
Bit-Pragmatic Deep Neural Network Computing
Jorge Albericio∗

NVIDIA
jalbericiola@nvidia.com

Alberto Delmás
University of Toronto

delmasl1@ece.utoronto.ca

Patrick Judd
University of Toronto

juddpatr@ece.utoronto.ca

Sayeh Sharify
University of Toronto
sayeh@ece.utoronto.ca

Gerard O’Leary
University of Toronto

gerard.oleary@eecg.utoronto.ca

Roman Genov
University of Toronto

roman@eecg.utoronto.ca

Andreas Moshovos
University of Toronto

moshovos@ece.utoronto.ca

ABSTRACT
Deep Neural Networks expose a high degree of parallelism, mak-
ing them amenable to highly data parallel architectures. However,
data-parallel architectures often accept ine�ciency in individual
computations for the sake of overall e�ciency. We show that on
average, activation values of convolutional layers during inference
in modern Deep Convolutional Neural Networks (CNNs) contain
92% zero bits. Processing these zero bits entails ine�ectual com-
putations that could be skipped. We propose Pragmatic (PRA), a
massively data-parallel architecture that eliminates most of the
ine�ectual computations on-the-�y, improving performance and
energy e�ciency compared to state-of-the-art high-performance
accelerators [5]. The idea behind PRA is deceptively simple: use
serial-parallel shift-and-add multiplication while skipping the zero
bits of the serial input. However, a straightforward implementa-
tion based on shift-and-add multiplication yields unacceptable area,
power and memory access overheads compared to a conventional
bit-parallel design. PRA incorporates a set of design decisions to
yield a practical, area and energy e�cient design.

Measurements demonstrate that for convolutional layers, PRA is
4.31⇥ faster than DaDianNao [5] (DaDN) using a 16-bit �xed-point
representation. While PRA requires 1.68⇥ more area than DaDN ,
the performance gains yield a 1.70⇥ increase in energy e�ciency
in a 65nm technology. With 8-bit quantized activations, PRA is
2.25⇥ faster and 1.31⇥ more energy e�cient than an 8-bit version
of DaDN .

∗This work was developed while Jorge Albericio was a postdoctoral fellow at the Univ.
of Toronto.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-50, October 14–18, 2017, Cambridge, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00
https://doi.org/10.1145/3123939.3123982

CCS CONCEPTS
• Computing methodologies → Machine learning; Neural
networks; •Computer systems organization→ Single instruc-
tion, multiple data; • Hardware→ Arithmetic and datapath
circuits;

KEYWORDS
Hardware Accelerators, Machine Learning, Neural Networks

ACM Reference format:
JorgeAlbericio, Alberto Delmás, Patrick Judd, Sayeh Sharify, GerardO’Leary,
Roman Genov, and Andreas Moshovos. 2017. Bit-Pragmatic Deep Neural
Network Computing. In Proceedings of MICRO-50, Cambridge, MA, USA,
October 14–18, 2017, 13 pages.
https://doi.org/10.1145/3123939.3123982

1 INTRODUCTION
Deep neural networks (DNNs) have become the state-of-the-art
technique in many classi�cation tasks such as object [9] and speech
recognition [14]. Given their breadth of application and high com-
putational demand, DNNs are an attractive target for �xed-function
accelerators [5, 6, 12]. With power consumption limiting modern
high-performance designs, achieving better energy e�ciency is
essential [8].

DNNs comprise a pipeline of layers that primarily compute inner
products of activation and weight vectors. A typical layer performs
hundreds of inner products, each accepting thousands of activation
and weight pairs. DNN hardware typically uses either 16-bit �xed-
point [5] or quantized 8-bit numbers [29] and bit-parallel compute
units.

As Section 2 shows, in Deep Convolutional Neural Networks
(CNNs) for image classi�cation, no more than 13% of all activation
bits are non-zero when represented using a 16-bit �xed-point for-
mat. Traditional bit-parallel compute units process all input bits
regardless of their value. Recent work on CNN accelerators has
proposed how to leverage sparsity for performance. Recent accel-
erators exploit this characteristic by skipping zero, or near zero
valued activations or ine�ectual weights [2, 12, 24]. Stripes exploits
the non-essential bits of an activation by using reduced precision
and processing activations bit-serially [18]. However, the reduced

382

https://doi.org/10.1145/3123939.3123982
https://doi.org/10.1145/3123939.3123982

MICRO-50, October 14–18, 2017, Cambridge, MA, USA J. Albericio et al.

precision format is determined statically and shared across all con-
current activations, and thus does not exploit the additional zero
bits that appear dynamically.

This work presents Pragmatic (PRA), a CNN accelerator whose
goal is to exploit all zero bits of the input activation and to process
only the essential (non-zero) bits. The idea behind Pragmatic is to
process the activations bit-serially, while compensating for the loss
in computation bandwidth by exploiting the abundant parallelism
of convolutional layers, which represent 92% of the processing time
of modern CNNs [5]. However, as Section 3 explains, a straight-
forward implementation of a zero-bit-skipping processing engine
proves impractical as it su�ers from unacceptable energy, area, and
data access overheads. Speci�cally, Section 6.2 shows such an im-
plementation requires 1.94⇥ the area and 3.37⇥ the power of the
baseline chip, while only increasing performance by 2.59⇥.

To improve performance and energy e�ciency over a state-of-
the-art bit-parallel accelerator without a disproportionate increase
in area and data access demands, PRA combines the following tech-
niques: 1) on-the-�y conversion of activations from a storage rep-
resentation into an explicit representation of the essential bits only,
2) bit-serial activation/bit-parallel weight processing, 3) judicious
SIMD (single instruction multiple data) lane synchronization that i)
maintains wide memory accesses, ii) avoids fragmenting and en-
larging the on-chip weight and activation memories, and iii) avoids
a disproportionate area and complexity overhead, 4) computation
re-arrangement to reduce datapath area, and 5) optimized encoding
to further reduce the number of 1 bits and to increase performance.
Pragmatic combines these techniques and balances their trade-o�s
to produce a design with high performance and energy e�ciency.

We simulate Pragmatic with modern CNNs for image classi�-
cation to measure performance and produce a circuit layout with
a 65nm technology to estimate power, performance and area. We
present multiple design points with di�erent synchronization con-
straints, �exibility, and data encoding to trade performance for
lower area and power. The most power e�cient design with opti-
mized encoding yields 4.31⇥ speedup on average over the DaDN
accelerator. Pragmatic’s average energy e�ciency is 1.70⇥ over
DaDN and its area overhead is 1.68⇥ .

The rest of the paper is organized as follows: Section 2 moti-
vates Pragmatic in the context of prior work. Section 3 describes
Pragmatic’s approach with a simpli�ed example. Section 4 provides
the necessary background. Section 5 describes Pragmatic in detail.
Section 6 presents our methodology and results. Section 7 describes
related work and Section 8 concludes.

2 MOTIVATION
Binary multiplication can be broken down into a summation of sin-
gle bit multiplications (ANDs). For example, a⇥w can be calculated
as

Õp
i=0 ai · (w ⌧ i), where ai is the i-th bit of a. The multiplier

computes p terms, each a product of the shifted operandw , and a
bit of a, and adds them to produce the �nal result. The terms and
their sum can be calculated concurrently to reduce latency [28],
or over multiple cycles to reuse hardware and reduce area [30]. In
either case, zero bits in a result in ine�ectual computation.

We will categorize these zero bits as either statically or dynam-
ically ine�ectual. Statically ine�ectual bits are those that can be

0 0 1 0 1 0 1 0

Required
Precisionprefix suffix

Bit-Parallel Hardware Precision

Essential Bits
(1, -1, -3)

0
static

0
dynamic

Figure 1: Sources of ine�ectual computation with conven-
tional positional representation and �xed-length hardware
precision.

Alex NiN Goog vggM vggS vgg19 Geom
16-bit Fixed-Point

All 7.8% 10% 6.4% 5.1% 5.7% 13% 7.6%
NZ 18% 22% 19% 17% 17% 24% 19%

8-bit Quantized
All 31% 27% 27% 38% 34% 17% 28%
NZ 44% 37% 43% 47% 46% 29% 41%

Table 1: Average fraction of non-zero bits per activation for
two �xed-length representations: 16-bit �xed-point, and 8-
bit quantized. All: over all activations. NZ: over non-zero ac-
tivations only.

determined to be ine�ectual a priori. They result from using a
data format with more precision than is necessary. In this case, 1’s
may also be statically ine�ectual. Hardware typically uses �xed bit
widths for generality resulting in such ine�ectual bits. In contrast,
dynamically ine�ectual bits are those that cannot be known in
advance.

Figure 1 shows an example illustrating these categories of in-
e�ectual bits using an 8-bit unsigned �xed-point number with 4
fractional and 4 integer bits. Assume that is known ahead of time
that the data only needs 5 bits, then there are 3 statically ine�ectual
bits as a pre�x and su�x to the required precision. While 10.101(2)
requires just �ve bits, two dynamically generated zero bits appear
at positions 0 and -2. In total, �ve ine�ectual bits will be processed
generating �ve ine�ectual terms.

The non-zero bits can instead be encoded with their correspond-
ing exponents (1,-1,-3). While such a representation may require
more bits and thus be undesirable for storage, dynamically gener-
ating them and only computing the non-zero terms may bene�t
performance and energy e�ciency. This work shows that with the
multitude of zero bits and data reuse in CNNs, there is signi�cant
potential to improve performance while reusing hardware to save
area.

The rest of this section motivates Pragmatic by: 1) measuring
the fraction of non-zero bits in the activation stream of modern
CNNs, and 2) estimating the performance improvement which may
be gained by processing only the non-zero activation bits.

2.1 Essential Activation Bit Content
16-bit �xed-point is commonly used for DNN hardware implementa-
tions [5, 6]. Recent work has shown that fewer bits are necessary for

383

Bit-Pragmatic Deep Neural Network Computing MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Figure 2: Average distribution of activations for the net-
works studied in 16 bit �xed-point (14 integer and 2 frac-
tional bits). Center bin is just zero valued activations.

CNNs [17] and how to exploit this reduced precision requirements
to save bandwidth [16] and improve performance [18]. Recently,
it has also been shown that 8 bits of precision are su�cient when
linear quantization is used for many CNNs [1, 29]. These techniques
exploit statically ine�ectual bits.

Table 1 reports the non-zero bit content of all activations of
modern CNNs for two commonly used representations: 16-bit �xed-
point and 8-bit quantized activations [29]. Figure 2 shows the dis-
tribution of activation values. From these measurements we can
infer that the large percentage of zero bits are due to two factors:
1) Activations have a normal distribution of positive values. Most
activations are close to zero, relative to the range of the represen-
tation, thus their most signi�cant bits are zero. 2) The recti�ed
linear (ReLU) activation function which is used in most modern
CNNs converts negative activations to 0, resulting in many zero
activations and no negative activations, except in the inputs to the
�rst layer. Weights exhibit the �rst property, but not the second,
and exploiting their bit content is left for future work.

Skipping the computation of zero valued activations is an opti-
mization employed in recently proposed DNN accelerators, both
to save power [6, 26] and processing time [2, 12, 24]. These works
exploit the presence of dynamic zero bits only for zero valued or
near-zero valued activations or weights [24]. Table 1 also shows the
percentage of non-zero bits in the non-zero activations only (NZ).
Zero bits still make up over 50% of the non-zero activation values
in all networks. Therefore, there is still a signi�cant opportunity to
exploit the zero bit content of non-zero values.

In contrast to the techniques discussed, this work targets both
statically and dynamically ine�ectual bits in the activations. When
considering all activations, the non-zero bit content is at most 13%
and 38% for the �xed-point and 8-bit quantized representations
respectively.

These results suggest that a signi�cant number of ine�ectual
terms are processedwith conventional �xed-length hardware. Stripes [18],
tackles the statically ine�ectual bits by computing arbitrary length
�xed-point activations serially for improved performance. Prag-
matic’s goal is to exploit both static and dynamic zero bits. As

Figure 3: Convolutional layer computational demands with
a 16-bit �xed-point baseline representation. Lower is better.

the next section will show, Pragmatic has the potential to greatly
improve performance even when compared to Stripes.

2.2 Pragmatic’s Potential
To estimate PRA’s potential, this section compares the number of
terms that would be processed by various compute engines for the
convolutional layers of our target CNNs (see Section 6.1) for the
two aforementioned baseline two’s complement representations.

The following compute engines are considered: 1) the baseline
DaDN with its 16-bit �xed-point bit-parallel units [5], 2) ZN, an
ideal engine that can skip all zero valued activations, 3) Cnvlutin
(CVN) a practical design that can skip most zero value activa-
tions [2], 4) Stripes (STR) a practical design that uses reduced preci-
sions (see Table 2) [19], 5) PRA-fp16 an ideal engine that processes
only the essential activation bits in the native 16-bit �xed-point
representation, and 6) PRA-red, an ideal engine that processes only
the essential activation bits of the reduced precision formats used in
STR.

Figure 3 reports the number of terms processed, normalized
over DaDN , where each multiplication is accounted for using an
equivalent number of terms: 16 for DaDN , ZN, and CVN, p for
a layer using a precision of p bits for STR, and the number of
essential activation bits for PRA-fp16, and for PRA-red. For example,
for n = 10.001(2), the number of additions counted would be 16
for DaDN and CVN, 5 for STR (as it could use a 5-bit �xed-point
representation), and 2 for PRA-fp16 and PRA-red.

On average, STR reduces the number of terms to 53% compared to
DaDN , while skipping just the zero valued activation could reduce
them to 39% if ZN was practical, and to 63% in practice with CVN.
PRA-fp16 can ideally reduce the number of additions to just 10% on
average, while with software provided precisions per layer, PRA-
red reduces the number of additions further to 8% on average. The
potential savings are robust across all CNNs remaining above 87%
with PRA-red.

384

MICRO-50, October 14–18, 2017, Cambridge, MA, USA J. Albericio et al.

In summary, this section showed that only 8% of the computation
is strictly necessary for the target networks due to the presence of
zero bits in the activations. However, even with reduced precision
and dynamic zero value skipping many ine�ectual computations
remain. Therefore, a more aggressive approach is needed.

3 PRAGMATIC: A SIMPLIFIED EXAMPLE
This section illustrates the idea behind Pragmatic via a simpli�ed
example. For the purposes of this discussion, it su�ces to know that
a convolutional layer performs inner products where both weights
and activations are reused. Section 4.1 describes the relevant com-
putations in more detail.

The bit-parallel unit of Figure 4a multiplies two activations with
their respective weights and via an adder reduces the two products.
The unit reads all activation and weight bits, (a0 = 001(2),a1 =
010(2)) and (w0 = 001(2),w1 = 111(2)) respectively in a single cycle.
As a result, the two sources of ine�ciency manifest here: Bit 2 of
a0 and a1 is statically zero, meaning only 2 bits are required. Even
in 2 bits, each activation contains a zero bit that is dynamically
generated. As a result, four ine�ectual terms are processed when
using standard multipliers.

The hybrid, bit-serial-activation/bit-parallel-weight unit in Fig-
ure 4b is representative of STR which tackles statically ine�ectual
bits. STR performs serial-parallel shift-and-add multiplication, with
the shifters merged and placed after the adder tree since all serial
inputs are synchronized. Each cycle, the unit processes one bit from
each activation and hence it takes three cycles to compute the con-
volution when the activations are represented using 3 bits each, a
slowdown of 3x over the bit-parallel engine. To match the through-
put of the bit-parallel engine of Figure 4a, STR takes advantage of
weight reuse and processes multiple activations groups in paral-
lel. In this example, six activations (a0 = 001(2),a1 = 010(2),a00 =
000(2),a01 = 010(2),a000 = 010(2),a001 = 000(2)) are combined with the
two weights as shown. Starting from the least signi�cant position,
each cycle one bit per activation is ANDed with the corresponding
weight. The six AND results feed into an adder tree and the result is
accumulated after being shifted right by one bit. Since the speci�c
activation values could be represented all using 2 bits, STR would
need 2 cycles to process all six products, a 3/2⇥ speedup. However,
Stripes still processes some ine�ectual terms. For example, in the
�rst cycle, 4 of the 6 terms are zero yet they are added via the adder
tree, wasting computing resources and energy.

Figure 4c shows a simpli�ed PRA engine. Pragmatic uses shift and
add multiplication, where one input is the number of bits to shift.
Since the shift o�set can be di�erent for each multiplier, the shifter
can not be shared as it was in STR. In this example, activations are
no longer represented as vectors of bits but as vectors of o�sets of
the essential bits. For example, activation a0 = 001(2) is represented
as on0 = (0), and an activation value of 111(2) would be represented
as (2, 1, 0). There is also a valid signal for each o�set (not shown)
to force the input to the tree to zero, since a shifter per activation
uses the o�sets to e�ectively multiply the corresponding weight
with the respective power of 2 before passing it to the adder tree.
As a result, PRA processes only the non-zero terms avoiding all
ine�ectual computations. For this example, PRA would process six

activation and weight pairs in a single cycle, a speedup of 3⇥ over
the bit-parallel unit.

3.1 Key Challenges
Unfortunately, implementing Pragmatic as described in this section
results in unacceptable overheads. Speci�cally: a) As Section 5
will explain, to guarantee that Pragmatic always matches and if
possible exceeds the performance of DaDN it needs to process 16
times as many activations bit-serially. As Section 6.2 shows this
straightforward implementation requires 1.94x the area and 3.15x
the power of the baseline chip, while only increasing performance
by 2.59x. This is due to: i) the weight shifters need to accommodate
the worst case scenario where one of the activation powers is
0 and another is 15, and ii) consequently, the adder trees need
to support 32 bit inputs instead of just 16 bit. b) As activations
will have a di�erent number of essential bits, each activation will
advance at a di�erent pace. In the worst, but most likely typical
case, each activation will be out-of-sync. This will require 256
concurrent and independent narrow accesses for activations and/or
256⇥ the activation memory bandwidth. Similarly, there will be
256 concurrent and independent accesses for the corresponding
weights and a 256⇥ increase in weight memory accesses. Finally,
generating these memory references and tracking the progress of
each lane will increase overall complexity.

To avoid these overheads Pragmatic incorporates several design
decisions that result in a practical design that captures most of the
potential for performance improvement while judiciously sacri�c-
ing some of that potential to maintain area, energy, and memory
access overheads favourable.

4 BACKGROUND
This work presents Pragmatic as a modi�cation of the DaDian-
Nao accelerator. Accordingly, this section provides the necessary
background information: Section 4.1 reviews the operation of con-
volutional layers, and Section 4.2 overviews DaDN and how it
processes convolutional layers.

4.1 Convolutional Layer Computation
A convolutional layer processes and produces activation arrays,
that is 3D arrays of real numbers. The layer applies Nn 3D �lters in
a sliding window fashion using a constant stride S to produce an
output 3D array. The input array contains Nx ⇥N� ⇥Ni activations.
Each of the Nn �lters, contains Kx ⇥K� ⇥Ni weights which are also
real numbers. The output activation array dimensions areOx ⇥O�⇥
Nn , that is its depth equals the �lter count. The layer computes the
inner product of a �lter and a window, a �lter-sized, orKx ⇥K� ⇥Ni
sub-array of the input activation array. The inner product is then
passed through an activation function, such as ReLU, to produce
an output activation. If a(�,x , i) and o(�,x , i) are respectively input
and output activations,wn (x ,�, i) are the weights of �lter n and f is
the activation function. The output activation at position (x 0,�0,n)
is given by:

385

Bit-Pragmatic Deep Neural Network Computing MICRO-50, October 14–18, 2017, Cambridge, MA, USA

0
0
1

x +
0
0
1

0
1
0

x1
1
1

LSB

MSB
a0

a1

w0

w1

(a) (b)

10

+

0
0
1

<<

01

1
1
1

+

a0a1

w0w1

+
<<

+

00
01

a’0a’1

LSBMSB

W
ei
gh

ts
Ac

tiv
at
io
ns

+
<<

+

01
00

a”0a”1

0

+

0
0
1

1

1
1
1

+

oa0oa1

w0

w1

+ +

1
oa’0oa’1

+ +

2oa”0oa”1

<<

<<

<<

<<

<<

<<

(c)

Figure 4: a) Bit-parallel unit. b) Bit-serial unit with equivalent throughput (Stripes[19]). c) Pragmatic unit with equivalent
throughput where only essential information is processed.

o(�0, x 0, n)| {z }
output

act i�ation

= f (
Kx �1’
x=0

K��1’
�=0

Ni�1’
i=0

wn (x, �, i)| {z }
wei�ht

⇥a(x + x 0 ⇥ S, � + �0 ⇥ S, i)| {z }
input act i�ation| {z }

window

)

The layer applies �lters repeatedly over di�erent windows po-
sitioned along the X and Y dimensions with stride S , and there
is one output activation per window and �lter. Accordingly, the
output activation array dimensions are Ox = (Nx � Kx)/S + 1,
O� = (N� � K�)/S + 1, and Oi = Nn . Convolutions exhibit data
reuse in three dimensions: 1) activations are reused for each �lter,
2) weights are reused for each window, and 3) activations are reused
due to overlap in the sliding window.

4.1.1 Terminology – Bricks and Pallets: For clarity, in what fol-
lows the term brick refers to a set of 16 elements of a 3D activation
or weight array which are contiguous along the i dimension, e.g.,
n(x ,�, i)...n(x ,�, i + 15). Bricks will be denoted by their origin ele-
ment with a B subscript, e.g., nB (x ,�, i). The term pallet refers to a
set of 16 bricks corresponding to consecutive windows along the x
or� dimensions with a stride of S , e.g.,nB (x ,�, i)...nB (x ,�+15⇥S, i)
and will be denoted as nP (x ,�, i). The number of activations per
brick, and bricks per pallet are design parameters.

4.2 Baseline System: DaDianNao
Figure 5a shows a DaDN tile. Each DaDN chip comprises 16 tiles
and a central 4MB eDRAM Neuron Memory (NM). Internally, each
tile has: 1) a weight bu�er (SB) that provides 256 weights per cycle
one per weight lane, 1 2) an input activation bu�er (NBin) which
provides 16 activations per cycle through 16 activation lanes, and
3) an output activation bu�er (NBout) which accepts 16 partial
output activations per cycle. The compute pipeline consists of 16
Inner Product units (IP), where each IP computes an inner product
with 16 parallel multipliers and an adder tree to computes the inner
product of a brick of weights and a brick of activation each cycle. A
brick of input activations is broadcast from NBin to each IP, while
each IP processes a di�erent brick of weights from di�erent �lter
lanes of SB. In total 256 weights, and 16 activations are consumed

1Chen et al., refer to activations as neurons and weights as synapses [5]. We maintain
the original acronyms for the various storage structures but use the more commonly
used activation and weight terms in our discussion.

each cycle. Each IP accumulates partial sums of brick inner products
to compute large inner products over multiple cycles. Once the large
inner product is computed, the are passed through an activation
function, f , to produce an output activation. The 16 IPs together
produce a brick of output activations. Accordingly, each cycle, the
whole chip processes 16 activations and 256 ⇥ 16 = 4K weights
producing 16 ⇥ 16 = 256 partial sums.

DaDN ’s main design goal is minimizing o�-chip bandwidth
while maximizing on-chip compute utilization. To avoid fetching
weights from o�-chip, DaDN uses a 2MB eDRAM SB per tile for
a total of 32MB eDRAM. All inter-layer activations are stored in
NM which is connected via a broadcast interconnect to the 16 NBin
bu�ers. O�-chip accesses are needed only for reading the input
image, the weights once per layer, and for writing the �nal output.

Processing starts by reading from external memory the �rst
layer’s �lter weights, and the input image. The weights are dis-
tributed over the SBs and the input is stored into NM. Each cycle
an input activation brick is broadcast to all units. Each units reads
16 weight bricks from its SB and produces a partial output activa-
tion brick which it stores in its NBout. Once computed, the output
activations are stored through NBout to NM. Loading the next
set of weights from external memory can be overlapped with the
processing of the current layer as necessary.

5 PRAGMATIC
This section presents the Pragmatic architecture. Section 5.1 de-
scribes PRA’s processing approach while Section 5.2 describes its
organization. Section 5.3 describes the additional circuitry needed.
Sections 5.4 and 5.5 present two optimizations that respectively
improve area and performance. For simplicity, the description as-
sumes speci�c values for various design parameters so that PRA
performance matches that of the DaDN con�guration of Section 4.2
in the worst case.

5.1 Approach
PRA’s goal is to process only the essential bits of the input acti-
vations. To do so PRA a) converts, on-the-�y, the input activation
representation into one that contains only the essential bits, and
b) processes one essential bit per activation and a full 16-bit weight
per cycle. Since PRA processes activation bits serially, it may take
up to 16 cycles to produce a product of an activation and a weight.
To always match or exceed the performance of the bit-parallel units

386

MICRO-50, October 14–18, 2017, Cambridge, MA, USA J. Albericio et al.

Weight
Lane 0

Weight
Lane 15

SB (eDRAM)

NBin

x

x
f

NBout
+

Filter
Lane 0

Filter
Lane 15

x

x
+ f

from central
eDRAM

to central
eDRAM

Weight
Lane 0

Weight
Lane 15

Activation
Lane 0

Activation
Lane 15

16

IP0

IP15

(a)

PIP(0,0)

Weight
Lane 0

Weight
Lane 15

SB (eDRAM)

NBin

NBout

Filter
Lane 0

Filter
Lane 15

from central
eDRAM

to central
eDRAM

Weight
Lane 0

Weight
Lane 15

Offset
Lane 0

Offset
Lane 15

n0

n15

n0

n15

Offset
Lane 240

Offset
Lane 255

Window
Lane 0

Window
Lane 15

+
<<

<<

+
<<

<<

1-4

1-4

16

16

+
<<

<<
SR

+
<<

<<

16

16

1-4

1-4

PIP(15,0)

PIP(15,15)PIP(0,15)

f

(b)

Figure 5: a) DaDianNao Tile. b) Pragmatic Tile.

of DaDN , PRA processes more activations concurrently exploiting
the abundant parallelism of the convolutional layers. The remain-
ing of this section describes in turn: 1) an appropriate activation
representation, 2) the way PRA calculates terms, 3) how multiple
terms are processed concurrently to maintain performance on par
with DaDN in the worst case, and 4) how PRA’s units are supplied
with the necessary activations from NM.

5.1.1 Input activation Representation. PRA starts with an input
activation representation where it is straightforward to identify
the next essential bit each cycle. One such representation is an
explicit list of one�sets, that is of the constituent powers of two. For
example, an activation a = 5.5(10) = 0101.1(2) would be represented
asa = (2, 0,�1). In the implementation described herein, activations
are stored in 16-bit �xed-point in NM, and converted on-the-�y
in the PRA representation as they are broadcast to the tiles. A
single one�set is processed per activation per cycle. Each one�set
is represented as (pow, eon) where pow is a 4-bit value and eon a
single bit which if set indicates the end of an activation. For example,
a = 101(2) is represented as aPRA = ((0010, 0)(0000, 1)). In the worst
case, all bits of an input activation would be 1 and hence its PRA
representation would contain 16 one�sets.

5.1.2 Calculating a Term. PRA calculates the product of weight
w and activation a as:

w ⇥ a =
’

8f 2aPRA
w ⇥ 2f =

’
8f 2aPRA

(w ⌧ f)

That is, each cycle, the weightw multiplied by f , the next con-
stituent power two of a, and the result is accumulated. This multi-
plication can be implemented as a shift and an AND.

5.1.3 Boosting Compute Bandwidth over DaDN. TomatchDaDN ’s
performance PRA needs to process the same number of e�ectual
terms per cycle. EachDaDN tile calculates 256 activation andweight
products per cycle, or 256 ⇥ 16 = 4K terms. While most of these
terms will be in practice ine�ectual, to guarantee that PRA always

performs as well as DaDN it should process 4K terms per cycle. For
the time being let us assume that all activations contain the same
number of essential bits, so that when processing multiple activa-
tions in parallel, all units complete at the same time and thus can
proceed with the next set of activations in sync. The next section
will relax this constraint.

Since PRA processes activations bits serially, it produces one term
per activation bit and weight pair and thus needs to process 4K
such pairs concurrently. The choice of which 4K activation bits and
weight pairs to process concurrently can adversely a�ect complexity
and performance. For example, it could force an increase in SB
capacity and width, or an increase in NM width, or be ine�ective
due to unit underutilization given the commonly used layer sizes.

Fortunately, it is possible to avoid increasing the capacity and the
width of the SB and of the NM while keeping the units utilized as
in DaDN . Speci�cally, a PRA tile can read 16 weight bricks and the
equivalent of 256 activation bits asDaDN ’s tiles do (DaDN processes
16 16-bit activations or 256 activation bits per cycle): As in DaDN ,
each PRA tile processes 16 weight bricks concurrently, one per �lter.
However, di�erently than DaDN where the 16 weight bricks are
combined with just one activation brick which is processed bit-
parallel, PRA combines each weight brick with 16 activation bricks,
one from each of 16 windows, which are processed bit-serially. The
same 16 activation bricks are combinedwith all weight bricks. These
activation bricks form a pallet enabling the same weight brick to be
combined with all. For example, in a single cycle a PRA tile process-
ing �lters 0 through 15 could combine w0

B (x ,�, 0), ...,w
15
B (x ,�, 0)

with aPRAB (x ,�, 0),aPRAB (x + 2,�, 0), ...aPRAB (x + 31,�, 0) assuming a
layer with a stride of 2. In this case, w4(x ,�, 2) would be paired
with aPRA(x ,�, 2), aPRA(x + 2,�, 2), ..., aPRA(x + 31,�, 2) to produce
the output activations on(x ,�, 4) through on(x + 15,�, 4).

As the example illustrates, this approach allows eachweight to be
combined with one activation per window whereas in DaDN each
weight is combined with one activation only. In total, 256 essential
activation bits are processed per cycle and given that there are 256

387

Bit-Pragmatic Deep Neural Network Computing MICRO-50, October 14–18, 2017, Cambridge, MA, USA

+
+

max
<<

i_nbout

o_nbout

1 0
1st

cycle

16

x16

Done

1

Weight
1

16

16

Weight <<

<<

64
4

4

shift_B

n
e
g

n
e
g

<<

prec

Figure 6: Pragmatic Inner Product Unit.

weights and 16 windows, PRA processes 256 ⇥ 16 = 4K activation
bit and weight pairs, or terms per cycle producing 256 partial output
activations, 16 per �lter, or 16 partial output activation bricks per
cycle.

5.1.4 Supplying the Input Activation and Weight Bricks. Thus far
it was assumed that all input activations have the same number of
essential bits. Under this assumption, all activation lanes complete
processing their terms at the same time, allowing PRA to move on
to the next activation pallet and the next set of weight bricks in one
step. This allows PRA to reuse STR’s approach for fetching the next
pallet from the single-ported NM [19]. Brie�y, with unit stride the
256 activations would be typically all stored in the same NM row or
at most over two adjacent NM rows and thus can be fetched in at
most two cycles. When the stride is more than one, the activations
will be spread over multiple rows and thus multiple cycles will be
needed to fetch them all. Fortunately, fetching the next pallet can be
overlapped with processing the current one. Accordingly, if it takes
NMC to access the next pallet from NM, while the current pallet
requires PC cycles to process, the next pallet will begin processing
aftermax(NMC , PC) cycles. When NMC > PC performance is lost
waiting for NM.

In practice, it is improbable that all activations will have the
same number of essential bits. In general, each activation lane
if left unrestricted will advance at a di�erent rate. In the worst
case, each activation lane may end up needing activations from a
di�erent activation brick, thus breaking PRA’s ability to reuse the
same weight brick. This is undesirable if not impractical as it would
require partitioning and replicating the SB so that 4K unrelated
weights could be read per cycle, and it would also increase NM
complexity and bandwidth.

Fortunately, these complexities can be avoided with pallet-level
activation lane synchronization where all activation lanes “wait” (an
activation lane that has detected the end of its activation forces
zero terms while waiting) for the one with the most essential bits to
�nish before proceeding with the next pallet. Under this approach,
it does not matter which bits are essential per activation, only how
many exist. Since, it is unlikely that most pallets will contain an
activation with 16 essential terms, PRA will improve performance
over DaDN . Section 6.2 will show that in practice, this approach
improves performance over DaDN and STR. Section 5.5 will dis-
cuss �ner-grain synchronization schemes that lead to even better
performance. Before doing so, however, the intervening sections
detail PRA’s design.

5.2 Tile Organization and Operation
Figure 5b shows the Pragmatic tile architecture which comprises
an array of 16 ⇥ 16 = 256 pragmatic inner product units (PIPs).
PIP(i,j) processes an activation one�set from the i-th window and
its corresponding weight from the j-th �lter. Speci�cally, all the
PIPs along the i-th row receive the same weight brick belonging to
the i-th �lter and all PIPs along the j-th column receive an one�set
from each activation from one activation brick belonging to the
j-th window.

The necessary activation one�sets are read from NBin where
they have been placed by the Dispatcher and the One�set gen-
erators units as Section 5.3 explains. Every cycle NBin sends 256
one�sets 16 per window lane. All the PIPs in a column receive
the same 16 one�sets, corresponding to the activations of a single
window. When the tile starts to process a new activation pallet, 256
weights are read from SB through its 256 weight lanes as in DaDN
and are stored in the weight registers (SR) of each PIP. The weight
and one�sets are then processed by the PIPs as the next section
describes.

5.2.1 Pragmatic Inner-Product Unit. Figure 6 shows the PIP inter-
nals. Every cycle, 16 weights are combined with their corresponding
one�sets. Each one�sets controls a shifter e�ectively multiplying
the weight with a power of two. The shifted weights are reduced
via the adder tree. An AND gate per weight supports the injection
of null terms when necessary. In the most straightforward design,
the one�sets use 4-bits, each shifter accepts a 16-bit weight and
can shift it by up to 15 bit positions producing a 31-bit output. Fi-
nally, the adder tree accepts 31-bit inputs. Section 5.4 presents an
enhanced design that requires narrower components improving
area and energy.

5.3 Dispatcher and One�set Generators
The Dispatcher reads 16 activation bricks from NM, as expected
by the PRA tiles. The one�set generator converts their activations
on-the-�y to the one�set representation, and broadcasts one one�-
set per activation per cycle for a total of 256 one�sets to all tiles.
Fetching and assembling the 16 activation bricks from NM is akin
to fetching words with a stride of S from a cache structure. As
Section 5.1.4 discussed this can take multiple cycles depending on
the stride and alignment of the initial activation brick. PRA uses
the same dispatcher design as STR [19].

Once the 16 activation bricks have been collected, 256 one�set
generators operate in parallel to locate and communicate the next
one�set per activation. A straightforward 16-bit leading one de-
tector is su�cient. The latency of the one�set generators and the
dispatcher can be readily hidden as they can be pipelined as desired
overlapping them with processing in the PRA tiles.

5.3.1 Local One�set Generation. One�set generation converts a
single bit to 5 bits: a 4 bit o�set and a bit to indicate the last o�set.
Doing this at the dispatcher requires a 5⇥ increase in broadcast
bandwidth and NBin capacity to match the worst case activation
capacity. Instead, this work opts for a con�guration which gen-
erates one�sets at each tile, between NBin and the PIP array, to
maintain the baseline NBin capacity. Broadcast bandwidth is still

388

MICRO-50, October 14–18, 2017, Cambridge, MA, USA J. Albericio et al.

+<<

<<
1

0

4

5

7

6

8

7
<<

1

0 0
+<<

<<

<<
5
7

6

8

7
<<

1

3

0
4 +<<

<<

<<8

7
<<

2

0
6

<<

+<<

<<

<<
0

<<01

10

00

00

00

00

01

00

10

00

01

11

1

0

0

Activation
values

Oneffsets PIP

cycle 1 cycle 2 cycle 3 cycle 4

4 6 7

+
+

16

x16

Done

1

Weight
1

16

16

Weight <<

<<

16xN
N

N

ne
g

ne
g

<<

4

1st stage
2nd stage

1st

(a) (b)

2nd

Figure 7: 2-stage shifting. a) Modi�ed PIP. b) Example: Processing three 9-bit weight and activation pairs with L = 2. The one�set
generator reads the activation values, and produces a set of three one�ests per cycle. Each cycle, the control logic, which is shared and
amortized across the entire column of PIPs, compares the one�sets being processed, (1, 0, 4) in the �rst cycle of our example and picks the
lowest, 0, indicated by a circle. This minimum one�set controls the second stage shifter. The control subtracts this o�set from all three
one�sets. The di�erence per one�set, as long as it is less than 2L controls the corresponding �rst level shifter. In the �rst cycle, the two
shifters at the top are fed with values 1 � 0 = 1 and 0 � 0 = 0, while the shifter at the bottom is stalled given that it is not able to handle a
shift by 4 � 0 = 4. On cycle 2, the one�sets are (6,7,4) and 4 is now the minimum, which controls the 2nd stage shifter, while (1, 3, 0) control
the �rst-level shifters. On cycle 3, only the �rst and the third activations still have one�sets to process. The computation �nishes in cycle 4
when the last one�set of the third activation controls the shifters.

PIP PIP01 0SB
Extra Weights

Registers

24Max # oneffsets:

52

4

2

Brick Indexes: 012

0’1’2’

01 1SB

4

52

4

2

12

0’1’2’

cycle 1 cycle 3

Weights
corresponding

to brick #
12 1SB

4

2

4

2

12

1’2’

cycle 6

12 2SB

2

4

2

2

1’2’

cycle 7

23 2SB

4

2

2

2’

cycle 8

SR

Bricks:

SR

Figure 8: Per-column synchronization example: one extra weight register and 1x2 PIP array capable of processing two windows in
parallel. The two numbers per brick show: the �rst from the top is the brick’s index, (0, 1, 2) and (00, 10, 20) for the bricks of the �rst and
second window. The second is the maximum count of one�sets in its activations, (2, 4, 4) and (5, 2, 2) respectively. The numbers in the
registers indicate the index of the corresponding bricks, i.e., a weight register containing a K stores the weights corresponding to activation
bricks with indexes K and K 0. In cycles 3 to 8, thicker lines indicate registers being loaded or wires being used.

increased to support the higher compute throughput. This is miti-
gated by transmitting activations serially in reduced precision, as
in Stripes [18].

5.4 2-Stage Shifting
Any shift can be performed in two stages as two smaller shifts:
a ⌧ K = a ⌧ (K 0 + C) = ((a ⌧ K 0) ⌧ C). Thus, to shift and
add T weights by di�erent o�sets K0, ...,KT , we can decompose
the o�sets into sums with a common term C , e.g., Ki = K 0

i + C .
Accordingly, PIP processing can be rearranged using a two stage
processing where the �rst stage uses the weight speci�c o�sets K 0

i ,
and the second stage, the common across all weights o�set C:

T’
i

(Si ⌧ Ki)

| {z }
1�sta�e shif t in�

=

T’
i
(Si ⌧ (K 0

i +C)) = (
T’
i

(Si ⌧ K 0
i)

| {z }
1st sta�e

) ⌧ C|{z}
2nd sta�e

This arrangement can be used to reduce the width of the weight
shifters and of the adder tree by sharing one common shifter after
the adder tree as Figure 7a shows. A design parameter, L, de�nes
the number of bits controlling the weight shifters. Meaning the
design can process one�sets which di�er by less than 2L in a single

cycle. This reduces the size of the weight shifters and reduces the
size of the adder tree to support terms of 16 + 2L � 1 bits only.
As Section 6.2 shows, this design reduces the area of the shifters
and the adder trees which are the largest components of the PIP.
Figure 7b shows an example illustrating how this PIP can handle
any combination of one�sets. Section 6.2 studies the impact of L
on cost and performance.

5.5 Per-Column Activation Lane
Synchronization

The pallet activation lane synchronization scheme of Section 5.1.4
is one of many possible synchronization schemes. Finer-grain acti-
vation lane synchronization schemes are possible leading to higher
performance albeit at a cost. This section presents per column activa-
tion lane synchronization, an appealing scheme that, as Section 6.3
shows, enhances performance at little additional cost.

Here each PIP column operates independently but all the PIPs
along the same column wait for the activation with the most es-
sential bits before proceeding to the next activation brick. Since
the PIPs along the same column operate in sync, they all process
one set of 16 weight bricks which can be read using the existing SB
interface. However, given that di�erent PIP columns operate now
out-of-sync, the same weight bricks would need to be read multiple

389

Bit-Pragmatic Deep Neural Network Computing MICRO-50, October 14–18, 2017, Cambridge, MA, USA

times, leading to the following challenges: 1) di�erent PIP columns
may need to perform two independent SB reads while there are
only one SB port and one common bus connecting the PIP array to
the SB, and 2) there will be repeat accesses to SB that will increase
SB energy, while the SB is already a major contributor of energy
consumption.

Pragmatic address these challenges as follows: 1) only one SB
access can proceed per cycle thus a PIP column may need to wait
when collisions occur. This way, PRA does not need an extra SB read
port nor an extra set of 4K wires from the SB to the PIP array. 2) A
set of SRAM registers, or weight set registers (WSRs) are introduced
in front of the SB each holding a recently read set of 16 weight
bricks. Since all PIP columns will eventually need the same set of
weight bricks, temporarily bu�ering them avoids fetching them
repeatedly from the SB reducing energy costs. Once a weight set
has been read into an WSR, it stays there until all PIP columns
have copied it (a 4-bit down counter is su�cient for tracking how
many PIP columns have yet to read the weight set). This policy
guarantees that the SB is accessed the same number of times as in
DaDN . However, stalls may happen as a PIP column has to be able
to store a new set of weights into an WSR when it reads it from the
SB. Figure 8 shows an example. Section 6.3 evaluates this design.

Since each activation lane advances independently, in the worst
case, the dispatcher may need to fetch 16 independent activation
bricks each from a di�erent pallet. The Dispatcher can bu�er those
pallets to avoid repeated NM accesses, which would, at worst, re-
quire a 256 pallet bu�er. However, given that the number WSRs
restricts how far apart the PIP columns can be, and since Section 6.3
shows that only one WSR is su�cient, a two pallet bu�er in the
dispatcher is all that is needed.

5.6 Improved One�set Encoding
Since PIPs in Pragmatic can negate any input term, it is possible to
enhance the one�set generator to generate fewer one�sets for acti-
vation values containing runs of ones by allowing signed one�sets
[4].

This improved generator reduces runs of adjacent one�sets a...b
into pairs of the form a + 1,�b. Single one�sets or gaps inside
runs are represented by a positive or negative one�set, respectively.
For example an activation value of 11011 that would normally be
encoded with one�sets (4, 3, 1, 0) can instead be represented with
(5,�3,+2,�0) or even more economically with (5,�2,�0). This is
equivalent to a Radix-4 Booth encoding and will never emit more
than

⌅ x
2 + 1

⇧
one�sets, where x is the activation precision.

This encoding will never produce more one�sets compared to
the baseline encoding. However, this encoding may increase the
number of cycles needed when the one�set distribution among
the bit groups being processed together due to the 2-stage shifting
technique.

5.7 Reduced Precision Pro�ling
PRA enables an additional dimension upon which hardware and
software can attempt to further boost performance and energy
e�ciency, that of controlling the essential activation value con-
tent. This work investigates a software guided approach where the

Per Layer
Network activation Precision in Bits
AlexNet 9-8-5-5-7
NiN 8-8-8-9-7-8-8-9-9-8-8-8
GoogLeNet 10-8-10-9-8-10-9-8-9-10-7
VGG_M 7-7-7-8-7
VGG_S 7-8-9-7-9
VGG_19 12-12-12-11-12-10-11-11-13-12-13-13-

13-13-13-13
Table 2: Per layer activation precision pro�les.

precision requirements of each layer are used to zero out the stati-
cally ine�ectual bits at the output of each layer. Using the pro�ling
method of Judd et al., [17], software communicates the precisions
needed by each layer as meta-data. The hardware trims the out-
put activations before writing them to NM using AND gates and
precision derived bit masks.

6 EVALUATION
The performance, area, and energy e�ciency of Pragmatic is com-
pared against DaDN [5] and Stripes [19]. DaDN is a bit-parallel
accelerator that processes all activation regardless of their values
and the de facto standard for reporting the relative performance of
DNN accelerators. STR improves upon DaDN by exploiting the per
layer precision requirements of DNNs.

The rest of this section is organized as follows: Section 6.1
presents the the experimental methodology. Sections 6.2 and 6.3
explore the PRA design space considering respectively single- and
2-stage shifting con�gurations, and column synchronization. Sec-
tion 6.4 evaluates the bene�t of improved o�set encoding. Sec-
tion 6.5 reports energy e�ciency for the best con�guration. Finally,
Section 6.7 reports performance for designs using an 8-bit quantized
representation.

6.1 Methodology
All systems were modelled using the same methodology for con-
sistency. A custom cycle-level simulator models execution time.
Computation was scheduled such that all designs see the same
reuse of weights and thus the same SB read energy. To estimate
power and area, all tile pipeline designs were synthesized with
the Synopsys Design Compiler [27] for a TSMC 65nm library and
laid out with Cadence Encounter. Circuit activity was captured
with Mentor Graphics ModelSim and fed into Encounter for power
estimation. The NBin and NBout SRAM bu�ers were modelled
using CACTI [22]. The eDRAM area and energy were modelled
with Destiny [25]. To compare against STR, the per layer numerical
representation requirements reported in Table 2 were found using
the methodology of Judd et al. [19]. All performance measurements
are for the convolutional layers only which account for more than
92% of the computation in the networks we consider.

6.2 Single- and 2-Stage Shifting
This section evaluates the single-stage shifting PRA con�guration of
Sections 5.1 and 5.2 , and the 2-stage shifting variants of Section 5.4.
Section 6.2.1 reports performance while Section 6.2.2 reports area

390

MICRO-50, October 14–18, 2017, Cambridge, MA, USA J. Albericio et al.

Figure 9: 2-stage shifting and per-pallet synchronization:
Pragmatic performance relative to DaDianNao.

DaDN STR 0-bit 1-bit 2-bit 3-bit 4-bit
Unit Area 0.94 2.08 2.41 3.38 4.20 4.43 5.50
Total Area 78 96 36 52 130 134 151
Unit Pwr 424 762 887 1477 1782 2243 2736
Total Pwr 17.6 24.5 29.8 39.2 44.1 51.5 59.3

Table 3: Area [mm2] and power [W] for the unit and the
whole chip. Pallet synchronization.

and power. In this section, All PRA systems use pallet synchroniza-
tion.

6.2.1 Performance: Figure 9 shows the performance of STR (left-
most bars) and of PRA variants relative to DaDN . The PRA systems
are labelled with the number of bits used to operate the �rst-stage,
weight shifters, e.g., the weight shifters of “2-bit” , or PRA2b , are
able to shift to four bit positions (0–3). “4-bit” or PRA4b , is the
single-stage Pragmatic, or PRAsin�le of Sections 5.1 and 5.2 whose
weight shifters can shift to 16 bit positions (0–15). It has no second
stage shifter.

PRAsin�le improves performance by 2.59⇥ on average overDaDN
compared to the 1.85⇥ average improvement with STR. Perfor-
mance improvements over DaDN vary from 2.11⇥ for VGG19 to
2.97⇥ for VGGM. The 2-stage PRA variants o�er slightly lower
performance than PRAsin�le , however, performance with PRA2b
and PRA3b is always within 0.01% of PRAsin�le . Even PRA0b which
does not include any weight shifters outperforms STR by 16% on
average. Given a set of one�sets, PRA0b will accommodate the
minimum non-zero one�set per cycle via its second level shifter.

6.2.2 Area and Power: Table 3 shows area and power for DaDN
and Pragmatic. Two measurements are reported: 1) for the unit
excluding the SB, NBin and NBout memory blocks, and 2) for the
whole chip comprising 16 units and all memory blocks. Since SB and
NM dominate chip area, the compute area overheads are relatively
small. PRA2b is the most e�cient con�guration with an average
speedup of 2.59⇥ for an area and power cost of 1.68⇥ and 2.50⇥,

Figure 10: Column Synchronization: Relative performance
of PRA2b as a function of the SB registers used.

DaDN STR 1-reg 4-reg 16-reg
Unit Area 0.94 2.08 4.24 4.39 4.99
Total Area 77.5 96.1 131 133 143
Unit Power 0.42 0.76 1.82 1.95 2.47
Total Power 17.6 24.5 44.7 46.7 55.0

Table 4: Area [mm2] and power [W] for the unit and the
whole chip for column synchronization and PRA2b .

Area % Power %
NM 7.13 5.46% 1.61 3.61%
SB 48.11 36.83% 10.22 22.87%
SRAM 7.32 5.60% 0.79 1.78%
Interconnect - - 2.69 6.03%
PIP Array 62.65 47.96% 27.05 60.54%
Activation Unit 2.29 1.75% 1.49 3.33%
O�set Gen 2.91 2.23% 0.57 1.28%
Dispatcher 0.21 0.16% 0.25 0.56%
Total 130.62 100.00% 44.67 100.00%
Table 5: PRA1R

2b : Area [mm2] and power [W] breakdown.

respectively, over DaDN . Accordingly, the rest of this evaluation
restricts attention to this con�guration.

The o�set generators for one tile in this con�guration requires
181,950 um2, 35.8mW and adds two stages to the compute pipeline.
The average wire density across all metal layers is 11.1% for DaDN
and 26.6% for PRA. Comparing post synthesis and post layout power
reports, wiring increases power by 17.0% in DaDN and 22.5% in
PRA.

6.3 Per-Column Synchronization
6.3.1 Performance: Figure 10 reports the relative to DaDN per-

formance for PRA2b with column synchronization and as a function
of the number of WSRs as per Section 5.5. Con�guration PRAxR2b

391

Bit-Pragmatic Deep Neural Network Computing MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Figure 11: Relative performance of Pragmatic using Im-
proved One�set Encoding for di�erent con�gurations.
Marked: performance not using IOE

refers to a con�guration using x WSRs. Even PRA1R
2b boosts per-

formance to 3.06⇥ on average, close to the 3.45⇥ that is ideally
possible with PRA1R

2b .

6.3.2 Area and Power: Table 4 reports the area per unit, and the
area and power per chip. PRA1R

2b o�ers most of the performance
bene�t with little additional hardware. This con�guration increases
chip area to only 1.68⇥ and power to only 2.54⇥ over DaDN .

Table 5 shows the area and power breakdown of this con�gu-
ration. Since we do not layout a full chip design we estimated the
interconnect cost separately. We assume the interconnect will be
routed over the existing logic and does not increase chip area. An
interconnect width of 4 bits per activation was chosen to balance
performance and power. This con�guration yields performance
within 1.2% of the ideal (in�nite bandwidth), while consuming 6%
of the chip power.

6.4 Improved One�set Encoding
Figure 11 reports performance for PRAwhen using the improved o�-
set encoding (IOE) described in Section 5.6. The considered con�gu-
rations include PRA0b , PRA1b and PRA2b (with pallet synchroniza-
tion), and PRA1R

2b . PRA0b degrades performance by 7%, but the other
con�gurations show improvements of 26%, 48%, and 41% respec-
tively. A cause of degradation for PRA0b is the increased spread of
one�set values (for example, the pair of activations 011101, 010101
takes 4 cycles with conventional encoding and 5 with enhanced
encoding even though the total count of one�sets is reduced from
7 to 6). On average and with the best con�guration, this encoding
improves speedup to 4.31x over DaDN .

6.5 Energy E�ciency
Figure 12 shows the energy e�ciency of various Pragmatic con�g-
urations. Energy E�ciency, or simply e�ciency for a system ���
relative to ���� is de�ned as the ratio E����/E��� of the energy
required by ���� to compute all of the convolution layers over that
of ���. The power overhead of PRAsin�le (PRA4b) is more than

Figure 12: Relative energy e�ciency

Tiles Filters/tile Terms/�lter Performance
4 16 16 4.27
8 16 16 4.29
16 16 16 4.31
16 16 8 5.10
16 16 4 5.94
16 16 2 6.67
16 16 1 7.79

Table 6: Tile Con�guration: Performance relative to DaDN

the speedup resulting in a circuit that is 23% less e�cient than
DaDN . PRA2b reduces that power overhead while maintaining per-
formance yielding an e�ciency of 3%. PRA1R

2b boosts performance
with little hardware cost, increasing e�ciency to 21%.

Finally, using IOE increases e�ciency to 1.70⇥ over DaDN , an
improvement of 7.2x and 31x in EDP [10] and ED2P [21] respec-
tively.

6.6 Sensitivity to Tile Con�guration
Table 6 reports performance of PRA1R

2b over an equivalent DaDN
for various Tiles-Filters/Tile-Terms/Filter con�gurations. The con-
�guration studied thus far was 16-16-16. Reducing the number of
tiles does not change the relative performance improvement with
PRA. Decreasing the number of terms per �lter, however, greatly
impacts relative performance. At the extreme, where only one term
per �lter is processed, PRA is almost 8⇥ faster than DaDN . This
result demonstrates that most of the performance potential loss is
due to imbalance across activation lanes.

6.7 8-bit Quantization
Table 7 reports performance forDaDN , STR, and PRA con�gurations
using the 8-bit quantized representation used in Tensor�ow [11,
29]. This quantization uses 8 bits to specify arbitrary minimum
and maximum limits per layer for the activations and the weights
separately, and maps the 256 available 8-bit values linearly into the
resulting interval.

392

MICRO-50, October 14–18, 2017, Cambridge, MA, USA J. Albericio et al.

8-bit DaDN 8-bit STR 8-bit PRA
Unit Area 0.32 0.77 1.03
Total Area 36.4 43.7 47.8
Unit Power 0.189 0.294 0.456
Total Power 9.4 11.2 16.1
Speedup 1.00 1.00 2.25
E�ciency 1.00 0.84 1.31

Table 7: Area [mm2], power [W], speedup and e�ciency for
8-bit variants the three designs.

Table 7 reports energy e�ciency relative to DaDN for 8-bit ver-
sions of STR and PRA1R

2b with IOE. In these designs, both activations
and weights are 8 bits. For STR and PRA, we reduce the number of
SIP/PIP columns to 8 to match DaDN ’s throughput in the worst
case. STR yields no speedup since we did not pro�le reducing the
precision on top of the 8-bit quantization. As a result it is less energy
e�cient than DaDN . PRA’s speedup is 2.25x with an area overhead
of 1.31x and a power overhead of 1.71x, making it 1.31x more energy
e�cient on average.

7 RELATEDWORK
The acceleration of Deep Learning is an active area of research and
has yielded numerous proposals for hardware acceleration. Due to
limited space this section comments only on works that exploit the
various levels of informational ine�ciency in DNNs.

At the value level it has been observed that many activations and
weights are ine�ectual. Han et al.,retrain fully-connected layers
to eliminate ine�ectual weights and eliminate computations with
zero valued activations and ine�ectual weights [12, 13]. Albericio et
al., exploit zero and near zero activations to improve performance
for a DaDN -like accelerator [2]. SCNN eliminates both ine�ectual
weights and activations [24]. Ine�ectual activations and weights
have also been exploited to reduce power [6, 26] The occurrence of
ine�ectual activations appears to be an intrinsic property of CNNs
as their neurons are designed to detect the presence of relevant
features in their input [2]. This is ampli�ed by the popularity of
the ReLU activation function [23].

informational ine�ciency manifests also in excess of precision.
Stripes exploits the varying per layer precision requirements of
CNNs [18] whereas Quantization uses a uniform reduced preci-
sion [29]. Pro�ling has been used to determine appropriate hard-
wired precisions [20]. At the extreme end of the spectrum are bina-
rized [7], and ternary networks, e.g., [3]. By redesigning the network
or by using binary or ternary weights they indirectly exploit weight
precision requirements. Where such networks are possible, they
are preferable due to their reduced area, power, and complexity.
However, accuracy with these tends to su�er and they often require
redesigning the network.

Other works show that it is possible to achieve the same accuracy
for a given task with networks that are orders of magnitude smaller
than the originally proposed for such task [15] suggesting that
networks are often over-provisioned.

This work exposes informational ine�ciency at the bit level,
which subsumes both ine�ectual activation values and excess of

precision. Section 2 shows that signi�cant potential exists for ex-
ploiting the informational ine�ciency at the bit-level even if zero
activations are eliminated or even with 8-bit quantization. Exploit-
ing weight sparsity with Pragmatic would require decoupling the
synapse lanes vertically. The synapse lanes across the same row
can remain in sync as they all use the same weight. However, the
complexity and overhead of such a design needs to be evaluated
and is left for future work.

In all, the aforementioned body of work suggests that existing
networks exhibit informational ine�ciency at various levels and
for various reasons. Whether these ine�ciencies are best exploited
statically, dynamically, or both is an open question. Furthermore,
which forms of ine�ciency will persist as networks evolve remains
to be seen. Ideally, network designers would like to be able to iden-
tify which parts of a network perform which classi�cation subtask.
This would favour over-provisioning suggesting that informational
ine�ciency is desirable. The experience so far has been that de-
signing networks is a di�cult task and thus adding another level
of complexity to exploit ine�ciency by static means may be unde-
sirable favouring dynamic solutions such as Pragmatic that work
with out-of-the-box networks.

8 CONCLUSION
To the best of our knowledge Pragmatic is the �rst CNN accelerator
that exploits not only the per layer precision requirements of CNNs
but also the essential bit information content of the activation
values. Future work may combine Pragmatic with sparse network
accelerators, investigate alternate activation encoding that reduce
bit density, or target improved synchronizations mechanisms.

ACKNOWLEDGEMENTS
This work was performed while Jorge Albericio was at the Univer-
sity of Toronto and was supported by an NSERC Discovery Grant
and an NSERC Discovery Accelerator Supplement.

REFERENCES
[1] “How to Quantize Neural Networks with TensorFlow.” [Online]. Available:

https://www.tensor�ow.org/performance/quantization
[2] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos,

“Cnvlutin: Ine�ectual-neuron-free deep neural network computing,” in 2016
IEEE/ACM International Conference on Computer Architecture (ISCA), 2016.

[3] H. Alemdar, N. Caldwell, V. Leroy, A. Prost-Boucle, and F. Pétrot, “Ternary neural
networks for resource-e�cient AI applications,” CoRR, vol. abs/1609.00222, 2016.
[Online]. Available: http://arxiv.org/abs/1609.00222

[4] A. D. Booth, “A signed binary multiplication technique,” The Quarterly Journal of
Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236–240, 1951.

[5] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, and
O. Temam, “Dadiannao: A machine-learning supercomputer,” inMicroarchitecture
(MICRO), 2014 47th Annual IEEE/ACM International Symposium on, Dec 2014, pp.
609–622.

[6] Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne, “Eyeriss:
An Energy-E�cient Recon�gurable Accelerator for Deep Convolutional Neural
Networks,” in IEEE International Solid-State Circuits Conference, ISSCC 2016, Digest
of Technical Papers, 2016, pp. 262–263.

[7] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training Deep
Neural Networks with binary weights during propagations,” ArXiv e-prints, Nov.
2015.

[8] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark
silicon and the end of multicore scaling,” in Proceedings of the 38th Annual Inter-
national Symposium on Computer Architecture, ser. ISCA ’11. New York, NY,

393

https://www.tensorflow.org/performance/quantization
http://arxiv.org/abs/1609.00222

Bit-Pragmatic Deep Neural Network Computing MICRO-50, October 14–18, 2017, Cambridge, MA, USA

USA: ACM, 2011, pp. 365–376.
[9] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for

accurate object detection and semantic segmentation,” CoRR, vol. abs/1311.2524,
2013.

[10] R. Gonzalez and M. Horowitz, “Energy dissipation in general purpose micropro-
cessors,” Solid-State Circuits, IEEE Journal of, vol. 31, no. 9, pp. 1277–1284, Sep
1996.

[11] Google, “Low-precision matrix multiplication,” https://github.com/google/
gemmlowp, 2016.

[12] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “EIE: E�cient Inference Engine on Compressed Deep Neural Network,”
arXiv:1602.01528 [cs], Feb. 2016, arXiv: 1602.01528. [Online]. Available:
http://arxiv.org/abs/1602.01528

[13] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization and Hu�man Coding,”
arXiv:1510.00149 [cs], Oct. 2015, arXiv: 1510.00149. [Online]. Available:
http://arxiv.org/abs/1510.00149

[14] A. Y. Hannun, C. Case, J. Casper, B. C. Catanzaro, G. Diamos, E. Elsen, R. Prenger,
S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng, “Deep speech: Scaling up
end-to-end speech recognition,” CoRR, vol. abs/1412.5567, 2014.

[15] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and
K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and <1mb model size,” CoRR, vol. abs/1602.07360, 2016. [Online]. Available:
http://arxiv.org/abs/1602.07360

[16] P. Judd, J. Albericio, T. Hetherington, T. Aamodt, N. Enright Jerger, and
A. Moshovos, “Proteus: Exploiting numerical precision variability in deep neural
networks,” in Workshop On Approximate Computing (WAPCO), 2016.

[17] P. Judd, J. Albericio, T. Hetherington, T. Aamodt, N. E. Jerger, R. Urtasun, and
A. Moshovos, “Reduced-Precision Strategies for BoundedMemory in Deep Neural
Nets, arXiv:1511.05236v4 [cs.LG] ,” arXiv.org, 2015.

[18] P. Judd, J. Albericio, T. Hetherington, T. Aamodt, and A. Moshovos, “Stripes:
Bit-serial Deep Neural Network Computing ,” in Proceedings of the 49th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-49, 2016.

[19] P. Judd, J. Albericio, and A. Moshovos, “Stripes: Bit-serial Deep Neural Network
Computing ,” Computer Architecture Letters, 2016.

[20] J. Kim, K. Hwang, and W. Sung, “X1000 real-time phoneme recognition VLSI
using feed-forward deep neural networks,” in 2014 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp. 7510–7514.

[21] A. J. Martin, M. Nyström, and P. I. Pénzes, “Et2: A metric for time and energy
e�ciency of computation,” in Power aware computing. Springer, 2002, pp. 293–
315.

[22] N. Muralimanohar and R. Balasubramonian, “Cacti 6.0: A tool to understand
large caches.”

[23] V. Nair and G. E. Hinton, “Recti�ed linear units improve restricted boltzmann
machines,” in Proceedings of the 27th International Conference on Machine Learning
(ICML-10), 2010, pp. 807–814.

[24] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer,
S. W. Keckler, and W. J. Dally, “Scnn: An accelerator for compressed-sparse
convolutional neural networks,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, ser. ISCA ’17. New York, NY, USA: ACM,
2017, pp. 27–40. [Online]. Available: http://doi.acm.org/10.1145/3079856.3080254

[25] M. Poremba, S. Mittal, D. Li, J. Vetter, and Y. Xie, “Destiny: A tool for model-
ing emerging 3d nvm and edram caches,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2015, March 2015, pp. 1543–1546.

[26] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-
Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling low-power, highly-accurate
deep neural network accelerators,” in Proceedings of the 43rd International Sym-
posium on Computer Architecture. IEEE Press, 2016, pp. 267–278.

[27] Synopsys, “Design Compiler,” http://www.synopsys.com/Tools/
Implementation/RTLSynthesis/DesignCompiler/Pages.

[28] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans. Electronic
Computers, vol. 13, no. 1, pp. 14–17, 1964. [Online]. Available: http:
//dx.doi.org/10.1109/PGEC.1964.263830

[29] P. Warden, “Low-precision matrix multiplication,” https://petewarden.com, 2016.
[30] H. H. Yao and E. E. Swartzlander, “Serial-parallel multipliers,” in Proceedings

of 27th Asilomar Conference on Signals, Systems and Computers, Nov. 1993, pp.
359–363 vol.1.

394

https://github.com/google/gemmlowp
https://github.com/google/gemmlowp
http://arxiv.org/abs/1602.01528
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1602.07360
http://doi.acm.org/10.1145/3079856.3080254
http://dx.doi.org/10.1109/PGEC.1964.263830
http://dx.doi.org/10.1109/PGEC.1964.263830
https://petewarden.com

	Abstract (13)
	1 Introduction (13)
	2 Motivation
	2.1 Essential Activation Bit Content
	2.2 Pragmatic's Potential

	3 Pragmatic: A Simplified Example
	3.1 Key Challenges

	4 Background
	4.1 Convolutional Layer Computation
	4.2 Baseline System: DaDianNao

	5 Pragmatic
	5.1 Approach
	5.2 Tile Organization and Operation
	5.3 Dispatcher and Oneffset Generators
	5.4 2-Stage Shifting
	5.5 Per-Column Activation Lane Synchronization
	5.6 Improved Oneffset Encoding
	5.7 Reduced Precision Profiling

	6 Evaluation (3)
	6.1 Methodology
	6.2 Single- and 2-Stage Shifting
	6.3 Per-Column Synchronization
	6.4 Improved Oneffset Encoding
	6.5 Energy Efficiency
	6.6 Sensitivity to Tile Configuration
	6.7 8-bit Quantization

	7 Related Work (3)
	8 Conclusion (4)
	References (13)

