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Abstract— A low power VLSI architecture implementing an
algorithm for early seizure detection in epileptic patients using
intracranial or scalp EEG data is proposed. The algorithm tested
over more than 40 hours of recording from standard databases
achieves a best-case result of 100% sensitivity at a false positive
rate of 0.2 per hour. The algorithm is programmed on an
FPGA and was experimentally validated along with a neural
recording SoC chip to demonstrate a real-time seizure detection
microsystem.

I. INTRODUCTION

According to WHO statistics, over 50 million people
worldwide are affected by epilepsy, a chronic disorder of the
brain, characterized by recurrent seizures – physical mani-
festations of spontaneous and excessive electrical discharges
in certain collections of brain cells. The unpredictable nature
of seizures is a major reason for the morbid nature of this
disease, causing extensive emotional trauma to the patients
and their families, as the risk of premature death in epileptic
patients is two to three times the average. Anti-epileptic drugs
are the primary method of treatment, but are shown to be
effective only in 70% of patients. Another option is the surgical
removal of sections of brain functioning as epileptic centers.
However such surgeries are not always effective and may lead
to loss of memory or some other brain functions. Patients
not responsive to either medical treatment are said to be
afflicted by intractable epilepsy, and neurologists believe that
stimulating the right neuronal cells with short electrical pulses,
preferably before the seizure onset can mitigate and even
eliminate the approaching seizure event [1], [2].

A number of algorithms have been proposed for seizure
detection and prediction, though there is still some debate
regarding the exact definitions of prediction, detection and
early detection. This paper deals with ‘early detection’ of an
electrical seizure onset (ESO) as long as the indication arrives
shortly before the clinical-seizure onset (CSO) (i.e., physical
manifestation). Several researchers have reported neural signal
sensing and stimulation microsystems all on one chip, which
hold potential for an implantable device [3]. Commercial
products have also been brought into the market. A particular
example is Neuropace, which first offered continuous stimula-
tion and now the device comes with an algorithm which learns
patient pathological brain states and stimulates accordingly.
However there are still areas of improvement in detection
performance and in low-power operation.

This paper presents an early seizure detector digital VLSI
architecture based on similarity index that minimizes area and
power making it suitable for an implantable device. The rest
of the paper is organized as follows. Section II discusses the
system-level VLSI architecture of the early seizure detector.
Section III presents a classification of popular algorithms
and describes in detail the concept of similarity index-based
algorithm. Section IV describes the VLSI implementation of
the algorithm. Section V shows simulation and experimental
results.
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Fig. 1. Proposed early seizure detector and stimulator.

II. SYSTEM LEVEL VLSI ARCHITECTURE

An electrode array such as ECoG connects to the closed-
loop system as displayed in Figure 1 and consists of a set of K
scalable channels which include a neural recording and bipha-
sic neural stimulation interface. The neural recording interface
uses a compact AC-coupled amplifier with an integrated noise
below 10µV from 1Hz to 5kHz bandwidth and a gain of
60dB followed by an 8-bit low power ADC. All recorded
neural signals are sent to an early seizure detector which is
implemented in the digital VLSI domain.

For a large numbers of channels (greater than 64), data
rates reach well above 1MB/s. Implementing an area and
power-efficient seizure detector allows for the possibility of
computing on all channels and remain in the power budget
constraints for safe implantation. If the early seizure detector
detects an event, a trigger signal is sent to the biphasic
neural stimulator controller to evoke a biphasic current pulse
stimulation. The biphasic current pulses are between 10µA
and 1mA, with frequencies between 10Hz and 1kHz.
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III. EARLY SEIZURE DETECTION ALGORITHMS

A. Categories of Algorithms

Most of the seizure detection or prediction schemes fall
into two major categories: univariate and bi/multivariate al-
gorithms. An example of a bivariate method is the phase
synchrony based algorithm [6]. The main advantage of a
bi/multivariate method is that the algorithm can incorporate
the spatial information available as the discharge spreads
across different regions of the brain, something not possible
to extract from a single electrode. This usually results in more
accurate detections, at the cost of increased chip area and
power dissipation. These parameters are critical, especially
when designing an implantable chip and have to be carefully
minimized. This is where univariate methods are better, as the
algorithms are simple and can be implemented at a very low
hardware implementation cost.

Most of the univariate algorithms are based either on fre-
quency and wavelet analysis [7] or on statistical and time series
analysis [8] which extract certain features found prevalently
in the pre-ictal (before the seizure onset) or ictal (during the
seizure) periods. This paper explores one such attribute, the
similarity index of a time series, which is related to the long
and short term dependencies within the series.

B. Similarity Index and its Properties

Similarity index, sometimes known as the Hurst exponent
or the Holder exponent (H) is used to characterize the long-
term memory or dependence of a stochastic process, and
is usually estimated using the time series as one of the
realizations of the process. The definition of H for a time
series X1, X2, ..., Xn [4] is

H =
log(R(n)/S(n))

log(n)

where R/S is called the rescaled range, R is the range and
S is the standard deviation of the data in consideration. Both
are measures of deviation, R is dependent on the range of the
sum of data values and S is related to a sum of squares of the
same. These can be calculated as

R(n) = max(Z1, Z2, ..., Zn)−min(Z1, Z2, ..., Zn)

S(n) =

√√√√ 1

n

n∑
i=0

(Xi −m)

where m is the mean of Xi, for i = 1, 2, ..., n,

Zt =

t∑
i=1

Yi,

and
Yi = Xi −m.

Theoretically, the value of H lies between 0 and 1. For
a Gaussian white process it is 0.5. Above this value, there is
positive correlation in the series (a high positive value is likely

to be followed by another large positive value) and a value
below 0.5 indicates negative correlation (a high likelihood of
switching). Typically, three methods are used to estimate the
Hurst exponent based on historical data, from discrete second
derivatives of the series [9], from discrete wavelet coefficients
[5] or from log-log regression of detail variance versus level
directly based on the definition [10].

In this paper, the method of discrete second derivatives
was chosen due to its simplicity and ease of implementation
in a VLSI architecture with minimum hardware resources.
This estimate is inspired by the work of Istas and Lang
[9] on point-wise Holder parameter estimation for fractional
brownian motion, given by

He =
1

2

(
1 +

log VN

log N

)
,

VN =

N−2∑
i=1

(Xi+2 − 2Xi+1 +Xi)
2,

where N is the number of discrete samples of process Xi

available. A modification of this approach is

He =
1

2
(log(WN/VN )) , VN =

N−2∑
i=1

(Xi+2 − 2Xi+1 +Xi)
2

WN =

N−4∑
i=1

(Xi+4 − 2Xi+2 +Xi)
2.

Both of these approaches were tested on human seizure data,
and though they provide similar results the second one was
chosen due to its slightly higher performance and the fact that
an implementation of the latter encompasses the former.

Once the H value is estimated (He), it is averaged depen-
ding upon the noisiness of the estimate after which the infor-
mation contained in it is converted into a seizure prediction or
detection. For this, the incoming data is windowed and then
an Hevalue is calculated for each window, akin to finding a
dynamical similarity index for the complete process. A large
deviation from the long-term mean across windows signals a
change in the dependence or correlation of the process, and
can be thought of as an indication of an impending seizure
[11]. To achieve this, current He value is compared against
a running mean of past values, and if the value rises above
or falls below a threshold, a trigger signal is activated. To
correct for the effect of noise in the data, two thresholds
are used, a fixed one and another pegged to the variance (or
standard deviation) of the estimate. The higher the variance,
the more likely the chance of deviations from the mean due
to noise is (unrelated to any seizure activity), resulting in
fewer false triggers. This introduces two key parameters into
the algorithm, the fixed threshold parameter (ftp) and the
amount by which threshold depends on the variance or the
variance pegged parameter (vpp). These parameters determine
the efficacy of the algorithms and should be adjusted for
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Fig. 2. VLSI architecture of the similarity index algorithm which sets the trigger signal based on the Hurst exponent estimate.

a particular patient and testing setup. Setting of the trigger
indicates an impending seizure. The mean is given as

Ĥ =
1

M

M∑
i=1

He(i),

where i is the window index, M is number of windows used
to find the mean. The variance is given as

V ar =
1

M

M∑
i=1

(He(i)− Ĥ)2,

The trigger is set as follows

Trig = 1, if |He(j)− Ĥ| > ftp and

|He(j)− Ĥ| > vpp× V ar,

where j is the current window index.

IV. VLSI IMPLEMENTATION OF SIMILARITY INDEX

ALGORITHM

To reduce hardware complexity, additional simplifications
were added to the algorithm already described. They are
replacing squaring by absolute value operation and restricting
parameter values to powers of two to eliminate multipliers.
The complete architecture shown in Figure 2 was designed
for an 8-bit word length, based on the resolution of the on-
chip ADC used to sample the neural data. It consists of first
finding the second derivatives based estimate of similarity
index using multiplier-less implementation of filtering-like
operations followed by a look-up table (LUT) realization of
the scaled log-function. The local estimate is then compared
against the running mean of past values, for which the mean
of a 128 or 256 (depends on patient, operating conditions and
sampling frequency) past values is calculated and stored, using
only one adder and an memory element. This method creates
a maximum initial latency of up to a few seconds, but this
can be safely ignored in continuous real-time operation of the
system. The variance is calculated in a similar manner and the
fixed threshold parameters are derived from simulation through
the ROC plots. Finally the current value is compared with the
mean to generate a trigger output which indicates a possible
seizure occurrence.

This architecture was implemented and simulated in a
VHDL logic synthesizer, to verify the accuracy of the design,
followed by programming on an Altera FPGA included in the
system. The resources used by the Altera FPGA are 361 logic

elements, 199 dedicated registers and a memory of 64-bits for
implementing a scaled version of a log LUT.

Fig. 3. The top plot shows the seizure data. The bottom plot shows the
Hurst exponent estimate and its running mean, with computed trigger falling
between ESO and CSO.

Fig. 4. The top plot shows the seizure data. The bottom plot shows the
Hurst exponent estimate and its running mean, showing the computed trigger
falling just after ESO is identified.

V. SIMULATED AND EXPERIMENTAL RESULTS

The VLSI architecture was first simulated in MATLAB, and
tested over two data sets of labeled human data to create ROC
plots and check the efficacy of the algorithm. The first set of
results is from the Freiburg dataset [12] shown in Figure 3;
tested segment consisting of 30 hours of intracranial EEG data
from one patient. Out of these, 10 hours are purely interictal,
while 20 hours contain 6 events of seizure activity. There were
multiple electrodes, of which the one found to be the closest
to the epileptic center was used in the algorithm. The second
dataset is from MIT’s Physionet bank [13] which contains
scalp EEG data, with the corresponding results described in
Figure 4. Here 10 hours of data containing 7 seizures from
one patient were tested. There is no clear criteria for electrode
selection, so a random choice was made as most of the
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Fig. 5. ROC plots for Freiburg and MIT Physionet data sets.
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Fig. 6. Experimental setup of early seizure detector.

electrodes give similar results. This has a lower SNR compared
to intracranial EEG data resulting in a decrease in performance
which is reflected in the corresponding areas under the ROC
plots in Figure 5.

The test setup is shown in Figure 6. The details of the
neural recording SoC are described in [14]. The algorithm
was programmed onto an FPGA and pre-recorded seizure data
were played through an arbitrary signal generator. The signal
levels were set to 100µV to enable low SNR measurements.
The data was amplified by an amplifier on the SoC with an
integrated noise of 6.5µV between 1 and 5kHz and digitized
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Fig. 7. (a) Original seizure data. (b) Simulated seizure detection results. (c)
Output showing the seizure data after being amplified and digitized by the
SoC. (d) Experimental seizure detection as a result of the neural recording
data being fed by the SoC to the FPGA and processed on the FPGA.

using an ADC with an ENOB of 7.8-bits at 20kS/s. The seizure
detection was performed in real time with one channel selected
from the chip and its 8-bit ADC output connected to the input
of the FPGA.

The seizure is shown in Figure 7(a) and the simulated
VHDL result is shown for the seizure detection in Figure 7(b).
The amplified and digitized output of the seizure recorded
from the SoC as shown in Figure 7(c). This quantized signal
was sent to the FPGA in real time resulting in the trigger
output, as shown in Figure 7(d).

VI. CONCLUSIONS

A compact similarity-index based early seizure detector VL-
SI architecture was presented. The architecture was validated
through RTL-level simulations with standard intracranial and
scalp EEG databases and achieves 100% sensitivity with a fal-
se positive rate of 0.2 per hour and 1.0 per hour, respectively.
It was also programmed on an Altera Cyclone III FPGA and
experimentally validated together with a neural recording SoC.
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