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I. INTRODUCTION

Many video processing applications employ spatial image transforms such as block-matrix

transforms and convolutional transforms. For example, block-matrix transforms such as dis-

crete cosine transform (DCT) or discrete wavelet transform (DWT) are widely used in

various image and video compression algorithm standards. Convolutional transforms are often

employed in pattern recognition. These transforms require extensive computational resources

for their real-time implementations.

A number of techniques for realizing block-matrix and convolutional transforms in sensory

systems have been developed. Dedicated digital signal processors (DSPs) rely on high-

throughput architectures to compute spatial weighted sums needed in block-matrix transforms,

but require significant area and power resources. At high imager resolutions, the input data rate

or memory-processor bandwidth of such processors may limit their sustained throughput [2],

[3]. An analog-to-digital converter (ADC) to quantize the analog sensory input prior to signal

processing is also required for such digital processors.

To overcome these limitations, block-matrix transforms and convolutional transforms have

also been implemented in the analog domain directly on the focal plane. Capacitor bank

implementations use charge sharing to compute weighted sum and difference [4]–[6] but

may have limited scalability. Current-mode weighted averaging implementations [7] use zero-

latency current-mode addition but employ multiple matched current mirrors at the expense
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of increased pixel area. Charge integration and gain-stage voltage summation [8] utilized

in variable resolution imaging do not allow for weighted averaging and require additional

column-parallel amplifiers. Current-mode vector-matrix multiplication [9] architectures em-

ploy floating-gate arrays for block matrix storage and achieve high power efficiency. Kernel-

dependent scan-out imager architectures have been shown to reduce memory requirements in

focal-plane spatial image processing [10]. A tree-based partitioning algorithm that implements

adaptive compression has also been reported [11]. Circuit implementations based on video

compression algorithms utilize in-pixel temporal prediction [12]–[14] and array-based spatial

prediction [15] to reduce the amount of transmitted data. All of the aforementioned archi-

tectures perform computation in analog VLSI domain and require an extra analog-to-digital

converter to provide the digital output.

Analog-digital mixed-domain CMOS imaging and signal processing combine the benefits

of the two domains [16]. Analog circuits perform area-efficient and low-power computation

directly on the focal plane, eliminating the need for an external processor [17]. The intrinsic

parallelism of imaging architectures yields high computational throughput, often beyond that

of modern digital processors, allowing to perform complex video processing operations in

real time. Digital components provide the output in a convenient digital format, and sustain

the accuracy and configurability of such systems.

We present a mixed-signal VLSI implementation of a digital CMOS imager computing

block-matrix transforms and convolutional transforms on the focal plane for real-time image

processing. The computational image sensor presented here combines image acquisition,

signal processing and quantization in a single compact low-power architecture as shown in

Figure 1. Our approach combines weighted spatial averaging and oversampling quantization
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in a single ∆Σ-modulated analog-to-digital conversion cycle, making focal-plane computing

an intrinsic part of the quantization process. The approach yields power dissipation below

that of a conventional digital imager while the need for a peripheral DSP is eliminated.

II. BLOCK-MATRIX AND CONVOLUTIONAL TRANSFORMS

Block-matrix and convolutional transforms correlate a segment of an image with a spatial

kernel, or block matrix, in order to identify statistical redundancies or distinguish particular

features depending on the transform type. In the example of image compression, the redun-

dancies are eliminated to reduce data rate. In the case of pattern recognition, the features are

employed to form a more precise object description and enhance the classifier performance.

To transform an image I into transformed image T , the kernel or block matrix C is tiled

vertically and horizontally across the image as illustrated in Figure ??. The block matrix is

tiled in overlapping or non-overlapping fashion, corresponding to convolutional and block-

matrix transforms respectively. For the case of the block-matrix transform coefficients of T

are obtained by computing the two-dimensional dot product of C and I at each tile location:

Tij =
H

∑

h=1

V
∑

v=1

Chv Ixy, (1)

x = h + (i− 1)H, i = 1, 2, . . . ,
L

H
, (2)

y = v + (j − 1)V, j = 1, 2, . . . ,
K

V
, (3)

where Chv ∈
�

are the block matrix coefficients comprising a spatial kernel; L and K are

the image horizontal and vertical sizes, assumed for simplicity to be multiples of the kernel

dimensions H and V ; h and v are the horizontal and vertical block matrix indices, and i and

j are the indices of the block-transformed image.
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The block-matrix and convolutional transforms are generally computationally expensive.

For example, consider an HDTV 1080i imager operating at 30 frames per second (fps). To

handle the computational throughput of an 8 × 8 convolutional transform of the video, an

equivalent computational throughput of one 3.5 GHz Pentium processor is needed.

In video compression algorithms, to achieve selective compression of the image, redundant

and localized gradient values are filtered out according to a threshold bias, which is based on

the required compression ratio and the reconstructed image quality specifications. Another

thresholding technique, mainly employed in JPEG image compression, is non-uniform quan-

tization of the block-matrix-transformed image, where the more significant low-frequency

spatial information components are quantized with a higher resolution compared to the less

important high-frequency ones.

In pattern recognition systems, to enhance the performance of the classifier, based on a

particular feature extraction algorithm, a set of features are extracted from the input images by

computing their block-matrix transforms. Both training and classification are then performed

on these extracted features.

A. Discrete Wavelet Transform (DWT): Haar Wavelet Example

Two-dimensional Haar wavelet transform is a simple example of a block-matrix transform

commonly used in image compression and pattern recognition systems. By extracting hori-

zontal, vertical and diagonal edges, Haar wavelets register the relationship between intensities

among neighboring pixels in different orientations and hence form a ”ratio template” [18]. The

ratio template is independent of illumination conditions. It truly captures the ratio between

various features of an object, which within a class exhibit greater correlation than the absolute

intensity values. As a result, a more precise object description is generated at a cost of lower
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spatial resolution.

The one-dimensional Haar wavelet is composed of the scaling function φ(t) or the father

wavelet, and the wavelet prototype function ψ(t) also known as the the mother wavelet:

φ(t) =



























1 if -1≤ t ≤ 1,

0 otherwise,

ψ(t) =



















































1 if 0 < t ≤ 1,

−1 if -1 ≤ t ≤ 0,

0 otherwise.

The combination of scaling and wavelet prototype functions in two-dimensional space yields

the following scalar, horizontal, vertical and diagonal two-dimensional Haar wavelet func-

tions:

φ(x, y) =
1

4
φ(x)φ(y), (4)

ψH(x, y) =
1

4
ψ(x)φ(y), (5)

ψV (x, y) =
1

4
φ(x)ψ(y), (6)

ψD(x, y) =
1

4
ψ(x)ψ(y), (7)

where the 1

4
coefficient is applied so that the maximum value of the wavelet transform stays

within the image intensity range. The equivalent spatial kernels of the scalar and wavelet
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functions for the first-level Haar wavelet are:

Φ1 =
1

4
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+1 +1















, (8)
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. (11)

Following the block matrix transform notation in (1)–(3), the transformation of the image

I into the Haar-wavelet-transformed image T is of the linear form:

Tij =

H
∑

h=1

V
∑

v=1

Chv Ixy, (12)

x = h+ (i− 1)H, i = 1, 2, . . . ,
L

H
, (13)

y = v + (j − 1)V, j = 1, 2, . . . ,
K

V
, (14)

H = V = 2b, b = 1, . . . , B, (15)

where Chv ∈ {−1,+1} are the Haar wavelet coefficients comprising a square spatial kernel
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in (8)–(11):

C ∈ {Φl,Ψ
H

l
,ΨV

l
,ΨD

l
}, (16)

and B is the number of levels of Haar transform. B-level Haar wavelet features for B > 1

can be obtained by repetitive use of level-one transform, or directly using 3B + 1 spatially

averaging Haar wavelet coefficient kernels of size H = V = 2b, with b = 1, . . . , B.

Figure 2 illustrates the spatial kernels of two-dimensional one-level, two-level, and three-

level Haar wavelet transforms. The Haar wavelet transformed images are obtained by com-

puting the block-matrix transforms of the original image with these Haar wavelet kernels.

Figure 3 depicts the correspondingly computed two-dimensional Haar wavelet transforms of

Audrey.

III. ARCHITECTURE

The block-matrix transform of the form (1) can be decomposed as follows:

Tij =
H

∑

h=1

V
∑

v=1

Chv Ixy =
H

∑

h=1

Tij,h, (17)

with partial sums

Tij,h =
V

∑

v=1

Chv Ixy =
V

∑

v=1

|Chv| Sxy, (18)

and the sign of Chv factored into the sign-transformed pixel outputs

Sxy = sign(Chv) Ixy, (19)
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where the notation is consistent with that of (2)–(3), Chv = sign(Chv) |Chv|, and Ixy is the

output of a pixel at location (x,y).

The proposed mixed-signal VLSI architecture efficiently implements computations (19), (18),

and (17), in that order, as depicted in Figure 4. Image acquisition and correlated double

sampling (CDS) yield offset-compensated pixel output Ixy as described in Section IV. A

switched-capacitor sign unit circuit multiplies pixel output Ixy by the sign of a respective

kernel coefficient via selecting the sampling sequence order yielding a sign-transformed pixel

output Sxy in (19). Section V-A presents the sign unit circuit implementation. Weighted aver-

age of V adjacent pixel outputs in an image column is computed by combining oversampling

quantization and selective distributed sampling of the sign-transformed pixel outputs to yield

T̂ij,h, as discussed in Sections V-B and V-C. T̂ij,h is the digital representation of Tij,h in (18).

The switch matrix routes the block matrix coefficients and their corresponding sign values

bit-serially from a ring shift register, SR, with a sequence period of V values and spatial

period of H columns, synchronously with image read-out clock RowScan to the oversampling

quantizers and sign units, respectively. The operation of the switch matrix is discussed in

Section V-D. A simple digital delay and adder loop performs spatial accumulation over H

adjacent ADC outputs in the digital domain as they are read out to yield T̂ij , which is the

digital representation of Tij in (17). Section V-E presents an implementation of this digital

accumulation.

IV. IMAGE ACQUISITION

Image acquisition is performed by the active pixel array, the row control and the correlated

double sampling (CDS) units. The active pixel comprises a resetable n+-diffusion–p-substrate

photodiode, a selectable analog memory, CMem , and a selectable source follower with shared
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column-parallel current source biased with IbiasCol current as shown in Figure 5. The analog

memory is implemented as a MOS capacitor for higher density of integration inside the pixel

and consequently a larger fill factor.

The row control unit generates the digital signals Reset, Snapshot, Sample, and RowSelect

controlling the integration and readout phases. There are four modes of operation: snapshot

mode, rolling mode, correlated double sampling (CDS) mode and frame-differencing mode.

A switched-capacitor CDS unit circuit suppresses fixed pattern noise (FPN) by subtracting

the reset pixel output from the sensed pixel output. More information on the design of the

image acquisition circuits can be found in [19].

V. COMPUTATIONAL QUANTIZATION

This section presents a mixed-signal VLSI implementation of (19), (18), and (17). To

simplify notation, in this section we consider equations (18) and (19) for a single image

column segment (i.e., for given i, h, and x) and the first row of the transformed image

(i.e., for j = 1 and y = v). This simplifies the partial sum in equation (18) to

T =
V

∑

v=1

Cv Iv =
V

∑

v=1

|Cv| Sv. (20)

For a particular image row (i.e., for given v), the sign-transformed pixel output in equation (19)

further simplifies to:

S = sign(C) I, (21)

where I is the raw output of a pixel.
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A. Sign Unit

The sign unit shown in Figure 6(a) is implemented as a switched-capacitor difference

circuit. It applies the sign of the coefficient C to the input by selecting a switched-capacitor

sampling sequence order as illustrated in the timing diagram in Figure 6(b). This directly

implements equation (21). The amplifier in the sign unit is the same as in the CDS circuit.

For the sake of simplicity the feedback capacitor reference voltage is shown as ground.

B. ∆Σ-Modulated Multiplying ADC

The spatially-compressing image quantizer is implemented as a first-order incremental

∆Σ-modulated ADC extended to an oversampling multiplying ADC [20] as described in this

section. The first-order incremental oversampling ADC is depicted in Figure 7(a). It converts

a sequence of analog samples into a digital word representing a quantized version of the

average of all samples. It is comprised of a sample-and-hold (S/H) circuit, an integrator, a

comparator and a decimating counter. The rectangular decimation window and initial reset

of the accumulator avoid tones in the quantization noise spectrum at DC input that are

characteristic of a conventional first-order DS modulator with a low-pass decimation filter.

As shown in Figure 7(b), this architecture can be combined with the sign unit and extended

to perform both quantization and signed multiplication of the analog input with a digital

word

C = sign(C) |C|, (22)

with

|C| =

N−1
∑

i=0

c[i], (23)
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where c[i] are unsigned unary coefficients of C.

Selective sampling of the sign-transformed pixel output S, controlled by the bit-serial unary

sequence c[i], yields an analog sequence u[i] = Sc[i]. The first-order modulator converts the

sequence Sc[i] into a bit stream y[i] in N cycles, using a ‘resetable’ (RST) analog integrator:

w[0] = 0, (24)

w[i+ 1] = w[i] + α (Sc[i] − y[i]),

i = 0, . . . N − 1, (25)

w[N + 1] = w[N ] − α y[N ], (26)

and a single-bit quantizer:

y[0] = −1, (27)

y[i] = sign(w[i]), i = 1, . . .N, (28)

where α is the intrinsic gain of the integrator.

A binary counter accumulates the bits y[i] to produce a decimated output. The rectangular

decimation window, and initial reset of the integrator, avoid tones in the quantization noise

spectrum at DC input that are characteristic of a conventional first-order ∆Σ modulator with

low-pass decimation filter [21]. The quantization error (conversion residue) is directly given

by the final integrator value 1

α
w[N + 1], as verified by summing (25) and (26) over i:

N
∑

i=0

y[i] =

N−1
∑

i=0

Sc[i] −
1

α
w[N + 1], (29)
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where

N
∑

i=0

y[i] = T̂ ′ (30)

is the digital output.

This operation yields multiplication of the sign-transformed analog pixel output S with the

unsigned digital coefficient |C| defined in (23), while a digital output resolution of log2(N)

bits is warranted:

T̂ ′ = |C| S + q′, (31)

which in combination with (21) and (22) yields:

T̂ ′ = C I + q′, (32)

where

|q′| = |
1

α
w[N + 1]| (33)

is the multiplication quantization noise. Higher resolution at lower oversampling ratio N can

be obtained using higher-order incremental conversion [22].

As the input is amplitude modulated with unary signed coefficients, an error in the am-

plitude of these coefficients can contribute to the noise. A noise analysis due to this non-

ideality is given in [23] where amplitude modulation of an analog sequence with a Hadamard

sequence is utilized in the design of a Nyquist-rate ∆Σ-Modulated ADC. This noise is deemed

negligible in this design as a simple analog multiplexer is employed to modulate the input.
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C. ∆Σ-Modulated Weighted Averaging ADC

The multiplying ADC architecture in Section V-B can be extended to perform weighted av-

eraging. Accumulation is achieved by sampling V adjacent pixels in one column, I1, I2 . . . IV ,

without resetting the integrator or the binary counter. A discrete-time index v is thus intro-

duced.

The architecture of the oversampling weighted averaging ADC is depicted in Figure 8.

The bit stream y[vi] is now generated for V inputs each sampled N times:

w[0] = 0, (34)

w[v(i+ 1)] = w[vi] + α (S[v]c[i, v] − y[vi]),

i = 0, . . . N − 1,

v = 1, . . . V, (35)

w[V (N + 1)] = w[V N ] − α y[VN ], (36)

and a single-bit quantizer:

y[0] = −1, (37)

y[vi] = sign(w[vi]), i = 1, . . . N,

v = 1, . . . V. (38)

The quantization error, 1

α
w[V (N + 1)], is obtained similarly:

V
∑

v=1

N
∑

i=0

y[vi] =

V
∑

v=1

N−1
∑

i=0

S[v]c[i, v] −
1

α
w[V (N + 1)], (39)
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where

V
∑

v=1

N
∑

i=0

y[vi] = T̂ , (40)

and the notation is consistent with that of (24)–(29).

This realizes the computation of a weighted sum of sign-transformed pixel outputs S[v]

with the unsigned digital coefficients |C[v]|, defined in (23), with an output resolution of

log2(V N) bits:

T̂ =
V

∑

v=1

|C[v]| S[v] + q, (41)

which in combination with (21) and (22) yields:

T̂ =

V
∑

v=1

C[v] I[v] + q, (42)

where

|q| = |
1

α
w[V (N + 1)]| (43)

is the weighted averaging quantization error. We arrive at expression (41) for the digital

weighted sum, T̂ , which is a discrete-time equivalent of (20).

Optimization of the number of oversampling cycles based on particular block matrix co-

efficients can enhance the computational throughput of the architecture. When the maximum

absolute value of coefficients in a single row of a block matrix (scaled to all integers), NV ,

is less than N , the oversampling computational cycle is stopped on the NV -th sample and

continued on the next row.
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Further improvements of the computational throughput of this architecture are achieved

by employing an algorithmic ∆Σ-modulated ADC [24]. When the maximum of sums of

absolute values of coefficients in all columns of a block matrix (scaled to all integers) is

less than V N , the oversampling computational cycle is stopped once all of the coefficients

have been fed in. Higher resolution bits are then obtained by subsequent algorithmic residue

resampling and extended counting on the residue [24].

D. Switch Matrix

The switch matrix routes the H different time-dependent block matrix coefficients and sign

signals to L
H

groups of adjacent column-parallel ADCs and sign unit circuits, respectively.

The block diagram of the switch matrix is shown in Figure 9. A total of V pixel rows are

sampled while V coefficients are being shifted out from the shift register. The coefficients are

looped back to the shift register input to maintain V -row time period. Each kernel coefficient

is stored in a binary format of length log2(N)-bits and is digitally oversampled to yield its

unary representation of length N bits, to match the sampling mechanism of an oversampling

ADC and correspondingly weight each pixel output.

E. Digital Accumulation

Re-introducing the spatial indices i, j and h back into equation (42) yields the general

expression for the column-wise weighted average:

T̂ij,h =

V
∑

v=1

Chv Ixy + qij,h,

where qij,h is the column-wise weighted averaging quantization noise with standard deviation

σij,h.
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A simple digital delay and adder loop performs spatial accumulation over H adjacent ADC

outputs in the digital domain as they are read out :

T̂ij =

H
∑

h=1

T̂ij,h =

H
∑

h=1

V
∑

v=1

Chv Ixy + qij, (44)

where qij is the transformed image quantization noise with standard deviation

σij ≈

√

√

√

√

H
∑

h=1

σ2
ij,h,

for i.i.d noise and large H , yielding an additional improvement in SNR. This mixed-signal

VLSI computation realizes a block-matrix transform in (1) with H ≤ 8. The switch matrix

size scales linearly with H . Maximum of H equal to 8 is chosen here to strike a balance

between the switch matrix implementation complexity and the overall functionality. The area

overhead of sign unit circuits, switch matrix and digital accumulator scales linearly with

the imager size and becomes small for large K and L. As computing is interleaved with

quantization, the extra computational time and thus power dissipation are small compared to

those of raw image quantization in a conventional CMOS digital imager.

VI. COMPARATIVE EXAMPLE

This section compares the presented architecture with a conventional approach where

column-parallel algorithmic ADCs performing no computation are employed and an ad-

ditional peripheral serial digital multiplier and accumulator performs video compression. It

is assumed that the kernel is a square matrix of size V with M -bit coefficients and the

frame rate is the same in both cases. The comparison is performed for one column only as

the two-dimensional computation can be partitioned such that multiplication is performed
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in the vertical dimension, and only V additions per kernel are performed in the horizontal

dimension.

The first order incremental ∆Σ-modulated ADC requires a number of clock cycles ex-

ponential with the number of bits of resolution, M . This is a disadvantage compared to

the algorithmic ADC which requires a number of clock cycles proportional to M . On the

other hand, the SNR of the spatially-oversampling ADC is much higher than that of the

algorithmic ADC for the same resolution and the same energy-per-cycle due to in-pixel and

inter-pixel oversampling and subsequent noise shaping. In thermal noise limited circuits,

power dissipation is linear with SNR. Thus, for the same SNR power dissipation of the

oversampling ADC can be reduced below that of the algorithmic ADC.

The numeric comparison depends on the degree of vertical overlap of kernels in subsequent

computations. In the worst case, corresponding to the highest number of computations, the

subsequent kernels overlap by V − 1 pixels in the vertical dimension. Assuming V = 8 and

M = 8, in the worst case, the power dissipation of the ∆Σ modulated spatially-oversampling

ADC is 63 percent of the power dissipation of the algorithmic ADC for the same SNR. In

the nominal case, when the kernels do not overlap, the power dissipation of the spatially-

oversampling ADC is only eight percent of the power dissipation of the algorithmic ADC.

This assumes multiplication and addition accuracy of 8 bits as necessary for many image

compression tasks. In addition, the conventional approach requires a serial digital multiplier

and an adder. At HDTV 1020i imager resolution, a computational throughput of several

billions of operations per second is required and would need to be delivered by the digital

multiplier and adder at the cost of significant additional power dissipation and integration

area. In the proposed approach, besides savings in the ADC power dissipation, the need for
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such a high-throughput DSP is eliminated.

VII. RESULTS

Experimental results are obtained from a 0.35 micron CMOS prototype containing a

128×128-pixel array and a bank of 128 column-parallel algorithmic ∆Σ-modulated ADCs.

Figure 10 shows the die micrograph of the image compression sensor. Table I summarizes

its electrical and optical characteristics. The value of parameters V and H are programmable

in the range of 2 to 8. Any transform in this size range with signed digital coefficients can

be computed. Two-dimensional Haar wavelet transform, a block-matrix transform commonly

used in image compression ( [25], [26]), is chosen here as a simple example to illustrate the

functionality of the presented computational imager implementation. The test setup is shown

in Figure 11.

Figure 12(a) shows an image acquired by the pixel array with 25 ms integration time. The

algorithmic ∆Σ-modulated ADC performs distributed image sampling and concurrent signed

weighted average quantization, realizing a one-dimensional spatial Haar wavelet transform.

Two oversampling phases each of length N=32 clock cycles are interleaved with a single

algorithmic residue resampling cycle. Image read-out and computational quantization are

characterized off-line in two sequential steps. A digital delay and adder loop implemented

off-chip in digital domain performs spatial accumulation over multiple ADC outputs. This

amounts to computing a two-dimensional Haar wavelet transform. Figure 12(b) depicts

experimentally measured two-dimensional one-, two-, and three-level Haar wavelet transforms

of the original image. Figure 12(c) shows the reconstructed images of the corresponding Haar

wavelet transforms. The reconstructed images of one-level Haar transform are compared in

Figure 13 for various peak signal-to-noise and compression ratios.
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The horizontal resolution of the imager is limited only by maximum scan-out clock

frequency for a given frame rate as is the case in conventional imagers. Area and power

dissipation scale linearly with the horizontal imager size. In the vertical dimension, all pixels

have to be sampled within the a given frame period as set by the programmable spatial kernel

with parameters H , V , and coefficients C as well as the imager resolution with parameters

L, K, in equations (1)-(3). When computing the discrete cosine transform using 64 8 × 8

blocks at 30 frames per second, the sensory processor is projected to yield a computational

throughput of 4 GMACS when scaled to HDTV 1080i resolution. The throughput is based

on a conservative quantizer sampling rate of 40 ksps and a pixel integration time of 5 ms.

If a higher resolution in the vertical dimension is required, either the integration time has to

be reduced, or the ADC sampling rate has to increase.

VIII. CONCLUSIONS

We present a mixed-signal VLSI implementation of a digital CMOS imager computing

block-matrix transforms on the focal plane for real-time video compression. The approach

combines weighted spatial averaging and oversampling quantization in a single algorithmic

∆Σ-modulated analog-to-digital conversion cycle, making focal-plane computing an intrinsic

part of the quantization process. The approach yields power dissipation lower than that

of a conventional digital imager while the need for a peripheral DSP is eliminated. The

experimental results obtained from a 0.35 micron 128×128-pixel CMOS prototype validate

the utility of the design for large-scale focal-plane signal processing.
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Fig. 1. Video block-matrix and convolutional transform computing architectures with (a) a digital processor, (b) an analog
processor, and (c) the computational image sensor.
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Fig. 2. An illustration of spatial kernels of two-dimensional (b) one-level, (c) two-level, and (d) three-level Haar wavelet
transforms.
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Fig. 3. (a) Audrey and computed Audrey’s Haar transforms: (b) one-level, (c) two-level, and (d) three-level transforms.
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Fig. 10. Die micrograph of the focal-plane spatially-oversampling CMOS image compression sensor. The integrated
3.1mm × 1.9mm prototype was fabricated in a 0.35 µm CMOS technology.
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Fig. 11. The printed circuit board for experimental characterization of the 0.35 µm CMOS prototype of the sensory image
processor.
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Fig. 12. (a) An image captured by the CMOS image compression sensor at 30 fps. (b) Experimentally recorded one-level
(top), two-level (center), and three-level (bottom) Haar wavelet transforms of the image in (a) computed on the CMOS
image compression sensor. (c) Reconstructed images for one-level (top), two-level (center), and three-level (bottom) Haar
wavelet transforms for the same compression threshold. Compression ratios from top to bottom are: 5.33, 20.27, and 41.53.
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Fig. 13. Reconstructed images obtained by decompression of the experimentally computed one-level transform of the
original image (top of Fig. 12(b)) for varying compression thresholds.
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TABLE I

SUMMARY OF CHARACTERISTICS

Technology 0.35 µm CMOS

Area 3.1mm × 1.9mm

Supply Voltage 3.3 V

Array Size 128 × 128 pixels

Pixel Size 10.45 µm × 10.45 µm

Fill Factor 42%

Frame Rate 30 fps

Kernel Size 2×2 — 8×8 programmable

Throughput 4 GMACS in HDTV 1080i DCT

Optical Dynamic Range 105 dB

Dark Current 17.5 fA/pixel

ADC Power Consumption 4.3 mW

Output Resolution 8-bit


