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Abstract— The architecture and VLSI implementation of an
epileptic seizure prediction microsystem are presented. The
microsystem comprises a neural recording interface and a seizure
prediction processor. The two functional blocks have been proto-
typed in a 0.35 µm CMOS technology and experimentally char-
acterized. The integrated microsystem is validated in predicting
the onsets of seizures off line in an in vitro epilepsy model of
recurrent spontaneous seizures in the hippocampus of mice.

I. INTRODUCTION

Existing methods of treating epilepsy are of limited benefit
or are not effective in all patients [1]. Automated seizure
prediction and subsequent prevention is a new promising
strategy for epilepsy treatment in patients who do not respond
to conventional therapies [2].

The evolution of a seizure involves preictal (i.e., prior to
seizure) transitional state that dynamically differs from the
interictal (i.e., between seizures) and ictal (i.e., during seizure)
states [3]. The implications of this distinction in the states is
that there is a possibility for seizure detection or prediction and
subsequent preventive intervention. Previous studies reported
implantable systems which detect a seizure as it takes place
and stimulate to stop it, with only between zero [4] and
17 percent [5] of treated patients rendered seizure-free. The
control of dynamic systems to keep them away from the stable
manifold once they are firmly established is a laborious and
challenging task. Consequently, the ultimate prerequisite for
any control algorithm is the ability to predict the onset of
undesirable dynamics, not to detect it retrospectively. Hence,
the real-time prediction of state transitions becomes the key
to successful control strategy. Additionally, multi-site seizure
monitoring and stimulation promises to be more effective way
to control seizures than few-electrode approaches [4], [5].

We present the design and experimental validation of an en-
visioned implantable technology that senses, adaptively learns
and classifies the abnormal brain activity of seizures before
they take place, at multiple sites in the brain. Figure 1 illus-
trates a block diagram of the autonomous seizure prediction
and prevention microsystem. The feedforward signal path
predicts a seizure. The feedback path activates a therapeutic
intervention upon a positive prediction. The intervention can
be in the form of an electrical stimulation [6], or a chemical

NEURAL SEIZURE
PREDICTION

STIMULATION

RECORDING

T
H

E
 B

R
A

IN INTERFACE

NEURAL

INTERFACE

PROCESSOR

Fig. 1. Seizure prediction and prevention microsystem architecture.

anticonvulsant injection [7]. In this paper we focus on a
miniature implementation of the feedforward path for in vitro
seizure prediction.

The rest of the paper is organized as follows. Section II
presents the VLSI implementation of the neural recording
interface with on-chip 3D electrodes. Section III details the
functionality of the seizure prediction processor. Section IV
contains the experimental results validating each functional
block of the seizure prediction microsystem.

II. NEURAL RECORDING INTERFACE

A. VLSI Architecture

The neural recording interface acquires voltages on 256 in-
dependent channels simultaneously [8]. The signal acquisition
circuits are arranged in a 16×16 array as shown in Figure 2.

Each channel is implemented as a two-stage continuous
time voltage amplifier as depicted in Figure 3. Electrochemical
effects occurring at the electrode-tissue interface cause random
DC voltage offsets that are several orders of magnitude larger
than the neural signal. Such large amplitude would cause the
amplifiers to saturate. Thus, a high-pass filter (HPF) is required
to remove the DC offsets without affecting the neural signal.
The HPF sub-Hz cut-off frequency is controlled by high-
resistance sub-threshold biased MOS transistors [9]. Leakage-
induced DC drift is removed by periodic resetting of the
amplifier in to the unity gain configuration for a short period
of time [10]. A low-pass filter (LPF) is required to filter out
any circuit noise outside the band of interest. The LPF is
implemented by limiting the bandwidth of the first stage and is
controlled by varying the bias current of the transconductance
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Fig. 2. Micrograph of the neural recording interface. The die fabricated in
a 0.35 µm CMOS technology measures 4.5mm × 3.5mm.

Vout

Cin Cf

Vin

Cload

Cf

RESET

Cin

Vref

Cf

Cin gm

gm S/H

Fig. 3. Recording channel block diagram.

amplifier. The channel gain is programmable and is set by a
configurable bank of capacitors in the feedback of the second
stage. Each channel in the array contains a sample-and-hold
(S/H) circuit as necessary for truly simultaneous multi-channel
recording. Array readout is implemented in a serial fashion as
controlled by row and column address decoders. One reference
electrode is shared by all channels.

B. Low-Power Low-Noise Neural Amplifier

The telescopic operational transconductance amplifier
(OTA) shown in Figure 4 is employed in the first stage. Its low
output voltage swing is sufficient as two amplification stages
are utilized. This yields a factor of five reduction in power
dissipation compared to the design in [1] for the same noise.
This is due to fewer DC branches and fewer noise sources in
the signal path.

Transistor sizing and biasing conditions are crucial for
achieving a low-noise performance while dissipating little
power. The noise level of 7µV over 5kHz bandwidth is chosen
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Fig. 4. Telescopic OTA of the first stage.

as an acceptable tradeoff for a channel layout pitch of 200 µm
and a bias current of 1.4 µA.

The second stage requires a larger output dynamic range.
A wide-swing current mirror OTA topology is employed. As
its noise contribution is insignificant compared to that of the
first stage, the power dissipation of the second stage can be
significantly reduced. The details of this design are given
in [1].

C. On-chip Electrode Integration

For in vitro experiments on mice hippocampus, a Utah
electrode array (UEA) has been bonded to the surface of the
neural recording interface die. As the 400µm UEA electrode
pitch is twice the recording channel cell pitch, a set of 8x8
electrodes were bonded for a total of 64 recording sites. A low-
cost flip-chip bonding method is adapted. Golden stud bumps
are bonded onto the die, coined and covered with conductive
epoxy. The electrode array is placed onto the stud bumps.
The epoxy is thermally cured. The microsystem is placed
into a fluidic chamber as shown in Figure 5. The inlet and
outlet tubes allow for the circulation of artificial cerebrospinal
fluid (ACSF) during recording from live tissue placed into the
chamber as necessary to preserve its vitality.

The experimental characteristics of the neural recording
interface are reported in Table II-C.

III. SEIZURE PREDICTION PROCESSOR

The wavelet artificial neural network (WANN) seizure pre-
diction algorithm described in [2] requires extensive comput-
ing resources in order to operate in real time with a high
detection rate. The main computational burden, by far, is
performing wavelet decomposition of the neural recording
signal, which is necessary to train and run the artificial neural
network (ANN). This computational throughput is beyond the
capabilities of a desktop computer with a Pentium processor,
particularly when more than one recording channels are used.
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Fig. 5. Neural recording integrated interface in a fluidic chamber.

TABLE I

NEURAL RECORDING INTERFACE EXPERIMENTAL CHARACTERISTICS

Programmable Gain 48dB - 68dB
Total Input Referred Noise 7µVrms

THD@4.4mVpp (worst case) 0.7%
LPF Cut-off Frequency 500Hz - 5kHz
HPF Cut-off Frequency 0.01Hz - 70Hz
Max Sampling Rate 10ksps
Power Dissipation per channel 15µW /channel
Total Power Dissipation 5.04mW
Electrode Pt tips, 1500µm long

The wavelet spectral analysis processor shown in Figure 6 is
a densely integrated massively parallel energy efficient mixed-
signal VLSI processor [11], [12]. It delivers over 175 billion
binary operations per second for every milliwatt of power.
Implemented in a 0.35 µm CMOS integration technology, the
processor yields 1.8 billion operations per second [13]. Such
computational efficiency and integration density are several
orders of magnitude higher than those available from existing
digital processors. This represents an energy-efficient and cost-
effective solution for implementations of very computationally
intensive learning algorithms, such as epileptic seizure predic-
tion algorithms in real time, particularly on an implantable
platform.

Morlet wavelet templates are stored in the on-chip DRAM-
based analog array in a row-parallel fashion. Input data is
presented serially into the input shift register. For every shift
a 1024-sample window of the input is correlated with all
wavelet templates stored in the on-chip memory in analog
domain. Correlation is performed in parallel on the entire
array. The computed inner products are quantized by four
banks of 128 analog-to-digital converters each.

The memory dimensions of the wavelet processor dictate
the wavelet transform parameters. The number of rows sets the
number of wavelets that are stored simultaneously for a given
wavelet coefficients resolution. The length of each row and the
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Fig. 6. Micrograph of the wavelet spectral analysis processor. The die
fabricated in a 0.35 µm CMOS technology measures 4mm × 4mm.

TABLE II

ON-CHIP WAVELET TRANSFORM PARAMETERS

Computing frequency 50Hz
Wavelet coefficient resolution 4-bits
Memory dimensions 128 rows × 1024 columns
Wavelet frequency bins 32 bins
Maximum wavelet frequency 90.8Hz

sampling rate determine the wavelet frequency range. Table III
summarizes the characteristics of the wavelet transform for
the array size of 128×1024 bits. A larger-scale integrated
implementation can relax these limits and may further improve
the seizure prediction rate.

The output of the processor represents the time-frequency
map of the acquired signal [1]. A ANN is then trained on
the time-frequency maps. The tasks of ANN training and
classification are of low computational complexity and are
performed in software.

IV. EXPERIMENTAL VALIDATION

In order to validate the functionality of the seizure pre-
diction microsystem, the two functional blocks, the neural
recording interface, and the seizure prediction processor, both
depicted in Figure 1, were experimentally characterized off
line.

To validate the neural recording interface functionality, an
intact hippocampus of a mouse was inserted onto the electrode
array for in vitro recording. Low Mg+2 was injected in the
ACSF stream to induce seizure like events, which were then
recorded through the on-chip UEA, quantized by off-chip
ADCs and transferred to a PC for visualization through a
custom developed user interface. Figure 7 shows an example
of a waveform recorded on the chip through one of the array
electrodes.
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Fig. 7. An experimental recording from an intact hippocampus of a
mouse through an on-chip UEA electrode. Seizure-like events were induced
chemically by low Mg2+.

To demonstrate the seizure prediction efficacy, a set of time-
frequency maps of a pre-recorded seizure data set was com-
puted on the wavelet analysis processor. Each map was then
selectively sampled and fed to a software-based ANN in order
to classify brain activity states in real time. A comparative
experiment was performed on the seizure prediction processor
and its software model in Matlab. The Morlet wavelet trans-
form of biological recordings was computed on both systems
and the outputs were treated as inputs to a software version
of the ANN off line. The corresponding Receiver Operating
Characteristic (ROC) curves are shown in Figure 8. Curves A
and B correspond to the wavelet analysis chip and its software
emulation respectively, both in the case when recorded data
is sparsely subsampled as limited by the slow PC interface in
the testing setup. In this case, a sliding window with 128ms
time shift is employed. Curve C corresponds to the ideal case
implemented in software when no I/O data rate limitations
are present. The sliding window time shift in this case is 1ms.
These results fully validate the utility of the wavelet analysis
chip as without PC I/O bandwidth limitation the prediction
performance is expected to match well that described by curve
C.

V. CONCLUSION

We have presented an architecture and VLSI implementa-
tion of an automated epileptic seizure prediction microsystem.
The microsystem is composed of a recording neural interface
for acquiring neural activity and a wavelet transform processor
for real-time spectral analysis. Both components have been
prototyped and their functionality experimentally validated. A
ANN was trained on the wavelet transformed brain activity
data in software to predict seizures in a timely manner. A
comparative experiment demonstrates the effectiveness of the
microsystem in predicting epileptic seizures.
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Fig. 8. A comparison of the ROC curves for the classified data obtained
from the wavelet processor and a Matlab model.
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