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Abstract 
The goal of this work is to augment reinforcement learning tech- 
niques for autonomous robot navigation with a state space encod- 
ing more representative of the actual state of the robot in its en- 
vironment, than available from direct sensor readings. A second 
goal is to demonstrate the approach in a real-world setting, using 
the microrobot Khepera (K-Team, Lausanne, Switzerland). The 
choice of state representation is one of the most critical factors in 
the performance of reinforcement learning algorithms. The tech- 
nique of inferring relative positional information indirectly from 
sensor readings, through unsupervised learning, is an important 
novel contribution of this work. As demonstrated in the robot ex- 
periments, the technique allows to optimally perform sensor fusion 
and avoids the need of more elaborate sensors conveying explicit 
information on position coordinates. 

I. Introduction 
In this paper we apply augmented reinforcement learning tech- 
niques to autonomous robot navigation with a state space encod- 
ing more representative of the actual state of the robot in its en- 
vironment, than available from direct sensor readings. Section 2 
briefly reviews reinforcement learning algorithms, specifically Q- 
learning. Section 3 addresses constraints imposed on a learning 
algorithm by real world environment. Section 4 describes our im- 
plementation of a hybrid neural network architecture that combines 
unsupervised learning in a Kohonen self-organizing map for state 
encoding of clustered sensor information, with Q-learning to map 
the coded discrete states onto control actions. Section 5 reviews 
the results of our work. 

2. Q-learning 

2.1. Reinforcement Learning 
Reinforcement learning is a class of learning algorithms that map 
situations to actions as to maximize a reward signal. Learning is 
done interactively, by successive trial and error search. The agent 
moves from a state to a state as it performs actions. It receives 
externally supplied, delayed in time, discrete reinforcement sig- 
nal which tells the agent how well or poor it is performing. The 
situation-*action mapping, updated through the learning phase, 
constitutes the optimal policy for the agent at convergence. Credit 
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assignment principles vary for different reinforcement learning al- 
gorithms (e.g. AHC [l], TD(X) [2]). One of the most popular, 
Q-learning [3] , associates “quality” with a particular action in a 
given state. 

2.2. Q-learning 
The goal of the learning agent in Q-learning is to maximize its ex- 
pected return from each state X. The quantity &(XI a), which is 
the quality associated with action a in state X, represents the ex- 
pected return of taking an action a and following a policy f them 
after, described by the value function: 

(1) 

and the corresponding policy f that maximizes the expected re- 

(2) 

Vj(X) = mzaQ(X,  a), a E A, 

f(X) = argmzaQ(X1 a)  . 

Q(Xt, a:) = ~ ( r t  + 7 - V,(Xt+i)) 

turns: 

The general Q-learning update rule can be formulated as: 

+(I - a)Q(Xt, 4, (3) 

where Xt represents the state at time t; at is the action taken in 
state X:; a - the learning rate; r: - reinforcement signal value at 
timet. At each iteration when the agent in state X: moves to state 
Xt+l by taking action ut, it updates Q(Xt , at) a constant fraction 
towards the reinforcement received, rt, and the value function, Vj, 
of the reached state Xt+l. For an appropriately decaying sequence 
of a and persistent activation of the entire state space, the Q-values 
converge with probability 1 to the expected discounted reinforce 
ment and the learned policy is optimal [4]. However, Q-learning 
does not address many of the issues involved in learning in real 
world environment settings. 

3. Learning in Real World Environment 
Learning an optimal policy in real world settings, in tasks such 
as goal-oriented robot navigation, presents many new issues to 
be considered. Many reinforcement learning methods, includ- 
ing Q-learning, generally imply Markovian nature of the pro- 
cess. They assume a state encoding with transitional probabili- 
ties Pa(Xt+llX:) that unambiguously describe the environment. 
However, in real world applications, such as robot navigation, sen- 
sors are often incomplete. In this case one has to learn a task in 
a partially observable environment where different physical loca- 
tions may have identical sensory readings, and sensory values can 

0-7803-5529-6/99/$10.00 01999 IEEE 2061 

mailto:gert}@bach.ece.jhu.edu


not be used to represent states. 

Another important issue in applying Q-learning to real world prob- 
lems is computational complexity. The algorithm converges slowly 
or may fail to converge when the state and/or action space is large, 
such as in typical robot applications. Q-learning requires a suf- 
ficient degree of exploration (as oppose to exploitation) and in 
principle infinite time (to converge to the optimal policy), which 
makes generalization over a large input space difficult. In addition, 
real world environment is generally analog in nature, with various 
sources of noise (i.e. sensory-motor control errors). Variations in 
environmental conditions also have to be taken into account. 

4. Goal-Oriented Robot Navigation 

It has been shown that for simple tasks such as obstacle avoid- 
ance, raw sensory data is sufficient to learn the task [5]. For tasks 
of higher level of complexity, such as goal-oriented search while 
avoiding obstacles, a more efficient state encoding is needed. 

We have implemented a hybrid neural network architecture that 
combines unsupervised learning in a Kohonen self-organizing 
map [6], for state encoding of clustered sensor information, with 
Q-learning to map the coded discrete states onto control actions. 
The purpose of the Kohonen map is to reduce the dimension of 
the state space, and extract relevant features corresponding to the 
topology of the physical environment. The adaptive clustering al- 
lows to generalize action-state pairs over the robot's state space and 
learn them more efficiently. The topology-preserving name of the 
map ensures locality of the action-induced state transitions. 

4.1. State Encoding 
The Khepera microrobot (K-Team, Lausanne, Switzerland) has 
eight infra-red sensors, six of which are located in the front and 
two of which are located at the back of the robot. The sensors can 
be used both as proximity sensors for short range obstacle sensing 
as well as ambient light sensors . Two independent motors control- 
ling the wheels allow the robot to move. Explicit 8-bit encoding 
of each of the 16 sensors data would account to 3.4 . 16'' states 
in the Q-table. In order to reduce the size of the agent state-action 
space, states are represented by means of a self-organizing Koho- 
nen map. It performs unsupervised clustering of the input vector 
space while preserving its local topology. The general algorithm 
was implemented as follows [6]: 

1. Initialize the map near the centroid 

2. Repeat: 

(a) Get input vector It 
(b) Determine the winner: 

(c) Update the template: 
( i v t a i j v t a )  = argmin(lTt(i,j) - I t [ )  V i j j  

. .  for i  = i v t a - 1 ,  i v t a  9 iwta+l ;  3 = Iwta-1,  jvto , 
j v t a + i ;  
Tt+l(i , j)  = (1 - A,) . I t ( i , j )  + A t .  st 

The robot environment consists of an arena surrounded with walls, 
and a light source in one comer defining the goal as shown in Fig- 
ure 1. The action set included three actions of 100 ms duration 
each go forward, turn left, and turn right. Under random policy, 

Figure 1 : Khepera in the arena, with eightproximity sensors (outer 
ring) and eight light sensors (inner ring). 

the sequence of raw sensory states, actions taken, and reinforce- 
ment signals was recorded over 45,000 iterations. The reinforce- 
ment was an external (human-supplied) discrete signal consisting 
of a punishment when the robot hit an object, and a reward when 
it reached the goal. The learning was performed in a batch mode 
on the data collected. We trained a 2-D Kohonen map with an 
8 x 8 state space, S. encoding eight proximity and eight light sen- 
sor readings obtained from Khepera under random exploration. 

4.2. Learned State Map 
The resulting &state Kohonen map is shown in Figure 2, where 
values of proximity and light sensors are represented according to 
the convention in Figure 1. The segments of the outer ring cor- 
respond to the proximity sensors; the segments of the inner ring 
correspond to the light sensors. Darker colored segments denote 
closer proximity to an obstacle or higher level of illumination re- 
spectively. The templates, shown on the grid, are clearly suggestive 
of typical configurations of the robot in the physical environment. 
For example, state (2,3) corresponds to the robot being in front 
of light, while state (2,O) indicating a corner (proximity sensors 
2 and 4 have higher outputs than sensor 3). Neighboring nodes, 
on the other hand, retain many of the similar properties (such as 
neighboring location or small degree of rotation in physical space), 
while demonstrating a few different features. The sequence of 
states (7.0) through (3.01, for example, corresponds to the robot 
rotating while being close to a wall and far from the light source. 
Thus, the converged Kohonen map exhibits the expected general- 
ization and neighborhood preserving properties. 

To verify convergence of the learned Kohonen map two techniques 
were used. One way is to check that all the nodes on the grid are 
equally accessed. We keep track of the activity levels of the nodes 
during the Kohonen iteration: 

At+l( i , j )  = (1 - PI . At(i i j )  + LC. &.oea,jwta>Vi>ji (4) 

where A ( i , j )  is activity level of node ( i , j ) ;  &,j is 1 if the node 
(il j )  is selected, 0 - otherwise; p is the learning rate. Distribution 
of the activation levels over all nodes is checked for uniformity. 
We also examined histograms of the change in i and j index values 
on the Kohonen grid (Ai and Aj) values, at the beginning of the 
iteration process over loo0 iterations, and again over loo0 steps 
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Figure 2: The converged Kohonen map of sensory h a  The tem- 
plares, shown on the grid, include proximity sensors (the segments 
of the outer ring) and light sensors (the segments of the inner ring). 
Darker colored segments denote closer proximity to an obstacle or 
higher level of illumination for two types of sensors respectively. 

at convergence. The histograms, shown in Figure 4.2, suggest that 
at convergence, the states that the agent transitions to are indeed 
neighboring. 

43. Q-learning Algorithm Implementation 
In order to implement batch-mode Q-learning on the Kohonen 
map, we need to obtain the learned statistics of state transitions 
from the data sequence recorded from the robot. These statistics, 
for a given present state and action, were estimated by averaging 
over all data entries: 

where X’(Xt ,  at)  is the estimated position on the grid, with w r -  
dinatesi’,j’,thatthepresent stateX(i,j) leads to,Xt+1,obtained 
as a moving average over a large number of samples. Thus, the av- 
erage next state for a given state-action pair yields a continuous 
valued vector, off the grid, on the Kohonen map. Without using in- 
terpolation or other continuous-space techniques (e.g. GTM [7]). 
discrete nature of the Kohonen map allows us to construct only a 
‘coarse state transition map. 

To perform Q-learning, we implemented an algorithm based on 
value iteration with sample backup 181. Sample backup is a model- 
free method that samples the next state from a distribution over all 
possible successor states. For all of the sates X, we estimate state 
transition probabilities from the state to a few (i.e. four) Koho- 
nen map nodes (denoted as set N E S) that are possible successor 
states and are the closest neighbors of the average next state calcu- 

Y , , . . . . , 

Figure 3: The histograms of node distances for consecutive state 
transitions on the Kohonen map at different stages of the [earning 
process: in horizontal (top) and vertical (bottom) directions on the 
grid; at the beginning of learning (le#) and at convergence (right). 

lated in (5)  (see Figure 4): 

where w(X‘ (X ,  a ) ,  X i )  is a radial basis projection of the average 
next state X’(X,  a )  onto one of the neighboring states X ;  and i 
is a permissible index among all states in the closest neighborhood 
of the average next state as defined above (set N). The iteration is 
performed as follows: 

Q(X, a)  = a ( f ( X )  + 7 Pa(XilX) mazatQ(Xi,  a’)) 

(7) 

where reinforcement is sampled over set N with the estimated av- 
erage 

f(X) = (1 - x)f(X) + xrt . (8) 
The resulting plot of maximum &-values over all possible actions 
is presented in Figure 5. 

i 

+(I - a) . &(XI a) ,  

5. Navigation Results 
The Kohonen map at convergence indicates clustering of sensor 
values into ordered classes that physically correspond to relative 
position of the robot in the enviroment, such as distance and an- 
gle to walls, corners and light source. Regression of state transi- 
tions under control actions confirm “continuity” of the topology- 
preserving map, and value iteration of the Q map leads to a control 
policy that steers the robot towards the goal while avoiding ob- 
stacles. Finally, we tested the robot autonomously navigating in 
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its environment using the learned Kohonen and @optimal policy 
maps. The converged policy map and experimental on-line nav- 
igation trajectories shown in Figure 6 confirm that the robot has 
learned the navigation task starting at different initial states, it 
navigates to the goal state (2,3) avoiding obstacles. 

6. Conclusions 
A combination of unsupervised and reinforcement learning tech- 
niques has been proposed as an alternative to explicit position state 
encoding, for autonomous agents interacting with an unknown en- 
vironment through incomplete sensors of which the characteristics 
are equally unknown. Experimental results on the Khepera micro- 
robot confirm successful learning of a simple obstacle avoidance 
and goal-directed search task, using only limited-range proximity 
and ambient light sensors. 
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Figure 4 An illustration of the method of sampling the next state 
from a distribution over all possible successor states. Experimental 
state transition probabilities are evaluated over four Kohonen map 
nodes (circled) that are the closest neighbors of the average next 
state (2 ,  j ’ )  

m 
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I 

Figure 5: The maximum Q-values mer all possible actions. 
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Figure 6: The optimal-Q map and robot trajectories obtained on- 
line, by navigating the robot according to the learned policy. 
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