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Abstract— This paper discusses general tradeoffs between
wireless communication and computation in closed-loop im-
plantable medical devices for neurological applications. Closed-
loop devices enable neural monitoring, automated diagnostics
and treatment of neurological disorders. Several topologies for
the loop are discussed, including within the implant, as well
as implemented with a wearable, handheld or stationary pro-
cessor. Common wireless communication data rate and range
requirements and algorithmic computational requirements are
summarized. As a case study, a 0.13 µm CMOS neurostimulator
SoC for closed-loop treatment of intractable epilepsy is presented.
Its triple-band radio with a 1m 230Mbps pulse-radio, a 2m
46Mbps pulse-radio 2, and a 10m 1.2Mbps FSK radio provides a
versatile transcutaneous interface. The in-implant processor has
constrained computational resources which results in a limited
detection performance - seizure detection sensitivity of 87%. A
higher-performance signal processing algorithm implemented on
a stationary device within a loop enhances the seizure detection
performance which was improved to a sensitivity of 98% with
three times fewer false alarms. This comes at the cost of an
increased wireless transmitter power budget, if communicated
directly. These results illustrate a fundamental tradeoff between
the communication and computation in closed-loop electronic
therapies for neurological disorders.

I. INTRODUCTION
Neurological disorders are estimated to affect as many as

a billion people worldwide. Conventional diagnostic systems
(e.g., MRI) provide confined temporal information about a
neurological condition. Traditional pharmaceutical treatments
often have limited overall therapy efficacy [1]. Drug resistance
and drug related side-effects are commonly observed. Thus, a
large diagnostics and treatment gap is currently present in the
modern health care system. A promising approach for reduc-
ing the burden of neurological disorders is a comprehensive
medical device for continuous monitoring of a patient,s health
status and providing real-time feedback to warn of or prevent
a medical emergency.

Continuous patient health monitoring and real-time feed-
back have already benefited from microtechnology advance-
ment in the fields of wireless communication and signal
processing. However, major barriers to long-term use are
high-data-rate wireless communication and advanced signal
processing in real-time, both on a tight energy budget of an im-
planted or a body-worn medical device. High wireless commu-
nication data rate is needed for high spatiotemporal-resolution
brain monitoring in diagnostics [2]. High-performance signal
processing enables reliable vital signs identification and in-
corporating real-time decision support for early and accurate
clinical symptom detection. This may relax the communication
link data rate if implemented within a medical device. On the
other hand, signal processing requires computational resources

and added complexity in the device design, translating into an
increased energy demand.

Over the last decade, there has been a growing interest in de-
veloping fully-implantable systems-on-chip (SoCs) to perform
brain state monitoring, abnormal physiological signal detection
and feedback treatment of neurological disorders, such as
epilepsy. Such a feedback neurostimulation system with high
treatment efficacy requires low-noise compact-channel multi-
site neural recording, power-aware signal processing (e.g.,
on-chip time-advanced seizure detection), versatile wireless
diagnostic data communication, and power and configuration
telemetry [2], [3].

Ultra-wideband impulse radio (UWB-IR) is often a prefer-
able wireless communication architecture for short-range
(<10m) moderate- to high-data-rate (>10Mb/s) transmission
[4], [5]. A UWB-IR transmitter (TX) directly radiates a train of
short (<1ns) pulses to carry out wide-band data transmission.
Compared with the state-of-the-art low-power narrow-band
transmitters [6], UWB-IR transmitters offer ⇥10 or more
bandwidth and lower per-bit energy dissipation [4]. In many
implants, the battery constitutes the main source of energy,
which constraints the implant’s functionality and lifetime.

In this paper, trade-offs between communication and com-
putation are described, supported by a case study of a SoC for
the treatment of epilepsy. A closed-loop treatment mechanism
is demonstrated using on-chip monitoring, signal processing,
wireless data communication, and feedback neurostimulation.
This fully integrated system was fabricated in a silicon area of
4.85mm x 3.3mm using 0.13um CMOS technology. The chip
benefits from a quad-core DSP for on-chip seizure detection
and three wireless transmitters for data communication over
three ranges. Power and feedback commands are delivered
through an inductive link. An inductive power transfer tech-
nology in the implant enables long-term use of the system
without the need for battery replacement or charging of such
implantable devices. This inductive link also enables low-rate
command communication back to the device to close the loop.

II. CLOSED-LOOP ARCHITECTURE

Fig. 1 illustrates a block diagram of a continuous brain
monitoring and real-time feedback system. It includes five
main blocks: (i) an implant, (ii) a wearable, (iii) a handheld,
and (iv) a stationary device. The implant has five components,
the processor (P1), the amplifier (AMP), the neurostimulator
(BUFFER), the tri-band radio (TX 1A, TX 1B and TX 1C),
and the power and data transceiver (TRX1). The implant
records neural signals from multiple electrodes using the
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Fig. 1. Block diagram of an implantable closed-loop system and wireless
communication interfaces with external processors.

TABLE I
TRADEOFFS BETWEEN COMMUNICATION AND COMPUTATION

Parameter Implant Wearable Handheld Stationary

Mobility 3333 333 33 5
Latency 3333 333 33 3
Energy efficiency 3333 333 33 5
Energy for communication 3333 333 33 3
Algorithm complexity 3 33 333 3333
Algorithm accuracy 3 33 333 3333
Heterogeneity 3 33 333 3333
Adaptivity 3 33 333 3333
Cost 3 33 333 3333
Ease of use 5 3 33 3333

AMP, processes the signals in real-time in P1, and triggers a
neurostimulation through BUFFER upon an abnormal signal
pattern detection.

Several other options for closing the loop exist. The ac-
quired signal can be transmitted through the tri-band radio to
the wearable, handheld, or stationary devices. The wearable
device (e.g., an earpiece) is aligned with the implant and
attached to the scalp for short-distance data communication
(TRX 2A) and inductive power and feedback commands
transfer (TRX 2B). The wearable device is more powerful and
thus computationally resourceful than the implant. The implant
and the wearable are connected by a high-speed wireless
connection. As a result, neural signals can be processed in
the wearable in real-time instead of the implant. Second, a
more complex and accurate algorithm implementation requires
a more advanced signal processor. A handheld (e.g., a cell
phone) device can receive neural signals from the implant
(directly or through the wearable repeater), process the signals
with a more complex algorithm and respond to the implant
when needed (e.g., upon an abnormal brain state detection).
Finally, a stationary device (e.g., laptop), as an external con-
troller, enables clinicians to interact with the implant through
radio frequency transmission as needed for adjusting the
algorithm, stimulation parameters, changing operating modes,
and storing data. The stationary device enables most compu-
tationally expensive signal processing of neural data which
can further improve the performance. The wearable device
performs the authentication for reprogramming the implant.
These and several other possible wireless signal paths are
depicted in Fig. 1. Table I shows advantages and disadvantages
of the closed-loop device when signal processing occurs within

TABLE II
DETECTION PERFORMANCE OF SEIZURE DETECTION ALGORITHMS

Platform Method Reference Algorithm Sensitivity Specificity Early detection
complexity (%) (%) time (sec)

Implant Phase synchrony [11] 3 91 86 5
Wearable FFT + tree [12] 3 3 93 97 11
Handheld Wavelet + ANN [8] 3 3 3 96 89 25
Stationary Extreme learning [9] 3 3 3 3 98 92 34

device or with wearable, handheld or stationary devices.

III. COMPUTATIONAL REQUIREMENTS
Available computational capability versus algorithmic per-

formance is a key tradeoff for an efficient closed-loop im-
plantable device. In the case of epilepsy, the challenges in
seizure onset detection are variabilities in signal amplitude,
frequency, pattern, and also varying spatiotemporal dynamics
of the brain. Thus, a relatively high computational capability is
required in signal processing to address all these variabilities
and detect a seizure effectively. Many algorithms have been
proposed for seizure detection [7]–[9]. These algorithms were
carried out offline using a stationary device (e.g., laptop).
These types of algorithms cannot be employed in a low-power
implantable microchip due to their extensive computational re-
quirements. More recently, lower-complexity seizure detection
algorithms with moderate detection performance have been
proposed for in-implant integrated seizure detection [2], [3],
[10].

In this paper, four different seizure detection algorithms
were selected to explore their performance on four different
platforms. The first algorithm is for an implant, second for a
wearable, third for a handheld and the fourth for a stationary
device. The first algorithm is based on phase synchronization
between two signals [11]; second is based on Fast Fourier
transformation and a decision tree [12]; the third is based
on discrete wavelet transform and artificial neural network
for the handheld [8]; and the fourth is based on nonlinear
features, such as approximate entropy (statistical analysis),
hurst exponent (correlation properties), detrended fluctuation
analysis (temporal correlations), and also machine learning
(extreme learning) [9]. Performances of the four algorithms
were evaluated using intracerebral EEG (iEEG) recordings of
five patients with epilepsy and are summarized in Table II.
The detection performance improves with the increase of the
algorithm complexity which requires computational power.

IV. WIRELESS COMMUNICATION
Wireless data transmission rate and range are also critical

design criteria for an efficient closed-loop implantable device.
The high-rate spatiotemporal information and extensive signal
processing are the key parameters for implementation of
complex algorithms. A high-rate data connection enables high-
performance signal processing algorithms in the wearable,
handheld or stationary device as a proxy for the implant. Many
RF wireless transmitters have been introduced for low-power
moderate-rate and high-rate data transmission applications.
Table III includes several transmitters and their features. Short-
distance data transmission yields a higher data rate as needed
for real-time signal processing in a remote device and low-
latency feedback commands.
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TABLE III
A COMPARATIVE STUDY ON WIRELESS TRANSMITTERS

Data Output Average Modul- Energy TX Range
Device rate power power ation per bit Efficiency (m)

(bps) (dBm) (mW) (J/bit) (%)
ANT 60k 0 8.7 147n 11.5 30
ZigBee 250 k 0 to -20 14.8 OQPSK 59.4n 6.7 10 - 100
Zarlink 800k 4.5 to -17 16.5 FSK 20.6n 6 3
Nordic RF module 2M 0 to -16 40.5 GFSK 20n 2.5 100
TI RF module 600k +12 to -30 7.2 FSK 12n 14 30
Low-power bluetooth 3M +4 to -20 30.7 GFSK 10.2n 3.2 1 - 100
TX 1C 1.2M -20 to 0 3.7 FSK 3.1n 15 10
TX 1B 46M -1 3.8 UWB 85p 21 1
TX 1A 230M -1 3.8 UWB 17p 21 0.1
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Fig. 2. A simplified functional diagram of the neurostimulator SoC
and peripheral blocks.

V. CASE STUDY: SEIZURE-ABORTING NEUROSTIMULATOR

Fig. 2 illustrates the system architecture of a closed-loop
neurostimulator SoC presented here as an example. This
device includes 64 recording channels, a quad-core low-
power DSP, 64 current-mode neurostimulators, a triple-band
RF transmitter, and an inductive command and power receiver
[13].

A. Triple-Band Radio
A triple-band RF radio is designed to transmit recorded

iEEG data transcutaneously to the wearable, handheld, or
stationary devices. The 3.1-10.6GHz UWB short-range (10cm)
transmitter (TX 1A) communicates through the scalp to a
wearable receiver. The under-1GHz UWB mid-range (1m)
transmitter (TX 1B) communicates to a handheld receiver.
The 915MHz FSK long-range (10m) transmitter (TX 1C)
communicates to an indoor stationary receiver. Energy is
transmitted by a single coil (TRX 2B) through a multi-coil
cellular inductive link at 1.5MHz frequency. The power trans-
mitter outputs 30mW maximum power for the 12cm maximum
transmission distance with power efficiency of 40% [13]. An
ASK command receiver (RX1) reuses the same inductive link
to recover transmitted commands and the clock.

B. On-Chip DSP
An epileptic seizure detection algorithm was introduced in

our previous studies [3], [11]. The detection of the seizure

onset was based on the fluctuations in a phase synchrony index
(R) between two iEEG recordings. The index R is proportional
to the fluctuations in the phase difference of two channels.
It is estimated as the absolute value of the derivative of the
time series: |d(��)/dt|, where �� is the phase difference
between two selected channels. Generally, R is measured using
the mean phase coherence statistic (1 sec running window),
which is defined as R = |hed(��)i|. The quad-core low-power
digital signal processor (DSP) in Fig. 2 is designed to compute
the first derivative of the neural signals phase synchrony (i.e.,
spatial neural synchrony fluctuations), 16 channels per core.

C. Stimulator circuit
Fig. 2 also shows a current-mode stimulator in the feedback

path of the closed-loop neurostimulator, which triggers a
programmable train of biphase current stimulation upon a
seizure onset detection.

D. Trade-offs

For this design, the experimentally-measured power con-
sumption of the on-chip processor is 897µW for a clock
frequency of 10MHz and supply voltage of 1.15V. To reduce
power consumption, both supply voltage and clock frequency
could be reduced to 0.85V and 2.5MHz, respectively, at the
cost of a higher detection latency. For a 1.15V supply at
2.5MHz the processor dissipates 231µW, and for a 0.85V
supply at 2.5MHz and 10MHz the processor dissipates 102µW
and 412µW, respectively. Also for only one pair of channels,
operating at 1.7kS/s the processor dissipates 3.6µW when
operating with a 0.85V supply.

Based on these power figures, the seizure detector processor
dissipates 3.6µW/channel and has an energy efficiency of
210pJ/bit. For processing off-chip this requires an RF wireless
transmitter such as the ones listed in Table III. The total power
consumption for transmission is 3.7mW and 3.8mW for the
FSK and UWB transmitters, respectively. The ASK wireless
receiver used to receive stimulation commands (within TRX1)
has a power consumption of 350µW. Overall, this yields an
energy efficiency of 3.37nJ/bit for the FSK TX 1C (10m
range), 90pJ/bit for the UWB TX 1B (1m range), and 18pJ/bit
for the UWB TX 1A (10cm range).

Based on the above, achieving the 98% detection sensitivity
while communicating by means of the FSK TX directly to a
stationary processor comes at the cost of degrading energy
efficiency by a factor of 16. Communicating to a hand-held
processor using a medium-range high-data-rate UWB TX
yields 2.3⇥ better energy efficiency and 5% higher sensitivity,
as compared to an implanted signal processor, at the cost
of 20s higher latency. Finally, communicating to a wearable
processor using a short-range medium-data-rate UWB TX
yields 11.6⇥ better energy efficiency and 2% higher sensitivity
at the cost of 6s longer latency. Depending on how: (a)
energy efficiency of detection, (b) latency, and (c) accuracy
are prioritized, one of the four options described can be used.
A solution acceptable for most cases is to use a wearable data
repeater, assuming the cost and the ease of use are tolerable.

1840 

  



TX 1A
UWB

POWER MANAGEMENT

& COMMAND RX1

916.4 MHZ FSK

DUAL CORE 

8 X 8 ARRAY OF

CHOPPER-STABILIZED

DIGITALLY CALIBRATED

RECORDING AND

 STIMULATOR 

0.5

0

-0.5

0.5

0

0

0

0.5

1

SEIZURE DETECTION (NO STIMULATION) SEIZURE ABORTION BY STIMULATION

V
R

H
 (
m

V
)

V
L

H
 (
m

V
)

V
R

F
 (
m

V
)

0.5

0

-0.5

0.5

0

0.5

0

0

0.5

1SEIZURE ONSET DETECTION
SEIZURE DETECTION THRESHOLD

EEG FROM RIGHT HIPPOCAMPUS

NORMAL SEIZURE

0 40 80 120 160 0 20 40 60 80 100

TIME (SEC) TIME (SEC)

SEIZURE ONSET DETECTION

SEIZURE SUPPRESSION

d
R

 /
 d

t

SEIZURE ONSET
ELECTRICAL STIMULATION

EEG FROM RIGHT FRONTAL LOBE

EEG FROM LEFT HIPPOCAMPUS

0.5

-0.5

(a) (b) (c)

TX 1C

T
X

1
B

U
W

B

PROCESSIR (P1)

DUAL CORE 

PROCESSIR (P1)

CHANNELS

-0.5

Fig. 3. (a) Micrograph of the 16mm2 closed-loop neurostimulator and in-vivo experiment results example: (b) real-time seizure detection
and (c) closed-loop seizure suppression.

E. In vivo experiment
The closed-loop neurostimulator was implemented in a

4.85mm x 3.3mm SoC using a standard 1P8M 0.13µm CMOS
technology. Micrograph of the chip is shown in Fig. 3.
The integration area was reduced by 80% compared with
an equivalent AC-coupled implementation [3]. The SoC
was validated in a chronic experiment using a rodent model
of epilepsy. Four Wistar rats were intraperitoneally injected
with kainic acid which induced recurrent spontaneous motor
seizures within one to two months. The rats underwent cran-
iotomy for both hippocampi and frontal lobe microelectrodes
implantation. The rats were divided into two equal groups:
the non-stimulation group and the stimulation group. In each
rat, the electrodes were connected to the presented SoC for
automatic seizure detection. Each rat was also video monitored
for seizure labeling. Fig. 3 (b) shows an example of in-vivo
real-time seizure detection in the non-stimulation group.

In the stimulation group the SoC was also configured to
trigger the closed-loop electrical stimulation in response to a
seizure onset detection. Fig. 3 (c) illustrates the SoC-triggered
stimulation upon a seizure onset detection in the stimulation
group and the seizure having been suppressed.

The average sensitivity and specificity of the detection
were 87% and 95%, respectively. Seizure frequency has been
reduced on average by over 76% in the stimulation group
compared to the non-stimulation group.

In a second implementation, a four times have complex
signal processing algorithm was deployed on a stationary
device. This requires a 200kbps wireless data communica-
tion forwordlink. As a result, the detection performance was
improved to a sensitivity of 98% with three times fewer false
alarms. This requires an additional 3.7mW of power within
the implant.

VI. CONCLUSION
The closed-loop treatment efficacy is likely to depend on ac-

curate physiological symptom detection. A high-performance
signal processing algorithm for multi-site spatiotemporal phys-
iological recording enables early and accurate symptom de-
tection. Often the low-power implant is unable to implement
the complex signal processing. The presented implantable SoC
benefits from a triple-band wireless transmitter for versatile
transcutaneous interfacing. The triple-band radio yields a num-
ber of degrees of freedom in wireless communication trading

between energy efficiency of computation and communication.
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