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Abstract 

We present a hardware architecture for parallel inner- 
product array computation in very high dimensional feature 
spaces, towards a general-purpose kernel-based classiJer 
and function approximator: The architecture is internally 
analog with fully digital interface. On-chip analog jine- 
grain parallel processing yields real-time throughput lev- 
els for high-dimensional (over 1,000per chip) classification 
tasks. The architecture contains an array of computational 
cells with integrated digital storage and a parallel bank of 
analog-to-digital converters (ADC). A three-transistor unit 
cell combines a single-bit dynamic random-access memory 
(DRAM) and a charge injection device (CID) binary mul- 
tiplier and analog accumulator: Digital multiplication with 
enhanced resolution is obtained with bit-serial input vectors 
and bit-parallel storage of weights, by combining quantized 
outputs from multiple rows of binary unit cells over time. 
A prototype 128 x 512 inner-product array processor on 
a single 3mm x 3mm chip fabricated in standard CMOS 
0.5pm technology achieves 8-bit effective resolution, con- 
sumes 3.3mW of power and offers 2 x 10l2 binary MACS 
(multiply accumulates per second) per Watt of power: This 
corresponds to a factor of at least 1,000 increase in com- 
putational efficiency compared to modem desktop worksta- 
tions. Based on the inner-product array processor, an eji- 
cient real-time massively-parallel hardware architecture of 
a Support Vector Machine classifier is presented. 

1 Introduction 

A general-purpose parallel processor for applications re- 
quiring real-time matrix-vector multiplication (VMM) in 
very high dimensions is presented. The inner-product array 
processor computes M inner products: 
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with N-dimensional input vector X(n), and N x M ma- 
trix of stored elements W(m*n).  In artificial neural net- 
works, for instance, the matrix elements W(,vn) corre- 
spond to weights, or synapses, between neurons. The el- 
ements may also represent templates xim) = ~ ( m i n )  (or 
X, = w("), in vector form) in a vector quantizer [I], or 
support vectors in a Support Vector Machine (SVM) [2]. 

Most of modern neural networks realizations contain a 
vector-matrix multiplier providing the connections between 
neurons followed by a nonlinear transformation. Support 
Vector Machines training and classification, in particular, 
require the evaluation of a quadratic programming prob- 
lem to perform vector-matrix multiplication in very large 
dimensions (100-10,000) which is a very computationally 
intensive task. Most current SVM implementations are 
software-based. They use a desktop computer with often 
a single processor, large memory and a standard quadratic 
programming package, often partitioning the problem into 
blocks. However there is the computational limitation of 
the desktop computer limited by its serial nature of opera- 
tion and limited memory bandwidth. DSPs also lack par- 
allelism and memory bandwidth needed for efficient real- 
time implementation. Multiprocessors and networked par- 
allel computers in principle are capable of high throughput, 
but are costly, and impractical for embedded real-time appli- 
cations. Extensive silicon area and high power dissipation 
of a digital multiply-and-accumulate implementation make 
fully-digital hardware implementations prohibitive for very 
large (100-10,000) matrix dimensions [4]. 

Analog VLSI provides a natural medium to implement fully 
parallel computational arrays with high integration density 
and energy efficiency [5]. By summing charge or current 
on a single wire across cells in the array, low latency is 
intrinsic. Analog multiply-and-accumulate circuits are so 
small that one can be provided for each matrix element, 
making massively parallel implementations with large ma- 
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Figure 1: Block diagram of one row in the matrix with binary encoded elements ~ i ( ~ , " ) ,  for a single m. Data flow of bit-serial inputs 
zj(")  and corresponding partial outputs Y ; , j  (m) before, and Q i , j  (m) after quantization. N D  quantization is performed using 
row-parallel flash A/D converters. The output is constructed using digital post-processing. The example shown is for LSB-first 
inputs, and I = J = 4. 

trix dimensions feasible as described in the next section. 

2 Mixed-Signal Architecture 

2.1 Internally Analog, Externally Digital Computation 
The system presented is internally implemented in analog 
VLSI technology, but interfaces externally with the digital 
world. This paradigm combines the best of both worlds: it 
uses the efficiency of massively parallel analog computing 
(in particular: adding numbers in parallel on a single wire), 
but allows for a modular, configurable interface with other 
digital pre-processing and post-processing systems. This is 
necessary to make the processor a general-purpose device 
that can tailor the vector-matrix multiplication task to the 
particular application where it is being used. 

The digital representation is embedded, in both bit-serial 
and bit-parallel fashion, in the analog array architecture 
(Fig. 1). Inputs are presented bit-serially, and matrix el- 
ements are stored locally in bit-parallel form. Digital-to- 
analog (D/A) conversion at the input interface is inherent 
in the bit-serial implementation, and row-parallel analog- 
to-digital (AD) converters are used at the output interface. 

For simplicity, an unsigned binary encoding of inputs and 
matrix elements is assumed here, for one-quadrant multi- 
plication. This assumption is not essential: it has no bind- 
ing effect on the architecture and can be easily extended to 
a standard one's complement for four-quadrant multiplica- 

tion, in which the significant bits (MSB) of both arguments 
have a negative rather than positive weight. Assume further 
I-bit encoding of matrix elements, and J-bit encoding of 
inputs: 

I-1 

(3) 
j = O  

decomposing (1) into: 

N-1 1-1 J-1 
y ( m )  = W(mdX(") = 2-(i+j+2)y.(?) 

r 9 3  

n=O i=O j=O 
(4) 

with binary-binary VMM partials: 

N-1 

yijm) , p n ) Z y  . ( 5 )  
n=O 

The proposed mixed-signal approach is to compute and ac- 
cumulate the binary-binary partial products (5) using an 
analog VMM array, and to combine the quantized results 
in the digital domain according to (4). 

2.2 Array Architecture and Data Flow 
To conveniently implement the partial products (9, the bi- 
nary encoded matrix elements wi(m,n) are stored in bit- 
parallel form, and the binary encoded inputs zj(") are pre- 
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Figure 2: Top level architecture of the inner-product array pro- 
cessor. 

sented in bit-serial fashion as shown in Figure 2. The bit- 
serial format was first proposed and demonstrated in [7], 
with binary-analog partial products using analog matrix el- 
ements for higher density of integration. The use of bi- 
nary encoded matrix elements relaxes precision require- 
ments and simplifies storage [8]. 

One row of I-bit encoded matrix elements uses I rows of 
binary cells. Therefore, to store an M x N digital matrix 
W("ln), an array of M I X  N binary cells wi(min) is needed. 
One bit of an input vector is presented each clock cycle, 
taking J clock cycles of partial products (5) to complete a 
full computational cycle (1). The input binary components 
zj(n) are presented least significant bit (LSB) first, to fa- 
cilitate the digital postprocessing to obtain (4) from (5) (as 
elaborated in Section 4). 

Figure 1 depicts one row of matrix elements W("yn) in the 
binary encoded architecture, comprising I rows of binary 
cells wi(m,n), where I = 4 in the example shown. The data 
flow is illustrated for a digital input series zj(n) of J = 4 
bits, LSB first (i.e., descending index j ) .  The correspond- 
ing analog series of outputs x,j(m) in (5) obtained at the 
horizontal summing nodes of the analog array is quantized 
by a bank of analog-to-digital converters (ADC), and digital 
postprocessing (4) of the quantized series of output vectors 
yields the final digital result (1). 

The quantization scheme used is critical to system perfor- 
mance. As shown in Section 4, appropriate postprocessing 
in the digital domain to obtain (4) from the quantized par- 
tial products I&(") can lead to a significant enhancement 
in system resolution, well beyond that of intrinsic ADC res- 
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Figure 3: CID computational cell with integrated DRAM stor- 
age (top). Charge transfer diagram for active write and 
compute operations (bottom). 

olution. This relaxes precision requirements on the analog 
implementation of the partial products (5). A dense and effi- 
cient charge-mode VLSI implementation is described next. 

3 Charge-Mode VLSI Implementation 

3.1 CIDDRAM Cell and Array 
The elementary cell combines a CID computational unit [7, 
81, computing one argument of the sum in (3, with a 
DRAM storage element. The cell stores one bit of a matrix 
element ~ i ( " , ~ ) ,  performs a one-quadrant binary-binary 
multiplication of wi(min) and ~ j ( ~ ) ,  and accumulates the re- 
sult across cells with common m and i indices. The circuit 
diagram and operation of the cell are given in Figure 3. An 
array of cells thus performs (unsigned) binary multiplica- 
tion (5) of matrix wi("+) and vector yielding K,j("),  

for values of i in parallel across the array, and values of j in 
sequence over time. 

The cell contains three MOS transistors connected in series 
as depicted in Figure 3. Transistors M1 and M2 comprise a 
dynamic random-access memory (DRAM) cell, with switch 
M1 controlled by Row Select signal RSi("). When acti- 
vated, the binary quantity wi("ln) is written in the form of 
charge stored under the gate of M2. Transistors M2 and M3 
in turn comprise a charge injection device (CID), which by 
virtue of charge conservation moves electric charge between 
two potential wells in a non-destructive manner [7,8, 181. 
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The cell operates in two phases: Write and Compute. When 
a matrix element value is being stored, x ~ ( ~ )  is held at V d d  
and Vout at a voltage V d d / 2 .  To perform a write operation, 
either an amount of electric charge is stored under the gate 
of M2, if wi(m+) is low, or charge is removed, if wi(m+) is 
high. The amount of charge stored, AQ or 0, corresponds 
to the binary value ~ i ( ~ + ) .  

Once the charge has been stored, the switch M1 is deac- 
tivated, and the cell is ready to compute. The charge left 
under the gate of M2 can only be redistributed between the 
two CID transistors, M2 and M3. An active charge transfer 
from M2 to M3 can only occur if there is non-zero charge 
stored, and if the potential on the gate of M2 drops below 
that of M3 [7]. This condition implies a logical AND, i.e., 
unsigned binary multiplication, of wi(min) and ~ j ( ~ ) .  The 
multiply-and-accumulate operation is then completed by ca- 
pacitively sensing the amount of charge transferred onto the 
electrode of M3, the output summing node. To this end, 
the voltage on the output line, left floating after being pre- 
charged to V d d / 2 ,  is observed. When the charge transfer is 
active, the cell contributes a change in voltage 

Avo,, = A Q / ~ M ~  (6) 

where C M ~  is the total capacitance on the output line across 
cells. The total response is thus proportional to the num- 
ber of actively transferring cells. After deactivating the in- 
put ~j ( n ) ,  the transferred charge returns to the storage node 
M2. The CID computation is non-destructive and intrinsi- 
cally reversible [7], and DRAM refresh is only required to 
counteract junction and subthreshold leakage. 

The bottom diagram in Figure 3 depicts the charge transfer 
timing diagram for write and compute operations in the case 
when both wi(min) and zj(n) are of logic level 1. A logic 
level 0 for wi(min) is represented as V d d ,  and a logic level 1 
is represented as V d d l 2 ,  where V d d  is the supply voltage. 
For ~ j ( ~ ) ,  logic level 0 is represented as V d d ,  and logic 
level 1 as GND. 

Transistor-level simulation of a 5 12-element row indicates a 
dynamic range of 43 dB, and a computational cycle of 10 p s  
with power consumption of 50 nW per cell. 

3.2 Experimental Results 
We designed, fabricated and'tested a VLSI prototype of the 
inner-product array processor, integrated on a 3 x 3 mm2 die 
in 0.5 pm CMOS technology. The chip contains an array of 
512 x 128 CIDDRAM cells, and a row-parallel bank of 
128 gray-code flash ADCs. Figure 4 depicts the micrograph 
and-system floorplan of the chip. The layout size of the 
CIDDRAM cell is 8X x 45X with X = 0.3pm. 

The mixed-signal inner-product array processor interfaces 
externally in digital format. Two separate shift registers 

Figure 4: Micrograph of the mixed-signal VMM prototype, con- 
taining an array of 512 x 128 CID/DRAM cells, and 
a row-parallel bank of 128 flash ADCs. Die size is 
3 mm x 3 mm in 0.5 pm CMOS technology. 

load the matrix elements along odd and even columns of 
the DRAM array. Integrated refresh circuitry periodically 
updates the charge stored in the array to compensate for 
leakage. Vertical bit lines extend across the array, with two 
rows of sense amplifiers at the top and bottom of the array. 
The refresh alternates between even and odd columns, with 
separate select lines. Stored charge corresponding to matrix 
element values can also be read and shifted out from the 
chip for test purposes. All of the supporting digital clocks 
and control signals are generated on-chip. 

Figure 5 shows the measured linearity of the computational 
array. The cases shown are when all binary weight stor- 
age elements are actively charged and discharged, and an 
all-ones sequence of bits is shifted through the input regis- 
ter, initialized to all-zeros bit values. For every 1-bit shift, 
a computation is performed and the result is observed on 
the output sense line. The experimentally observed linear- 
ity agrees with the simulation results [ 191. The feed-through 
input dependent offsets are compensated for as described in 
WI. 

The chip contains 128 row-parallel 6-bit flash ADCs, i.e., 
one dedicated ADC for each m and i. In the present im- 
plementation, Y(m)  is obtained off-chip by combining the 
ADC quantized outputs l&j(m) over i (rows) and j (time) 
according to (4). Issues of precision and complexity in the 
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shown on the right of Figure 1. 

The effect of averaging the quantization error over a large 
number of quantized values of V,j(,) boosts the precision 
of the digital estimate of Y(,), beyond the intrinsic res- 
olution of the analog array and the A/D quantizers used 
as shown in detail in [20]. We obtain an improvement in 
signal-to-quantization-noise ratio of a factor 3 and a median 
resolution gain of approximately 2 bits over the resolution 
of each ADC. 

Figure 5: Measured linearity of the computational array. Two 
cases are shown: all binary weight storage elements 
are actively charged (Zef) and discharged (right). All 
logic "1" sequence of bits is shifted through the input 
register, initialized to all-"0" bit values. For every 1-bit 
shift, a computation is performed. Waveforms shown, 
top to bottom: the analog voltage output on the sense 
line; input data - on an input pin in common for both 
input and weight shift register; clock for weight shift 
register. 

implementation of (4) are studied below. 

4 Quantization and Digital Resolution Enhancement 

Significant improvements in precision can be obtained by 
exploiting the binary representation of matrix elements and 
vector inputs, and performing the computation (4) in the 
digital domain, from quantized estimates of the partial out- 
puts (5) .  

w e  quantize all I x J values of ~ , j ( ~ )  using row parallel 
flash A/D converters. Figure 1 presents the corresponding 
architecture, shown for a single output vector component 
m. The partials summation is then performed in the digital 
domain: 

I-1J-1 K-1 

k-nlk .I \  

&'("I k = E' ' Q$li , (8) 
i = n ( k , J )  

with ~ ( k ,  I) " ( 0 ,  k - I + l )  and ~ ( k ,  J )  E "(0, k- 
J + 1). A block diagram for a digital implementation is 
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5 Support Vector Machine Hardware Architecture 

The inner-product array processor can be directly used to 
emulate a class of kernel-based classifiers and regressors, 
such as Support Vector Machines (SVM). 

In its general form, a SVM classifies a pattern vector X into 
class y E { -1, +1} based on the training data points Xm 
and corresponding classes ym as: 

M - 1  

Y = sign( amymK(Xm,X) + b ) ,  (9) 
m=O 

where K ( - ,  3) is a symmetric positive-definite kernel func- 
tion which can be freely chosen subject to fairly mild con- 
straints [21], a, and b are coefficients and an offset term re- 
spectively, obtained during training. We use inner-product 
norm functions (e.g. sigmoidal connectionist; polynomial): 

N - 1  
K(X,,X) = f(X,. X) = f( xt) X'"'). (10) 

n=O 

SVM training and classification require performing vector- 
matrix multiplication in very large dimensions in (9), which 
is very computationally intensive. The scope of the prob- 
lem, described in more detail in Section 1, calls for special- 
purpose VLSI hardware to implement the computationally 
intensive kernel operations in (10) most efficiently, thereby 
reducing the power consumption and physical size to min- 
imum levels. Our approach, an architecture based on the 
massively-parallel inner-product array processor described 
in Sections 2, 3 and 4, efficiently performing this opera- 
tion is presented in Figure 6. 

The inner-product array processor performs the most com- 
putationally intensive operation of vector-matrix multiplica- 
tion. The rest of the computation in equation (9) is imple- 
mented in digital domain with coefficients amy, and the 
kernel table stored in a memory. 

The architecture implements a fully autonomous Support 
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Figure 6: Support Vector Machine hardware architecture. 

Vector “Machine”. A single 9mm2 chip consumes 3.3mW 
of power and offers 2 x 10l2 binary MACS (multiply accu- 
mulates per second) per Watt of power. Scaled to a 0.35pm 
technology it provides for a throughput of 100 GMACS on 
a 6mm x 6mm CMOS chip. This corresponds to comput- 
ing 1,000 inner-products of I-bit 1,000-dimensional vectors 
every IOpSec, making the architecture very well suited for 
real-time implementations of modern artificial vision and 
human-computer interfaces [22]. 

6 Conclusions 

A novel high-throughput parallel inner-product array pro- 
cessor architecture has been presented. It allows for real- 
time classification in very high dimensional input spaces. 
The architecture embeds storage and multiplication in dis- 
tributed fashion, down to the cellular level. With only three 
transistors, the cell for multiplication and storage contains 
little more than either a DRAM or a CID cell. This makes 
the analog cell very compact and low power, and the regular 
array of cells provides for a scalable architecture which can 
be extended to any number of input features and weights 
as limited by the technology and the number of cascaded 
chips. 

A prototype 128 x 512 inner-product array processor on 
a single 3mm x 3mm chip fabricated in standard CMOS 
0.5pm technology achieves 8-bit effective resolution, con- 
sumes 3.3mW of power and offers 2 x 10l2 binary MACS 
(multiply accumulates per second) per Watt of power. This 
corresponds to a factor of 100 to 10,OOO increase in com- 
putational efficiency compared to modern desktop worksta- 
tions, digital multiprocessors and DSPs. 

An efficient real-time massively-parallel Support Vector 
“Machine”, based on the inner-product array processor, for 
classification in very large dimensional spaces has been pro- 
posed. 
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