reset pixel output from the sensed pixel output.

3.2. On-Focal-Plane Haar Wavelet Feature Extraction

As detailed in Section 2.1, L-level Haar wavelet transform requires correlating an image with 3L + 1 square spatial
kernels of sizes K = 2!, 1 = 1,..., L. For L = 1, the Haar kernels are of the form (5). The presented mixed-signal
VLSI architecture computes multiple kernel-image correlations in parallel within a single oversampling quantization cycle,
with negligent space overhead and no time overhead as compared to a standard digital imager employing column-parallel
oversampling quantizers.

The active pixel array is integrated with a bank of column-parallel oversampling analog-to-digital converters (ADCSs).
Each ADC is configured to sample K adjacent pixels in a column within a single quantization cycle. Uniform pixel
sampling yields a digital representation of a column-wise spatial average of the acquired image segment. Correlation of a
K -pixel long fragment of an image column with a signed unity-amplitude one-dimensional kernel of size K is computed by
combining the uniform pixel sampling and pixel output sign inversion. A double sampling sign unit circuit determines the
sign of each pixel output by selecting a switched-capacitor sampling sequence order. Sign values are presented bit-serially
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Figure 2. Sensory wavelet processor top-level architecture.

from a ring shift register, SR, with a sequence period of K values, synchronously with image read-out clock RowScan, as
shown in Fig. 2. This amounts to computing one-dimensional column-parallel spatial Haar wavelet transform:

K K
Xij,h = ZXij,h'u = Z Ch'u Izya (8)
v=1 v=1

where the notation is consistent with that of (2)—(4).

The oversampling quantizer is implemented as a first-order incremental AX-modulated ADC. The implementation is
compact as the decimating filter is a simple digital counter. The block diagram of the ADC is depicted in Fig. 4.

The switch matrix routes the K different time-dependent Sgn signals to H /K groups of adjacent column-parallel sign
unit circuits. A simple digital delay and adder loop performs spatial accumulation over K adjacent ADC outputs as they

are read out:
K K K
Xij = ZXij,h = Z Zch'u Imy (9)
h=1

h=1v=1
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Figure 3. Photodiode active pixel circuit.
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Figure 4. Block diagram of a first-order AXY incremental A/D converter with comparator, sample-and-hold circuit, integrator and
counter.

This mixed-signal VLSI computation realizes a two-dimensional Haar wavelet transform in (1) of up to L levels. The area
overhead of sign unit circuits, switch matrix and digital accumulator scales linearly with the imager size and is negligent. As
computing is interleaved with quantization no extra computational time is required above that of raw image oversampling
quantization in a baseline digital imager.

4. RESULTS

We have validated the functionality of the sensory wavelet processor with support vector machine (SVM) data classification
in a face detection task. Two cases are compared: no feature extraction and first-level Haar transform computed on the
described architecture.

The SVM classifier with second degree polynomial kernel was trained on 6977 images (2429 faces and 4548 non-faces)
and tested on 24045 images (472 faces and 23573 non-faces) from the MIT CBCL data set. Images are 16x 16 pixels in
size, 8-bit grayscale and histogram-equalized.

The solid curve in Fig. 5 illustrates the receiver operating characteristic (ROC) of the SVM classifier with no feature ex-
traction, while the x-marked ROC curve corresponds to the SVM classifier with one-level Haar wavelet feature extraction.
At 90% detection rate, the false positive rate decreases by 7.9%, i.e., over 1800 non-faces are no longer misclassified. Ad-
ditionally, Haar wavelet feature extraction decreases the number of support vectors from 410 to 322, reducing the memory
requirements and computational complexity of the classifier by 21%.

The photodiode active pixel is simulated to have the worst case integration time of 10 msec. Assuming no pipelining,
at 30 frames per second frame rate, additional 23 msec are available for Haar wavelet image processing. Based on a
conservative quantizer sampling rate of 40 ksps, the computational throughput is estimated to be 1.4 GMACS for SVGA
image resolution. The estimate is given for the three-level Haar wavelet transform computed on the presented architecture
employing AX-modulated algorithmic ADC. !
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Figure 5. Receiver operating characteristic (ROC) curves for SVM polynomial classification with and without Haar wavelet feature
extraction. The training and testing data are MIT CBCL face data sets.

5. CONCLUSION

We present a mixed-signal VVLSI architecture of a digital CMOS imager computing two-dimensional Haar wavelet trans-
form on the focal plane in real time. The approach combines weighted spatial averaging and oversampling quantization in
a single AX-modulated analog-to-digital conversion cycle, making focal-plane computing an intrinsic part of the quantiza-
tion process. The approach yields no overhead in time and negligent overhead in area compared to a baseline digital imager
employing oversampling quantization. Haar wavelet feature extraction architecture enhances classification performance in
pattern recognition, yielding 1.4 GMACS simulated computational throughput at SVGA imager resolution at 8-bit output
depth.
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