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Abstract—A wearable microsystem for low-latency automatic

sleep stage classification and REM sleep detection in rodents is

presented. The detection algorithm is implemented digitally to

achieve low latency and is optimized for low complexity and

power consumption. The algorithm uses both EEG and EMG

signals as inputs. Experimental results using off-line signals

from nine mice show REM detection sensitivity and specificity

of 81.69% and 93.83%, respectively, with a latency of 39µs.

The system will be used in a non-disruptive closed loop REM

sleep suppression microsystem to study the effects of REM sleep

deprivation on memory consolidation.

I. INTRODUCTION

Neurodegenerative diseases affect millions of people
worldwide. One of the most common types is Alzheimer’s Dis-
ease, affecting approximately 5.9 million people only in North
America [1]. Epidemiological studies have discovered that
excessive REM sleep is a potential risk factor for Alzheimer’s
disease [2]. Sleep is dominated by cyclic occurrences of SWS
(slow-wave sleep) and REM (rapid eye movement) sleep. Dur-
ing SWS, also known as non-REM (NREM), active consolida-
tion of memory takes place by reactivation of newly encoded
memories, which are then integrated into the existing network
of associated memories. However, the conclusion of REM
sleep wakes up the subject and these repeating awakenings,
disrupt the memory consolidation process [3]. A recent study
demonstrates that antidepressant drugs suppress REM sleep
and do not impair consolidation of procedural memory [4].
However, many patients have systemic side-effects and some
are drug-resistant. These poor outcomes and adverse effects of
the drugs provide motivation for an alternative treatment for
REM sleep suppression to supplement conventional options.

Using a wearable/implantable device capable of neural
recording, real-time REM sleep stage detection, and stimula-
tion to supress it without disrupting memory consolidation is a
promising therapeutic option for the treatment of Alzheimer’s
disease due to the lower risk of systemic side effects (Fig. 1).
To stimulate efficiently for REM sleep suppression, detection
latency has to be minimized. This motivates for an FPGA-
based digital implementation to avoid long delays caused by
data acquisition modules that are required for software-based
implementations.

Over the last few years, several mathematical models have
been developed for sleep stage classification and implemented
on computers for off-line data processing [5-8]. Benefiting
from heavy computational schemes, these models succeed
to increase detection accuracy and reduce false detections.
However, due to the high level of complexity and power
consumption, a hardware implementation is not feasible for
them. Recently, a few electrocardiogram (ECG) based algo-
rithms implemented in FPGA have been reported [10-12]. The
ECG based algorithms either only classify between awake
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Fig. 1: Closed-loop REM-sleep suppression system.
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Fig. 2: EEG and EMG recordings of one sleep cycle.

and sleep, or have reported much lower accuracy results of
awake, NREM, and REM sleep stage classification compared
to electroencephalogram (EEG)/electromygram (EMG) based
algorithms [7-9]. Moreover, the best experimentally measured
detection latency is 790 ms which is too long for the presented
application.

In this work, we have investigated three high performance
REM sleep detection algorithms and validated them using
our intracerebral EEG (icEEG) and EMG recordings from
nine mice. All of these algorithms are based on band-pass
filtering of EEG and EMG recordings, followed by performing
mathematical functions and thresholding. Fig. 2 shows filtered
EEG and EMG signals corresponding to one sleep cycle. ✓
(5-10 Hz) oscillations from the filtered hippocampus EEG are
most prevalent during REM sleep and awake stages, and � (1-5
Hz) oscillations from the filtered cortex EEG are found during
NREM sleep. EMG high frequency (100-200 Hz) oscillations
can be used to classify the awake stage. The REM sleep
detection sensitivity, specificity and accuracy were evaluated
and the best performing algorithm was further implemented
in a hardware description language for implementation on an
FPGA assembled together with multi-channel recordings and
stimulation micro-chip on a small PCB. The algorithm was
further optimized to reduce hardware resources and power
consumption. The implemented device was validated using
off-line icEEG and EMG data from nine mice. The detection
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Fig. 3: Block diagrams of three sleep classification algorithms.

performance of the algorithm and the implemented device were
compared to the state of the art.

The rest of the paper is organized as follows. Section II
introduces the animal data collection method and describes
three algorithms that have been tested in software. Digital
implementation and power/resource optimization of one of the
algorithms is presented. Section III presents the classification
results for both software and hardware implementations and
compares them with the state of the art. Section IV concludes
the paper.

II. METHODS AND MATERIALS

A. Data Collection

1) Animals: Nine male C57 mice (from Charles River Lab,
Quebec, Canada) were used in the experiments. The entire
experiment was reviewed and approved by the animal care
committee of the Douglas Health Institute (Montreal, Canada)
according to the Canadian Guidelines for Animal Care.

2) Surgery: Mice were anesthetized with isoflurane and
oxygen, and placed in a stereotaxic frame for tetrode
(platinum-iridium wire) implantation in the hippocampus. The
tetrodes were implanted chronically into CA1 regions using the
stereotaxic micromanipulator apparatus. Two EMG electrodes
(tungsten wires) were inserted into the neck musculature for
postural tone recording. Following the implantation, dental
cement was applied to secure the implant to the skull.
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Fig. 4: Block diagram of algorithm’s hardware implementation.

3) In vivo intracerebral recording: The icEEG and EMG
were recorded with 16 kHz sampling rate using the headstage
pre-amplifier for 24 hours a day, 5 days a week. Following the
recordings, sleep stages were scored manually by an expert.

B. Sleep Classification Algorithms

Three algorithms were considered and tested for the im-
plementation of the sleep classification system. All of them
use EEG and EMG signals for analysis, and have low compu-
tational complexity, using only filtering and thresholding for
classification.

1) Algorithm I: The first algorithm, as shown in Fig. 3(a),
uses a locomotor, EEG, and EMG signals. Three channels
are used due to similar ✓-band EEG activity during awake
and REM stages which makes them indistinguishable using
only EEG. The power spectrum of the EEG signal is analyzed
using FFT with a Hanning window to extract delta and theta
waves. Comparing the magnitude of the delta wave, the ratio
of ✓/(�+✓),and the integral of the EMG signal to different
threshold values, the system classifies NREM, REM, active
wake, and quiet wake stages.

2) Algorithm II: This algorithm is shown in Fig. 3(b). The
EMG signal is filtered and compared against a threshold value
to classify the active wake stage, characterized by high EMG
activity. The EEG signal is also filtered to obtain �, ✓, ↵, �, and
� band components. Two ratios are calculated and compared
with their respective thresholds to classify NREM, REM, and
quiet wake stages.

3) Algorithm III: In the third algorithm, as seen in
Fig. 3(c), three signals are acquired: one EEG signal from the
hippocampus, one EEG signal from the cortex, and one EMG
signal from a neck muscle. The EEG from the cortex is filtered
to obtain the � band, and the EEG from the hippocampus is
filtered to obtain the ✓ band. The filtered signals are passed
through a Windowed Averaging block. A ratio of the two EEG
signals (✓/�) is then taken and compared with its corresponding
threshold value to distinguish between NREM and REM sleep.
The EMG signal is also compared against its threshold value
for awake stage detection.

C. Hardware Implementation

As mentioned earlier, the algorithm must be implemented
in hardware to avoid delays due to data acquisition. This is
mainly to avoid loss of data and triggering on-time stimulation
for treatment. The trade-off will be limited resources available
for hardware implementation compared to the computation
power of the computer. As a result band-pass/low-pass filter
performance cannot be ideal as in MATLAB. For hardware



Fig. 5: The 30 mm x 22 mm PCB assembly of FPGA and the
closed-loop neurostimulator IC.
implementation, FIR filters were chosen over IIR filters due to
the fact that IIR filter coefficient values are very sensitive and
a small difference could affect its performance significantly.
Minimum of 64 taps are chosen for FIR filter implementation
(based on MATLAB simulation results) to achieve the same
level of accuracy, sensitivity and specificity.

Synthesis and fitting analysis showed that among all the
blocks, the FIR filter used the most number of gates. To
reduce resource consumption, a single filter (with variable
coefficients) was time-shared between three input channels.
This was possible since the clock frequency of the FPGA (40
MHz) was much higher than the sampling rate of the input
signals, and no data loss could have occurred. Additionally,
to further improve filtering performance and hence detection
accuracy, every channel was filtered twice using the same filter.
A block diagram is shown in Fig. 4 depicting how the input
channels are sharing and reusing the FIR filter. A control block
sends appropriate commands to control signal flow and timing
of each block. For the averaging filter, every channel has a
dedicated filter but the same filter-sharing technique is used to
low-pass filter all channels with a single 64-tap FIR filter.

The hardware was assembled in a 30 mm x 22 mm PCB
(Fig. 5). The neural signal recording core and stimulation
driver was implemented and fabricated in a CMOS 0.35 µm
process and occupied 12.8 mm2 of silicon area. Fig. 5 shows
photographs of the fabricated chip assembled in the PCB and
the zoom inset of the figure shows the fabricated chip [13].
This chip has 256 recording and 64 stimulation channels, three
and one of which, respectively, are reserved for the presented
application. The PCB has a small low-power FPGA to provide
clocks and control signals to the chip and perform data
processing for sleep stage classification. Power consumption
of each recording and stimulation channel is 13.9 µW and 2.6
µW respectively.

III. RESULTS

A. Detection performance of the algorithms.
Output of three MATLAB-based algorithms are shown

in Fig. 6. The first and second plots show the two EEG
signals from the hippocampus and the cortex respectively. The
third plot shows the EMG signal from the neck. The fourth
plot is the Hypnogram, which is the result of manual sleep-
stage scoring and is the reference against the output of the
system. The remaining three plots show the outputs of the
three algorithms. The accuracy, REM detection sensitivity, and
specificity are defined to evaluate each algorithm’s perfor-
mance and compare it to the state of the art as follows: True

TABLE I: Comparison with existing software-based methods
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[5]
W,REM,
S1,S2,
SWS

EEG TFI,
MC-LS-SVM

92.9 N/R N/R 8
adults

[6]
W,

REM+S1,
S2,SWS

EEG
ANN,Wavelet
packet coeff. 93.0 84.2 94.4 7

adults

[7] W,REM,
TR,NREM

EMG,
EEG

Filtering+
thresholding 80.2 N/R N/R 6 rats

[8] W,REM,
NREM

ECoG,
THETA
channel,
EMG

SVM >96 N/R N/R 6 rats

[9]

Active W,
Quiet W,

REM,
NREM

EEG,
EMG

Filtering+
thresholding 87.9 N/R N/R 14 rats

Method I W, REM,
NREM

EEG,
EMG

motion
sensing+

FFT+
thresholding

82.34 71.02 96.40 9 mice

Method II W, REM,
NREM

EEG,
EMG

multi-band
FFT+

thresholding
72.54 66.75 84.30 9 mice

Method III W, REM,
NREM

EEG,
EMG

multi-band
filter+

thresholding
81.82 84.69 97.81 9 mice

N/A: Not applicable
N/R: Not reported

positives (TP): the number of discharge events following the
detection of the putative discharge precursor. False positives
(FP): when a discharge event does not follow the detection of
the discharge precursor. True negatives (TN): the absence of
discharge activity correctly identified as non-discharge. False
negatives (FN): the discharges that occurs without detection of
the discharge precursor. Sensitivity: the ratio of TP to TP +
FN. Specificity: the ratio of TN to TN + FP.

To further optimize the algorithm, the windowed averaging
block was designed for optimal REM sleep detection. The
length of the window used is a trade-off between REM
detection sensitivity and specificity. A longer window allows
a larger portion of the signal to be analyzed, increasing the
specificity of the detection, while a shorter window increases
the sensitivity of the detection. In Fig. 7, the relationship
between window size and accuracy, sensitivity, and specificity
is shown. The average value of the three measures was used for
overall performance optimization which results in a window
size of 8 seconds. The filter order chosen for the three filters
was optimized to maximize performance and minimize power
and resource consumption. Increasing the filter order improved
results; however it increased implementation complexity. A
filter order of 4 was chosen as the optimal parameter.

All three algorithms were initially implemented and tested
in MATLAB with the same data set. Their results can be
compared in Table I. The third algorithm was chosen for hard-
ware implementation because of its low complexity and good
performance for REM detection sensitivity and specificity.
B. Detection performance of the hardware

The algorithm was implemented on an Actel ProASIC3
FPGA and tested with data from 9 different mice. Fig. 8
shows a sample output of the FPGA implementation for a
9 minute recording, compared with the reference hypnogram.
The system needs 1562 clk cycles for every sample to generate
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Fig. 6: Sample simulation results of three tested algorithms.

an output which translates into 39 µs using a 40 MHz FPGA
clock. Table II shows the accuracy, sensitivity and specificity
of our implementation compared with other hardware-based
implementations. As shown, the latency is significantly lower
than other works, while accuracy, sensitivity and specificity
are quite comparable.
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IV. CONCLUSION
A low-latency, area-efficient microsystem for sleep stage

classification and REM sleep detection is presented. EEG and
EMG signals are processed and used to classify REM, NREM,
and awake stages. The FPGA implementation was optimized to

TABLE II: Comparison with existing hardware-based methods

Ref. [10] [11] [12] This work

Stages classified W,
Non-wake

W,
S1,S2,
SWS,
REM

W,
Sleep

W,
REM,
NREM

Signal(s) used ECG ECG ECG,
Resp.

EEG,
EMG

Method Random
forest

FNGLVQ
FFT,
PSD,
ANN

Filtering+
thresholding

Accuracy (%) N/R 68.8 77.8-89.0 81.66
Sensitivity (%) 94.2 N/R N/R 81.69
Specificity (%) N/R N/R 91.9 93.83
Computation time (ms) 20k 790 3.751 0.039
Real-time Yes No N/A Yes
Order of filter 3 N/A N/A 64

N/A: Not applicable
N/R: Not reported
1 Estimated value. Algorithm not implemented due to high power consumption.

reduce complexity and power consumption while maximizing
REM sleep detection performance. Experimental results show
a REM detection sensitivity and specificity of 81.69% and
93.83% respectively. A low latency of 39 µs has been achieved.
This is a critically important design requirement for a closed-
loop sleep control system. The system is used for studies to
determine the effects of REM sleep suppression on memory
consolidation.
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