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Abstract—A low-power VLSI processor architecture that com-
putes in real time the magnitude and phase-synchronization of
two input neural signals is presented. The processor is a part
of an envisioned closed-loop implantable microsystem for adap-
tive neural stimulation. The architecture uses three CORDIC
processing cores that require shift-and-add operations but no
multiplication. The 10-bit processor synthesized and prototyped
in a standard 1.2 V 0.13 � CMOS technology utilizes 41,000
logic gates. It dissipates 3.6 � per input pair, and provides
1.7 kS/s per-channel throughput when clocked at 2.5 MHz. The
power scales linearly with the number of input channels or the
sampling rate. The efficacy of the processor in early epileptic
seizure detection is validated on human intracranial EEG data.

Index Terms—Biomedical processor, bivariate digital signal pro-
cessing, bivariate processing, early seizure detection, energy-band
extraction, phase-synchronization.

I. INTRODUCTION

O VER 50 million people worldwide suffer from epilepsy.
Approximately one-third of those with epilepsy do not

react well to currently available pharmacological treatments
such as antiepileptic drugs [1]. Electrical stimulation has shown
positive results in reducing the frequency of seizures in such
patients with refractory epilepsy [1], [2]. Typically, the stimu-
lation pulses are applied continuously and periodically, which
can result in suboptimal treatment efficacy, shorten the battery
life, increase the size of the device and increase the cost of
the therapy as additional surgical operations are required for
battery replacement [2]. Automated identification of optimal
time instances when an electrical stimulus should be applied
can help address these issues [3], [4]. In many cases, seizures
can be detected prior to the clinical onset of the seizure. It has
been widely hypothesized that anticipation of ictal events (i.e.,
seizures) is critically important for a proper control of seizures
[5], [6]. This is based on the assumption and some evidence
[7], [8] that it is easier to stop a seizure by electrical stimulation
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Fig. 1. Closed-loop neural recording and stimulation system for epileptic
seizure detection and control.

before or early in its development than when it has already fully
developed.

Over the last two decades, extensive research has been con-
ducted on prediction and early detection of seizures using a
variety of different methods. Univariate algorithms, which in-
volve computations on a single input, have been used to pre-
dict seizures. Such methods include computing wavelet trans-
forms [4], energy of signal bands [9], correlation dimensions
[10] and computing the Lyapunov exponent [11]. These uni-
variate algorithms lack spatial specificity because they only rely
on one recording. This issue can be addressed through bivariate
or multivariate algorithms which operate on two or more inputs,
respectively [12]. Seizure prediction and detection algorithms
that use bivariate or multivariate measures to quantify synchro-
nization among two or more neural signals have been shown to
yield superior accuracy [5], [13], [14].

Neurons initiate electrical oscillations that are contained
in multiple frequency bands such as alpha (8–12 Hz), beta
(13–30 Hz) and gamma (40–80 Hz) and have been linked to a
wide range of cognitive and perceptual processes [15]. It has
been shown that before and during a seizure the amount of
synchrony between these oscillations from neurons located in
different regions of the brain changes significantly [5]. Thus,
the amount of synchrony between multiple neural signals is a
strong indicator in predicting or detecting seizures [5], [13].
To quantify the level of synchrony between two neural signals,
a phase locking value (PLV) can be computed (as shown in
Fig. 1) that accurately measures the phase-synchronization
between two signal sites in the brain [5], [16].

Existing VLSI systems that perform signal processing on
neural signals typically employ univariate algorithms. These
involve computations on a single input, such as computing
spike thresholds [17], correlation integrals [18], autoregressive
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parameters [19], extracting energy bands [20], RMS, max-
imum-minimum, line-length and nonlinear energy [21] and
analog wavelet filtering [4]. More computationally intensive
techniques that use inputs from multiple recording sites such
as computing the phase-synchronization, the correlation index
and the similarity index between neural signals, have been
used to develop more accurate seizure prediction and detection
algorithms [5], [13], [16], [22]–[24], but to date have only been
implemented in software.

We present a low-power digital phase-synchronization pro-
cessor VLSI architecture that efficiently performs computation-
ally intensive phase-locking value (PLV) estimation. This paper
extends on an earlier report of the principle and demonstration
in [25], and offers a more detailed analysis of the architecture
and seizure prediction sensitivity results in human EEG data.
The VLSI architecture employs the COrdinate Rotation DIg-
ital Computer (CORDIC) algorithm [26]. The algorithm offers
a hardware-efficient approach to computing trigonometric and
vector functions, as it requires only shift-and-add operations for
vector rotations. The VLSI architecture is to be integrated with
neural recording and stimulation circuits [27] to implement a
multi-channel implantable closed-loop microsystem as shown
in Fig. 1. The phase synchronization processor combines three
CORDIC processor cores, which operate on vectors to compute
the magnitude, phase and the phase-synchronization of two sig-
nals. The rest of the paper is organized as follows. Section II dis-
cusses the phase-synchronization algorithm. Section III presents
the VLSI architecture of the processor. Section IV describes its
VLSI implementation. Section V contains simulation and ex-
perimental results of early seizure detection by the phase-syn-
chronization processor, in human EEG recordings.

II. PHASE-SYNCHRONIZATION ALGORITHM

For two oscillations, and , when their instantaneous
phase difference is locked to a constant value, synchronization
is present between the two signals. A number of methods exist
that quantify the level of frequency-specific synchronization
between two neuroelectric signals, including mutual informa-
tion and Shannon entropy [16]. Estimation of phase locking
has emerged as a popular leading method of quantifying neural
synchronization. Its effectiveness comes from the fact that it
relies on the phase information of a neural signal, separately
from its magnitude. Thus, to quantify the amount of phase
locking between two neural signals requires the computation
of the phase difference followed by the computation of a
phase locking index. First, the Hilbert transform is applied to
both signals and to compute their real and imaginary
components,

(1)

where and are two sinusoidal continuous or discrete-time
signals. The Hilbert transform is conventionally performed over
the full band of frequencies in the neural spectrum, and thus, a
narrow-band bandpass filter should be applied before the Hilbert
transform to isolate the signal band of interest [16].

The magnitude in the extracted frequency band can be com-
puted as

(2)

where , 1. Next, the instantaneous phases are computed
for each channel

(3)

and if phase-synchronization exists between the two channels in
the same frequency band then the difference in phase is equal to
a constant

(4)

Numerous statistical tools exist that quantify the level of
phase-synchronization between two signals such as entropy
index, mutual information index and mean phase coherence
[5]. The hardware-efficient mean phase coherence in [5] was
selected, which uses a phase locking value (PLV) between 0
and 1 to evaluate the amount of phase-synchronization. The
algorithm defines PLV as

(5)

where is the length of the moving-average FIR filters and
is the instantaneous phase difference between the -th samples
of the two signals.

In summary, the PLV computation requires the Hilbert trans-
form, arctan, addition, sine and cosine, moving-average filtering
and lastly, the PLV magnitude. The arctan, sine/cosine and mag-
nitude operators will be computed using the CORDIC algorithm
while the moving-average filtering will be computed using dig-
ital FIR filtering. Both the magnitude value in (2) and the PLV
value in (5) are used in this work for early detection of epileptic
seizures.

III. VLSI ARCHITECTURE

The architecture of the feedforward path of the system in
Fig. 1 for two channels is presented in Fig. 2 and contains both
analog and digital components. After low-noise amplification of
the neural signals by a low-power neural amplifier, narrow-band
filter extracts the signal in the frequency band of interest.

The proposed analog front-end utilizes two stages of AC-cou-
pled amplifiers with a gain of 1000 V/V (60 dB), and tuneable
low-pass and high-pass filters to maintain a bandwidth be-
tween 0.1 Hz and 5 kHz. The capacitive feedback architecture
minimizes area and power dissipation allowing for a large
number of channels as was previously reported in [27] and [28].
The input-referred noise integrated over a 5 kHz bandwidth
is below 10 . A fully differential architecture minimizes
common-mode noise.
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Fig. 2. Top-level block diagram of two analog neural recording channels and
the digital phase-synchronization epileptic early seizure detector.

A bandpass filter is required as changes in magnitude and in-
stantaneous phase and phase difference occur in specific signal
bands [15]. Narrowband synchronization outperforms broad-
band synchronization in recognizing the start of a seizure onset
[16]. Utilizing the narrow bandwidth also puts less constraint on
the input-referred noise and resolution of the analog front-end
and ADC, respectively, leading to smaller area and lower power
dissipation. A 2nd order analog bandpass filter with a Q of 5
was used to extract the signal band of interest.

The bandpass filtered signal is then digitized by a low-power
medium resolution analog-to-digital converter (ADC). Next,
each digitized signal is fed to a set of two 10-bit finite impulse
response (FIR) filters. One FIR filter is configured to perform
the Hilbert transform to shift the signal by 90 degrees, while the
other FIR filter is an all-pass filter to ensure the digital delays of
the two FIR filters are matched. To further save power, this FIR
filtering can also be efficiently performed in the mixed-signal
VLSI domain by incorporating it within the ADC [29]. This is
why the front-end FIR filtering is not considered as a part of the
phase-synchronization processor. With the high-Q bandpass
filter, a FIR filter with 16 taps achieves a well matched magni-
tude response when programmed with the coefficients for the
all-pass and Hilbert response. Further decreasing the number
of taps of the FIR filters leads to gain mismatches between the
all-pass and Hilbert filters as shown in Fig. 3.

The rest of the computation is efficiently performed in the
digital domain by using the CORDIC algorithm. Sampling more
than one pair of analog channel outputs within a single seizure
prediction time window yields multivariate signal processing
[30].

A. CORDIC Algorithm

The phase locking value is computed using the CORDIC
algorithm. The CORDIC algorithm has been demonstrated in
a large number of applications, such as matrix computations
(QRD and eigenvalue estimation), image processing (DCT)
and digital communications (FFT, DDS) [26]. The CORDIC
algorithm operates on a vector of complex numbers by mul-
tiplying it by powers of two removing the requirement of
complex multipliers and utilizing only adders, shifters and
memory retrieval operations [26]. Using an iterative approach,
CORDIC provides a high-accuracy, low-power and low-area
computational algorithm at the cost of reduced speed. Two

Fig. 3. Simulation results showing gain mismatch for two 16-tap FIR filters
programmed for all-pass and Hilbert response �� � �����	 
� �
��� with an
analog bandpass filter at 30 Hz.

modes were implemented in CORDIC: the rotational mode
which is used for computing sine and cosine, and the vectoring
mode which is used to compute the magnitude and the phase.
The two modes only differ in the directions of rotation [26].

The CORDIC algorithm involves iterations on three differ-
ence equations as follows:

(6)

To compute the magnitude and the phase using CORDIC, the
initial values must first be set. For the CORDIC equations, the
initial and would represent the real and imaginary com-
ponents of the signal, respectively, with set to 0. Over the
next 16 clock cycles the procedure that computes magnitude and
phase is repeated while converges to 0. The final value
represents a scaled magnitude and the final value repre-
sents the phase. A look-up table that stores 16 arctan values was
used in the phase computation. Computing sine and cosine is
similar except we initialize to the CORDIC aggregate con-
stant K, set to 0 and set to the angle we want to com-
pute. Also converges to 0 instead of and the final output,

, represents the cosine of the angle, while represents
the sine of the angle.

B. CORDIC-Based Processor VLSI Architecture

The VLSI architecture of the 10-bit phase-synchronization
and magnitude processor is shown in Fig. 4. It uses three
pipelined CORDIC cores and two moving-average FIR filters.
The pipelined architecture allows the supply voltage to be low-
ered to minimize power dissipation by using a lower frequency
clock while maintaining a constant throughput. The first core
receives the two digitized vectored signals, preprocesses them
by extracting the quadrant of the angle and then simultaneously
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Fig. 4. VLSI architecture of the phase-synchronization processor.

computes both the angle between 0 and 90 degrees and the mag-
nitude using a 16-bit CORDIC core configured in the vectoring
mode. The angles are re-adjusted using the stored quadrant
information to output an angle between 0 and 360 degrees. The
difference between the two computed angles is transferred to
the next stage.

The sine and cosine of the angle difference are computed
using a 16-bit CORDIC core configured in the rotational mode.
The computed sine and cosine as well as the negative flags
are transferred to the two 32-tap moving-average FIR filters.
Higher sensitivity for the PLV algorithm can be achieved by
increasing the length of the FIR filters at a cost in area and
complexity. Lastly, the PLV is computed by extracting the
magnitude of the FIR averaged sine and cosine outputs using
a 16-bit CORDIC core configured in the vectoring mode. An
output multiplexer can be configured to output the instantaneous
magnitude and phase of each channel, as well as the phase
difference and the PLV between two channels. Each CORDIC
core requires 18 clock cycles which include one clock cycle
for pre-processing the angles, 16-clock cycles to perform the
CORDIC algorithm and one clock cycle to output the data and
post-process the angles for a total latency of 54 clock cycles to
compute the PLV algorithm. The simulation results in Fig. 5
show how the PLV sensitivity improves with increasing the
length of the moving-average FIR filters.

IV. VLSI IMPLEMENTATION

The processor was designed and synthesized using a stan-
dard 8-metal 0.13 CMOS technology. It contains a total of
41,366 gates and occupies an area of 0.178 . The first mag-
nitude/phase CORDIC core occupies 20.6 percent of the area,
the second sine/cosine CORDIC core uses 12.8 percent, the
FIR moving-average filters occupy 57 percent, the third mag-
nitude CORDIC core utilizes 9 percent and pre-processing and
the output MUX occupy 1 percent of the total core area. Accu-
racy and sensitivity of the PLV computation can be traded for
area by reducing the length of the moving-average FIR filters.
A 4 times increase in the length of FIR filters yielded an overall
layout area increase of 1.8 times and an overall power dissipa-
tion increase of 1.7 times.

Fig. 5. Simulated PLV for different values of� (length of the FIR filters) when
the frequency of one input, � , is held constant at 110 Hz and the frequency
of the other input, � , is swept from 70 Hz to 150 Hz.

The univariate magnitude and phase-estimation operations
and the bivariate phase difference and PLV-estimation opera-
tions are all computed simultaneously for every sample and are
time-multiplexed through a 10-bit output. The synthesized de-
sign can operate at frequencies above 100 MHz, which is be-
yond the requirements of the intended application. This margin
allows the ability to further reduce power dissipation by low-
ering the supply voltage.

V. RESULTS

A. Experimental Results

The phase-synchronization processor was prototyped in a
standard 0.13 CMOS technology and characterized experi-
mentally. Two analog signals were digitized, sent through FIR
filters to obtain the Hilbert transform and its delayed version,
and fed to the PLV processor.

The experimentally measured magnitude extraction results
are shown in Fig. 6, when a sinusoid is applied as an input to the
processor. The maximum error is below 3.5 percent with respect
to the full scale when the input is between 0 mV and 600 mV.
For a neural amplifier gain of 2,000 V/V, this corresponds to a
neural signal between 0 and 300 .

Next, two sinusoid inputs were set to 110 Hz, with one si-
nusoid having its phase locked while adjusting the phase of the
other sinusoid. The measured phase difference between this pair
of inputs is shown in Fig. 7. The maximum error is approxi-
mately 1.5 percent.

The measured PLV between a pair of inputs is shown in Fig. 8.
The average PLV between the two inputs is computed with one
input held constant at 110 Hz, while the other input frequency
is swept from 60 Hz to 160 Hz. As expected, the computed PLV
is near unity when the two signals have the same frequency.
When the second signal has its frequency set to 60 Hz or 160 Hz,
the PLV drops to 0.45 and 0.4, respectively. The phase locking
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Fig. 6. (a) Experimentally measured magnitude of a sinusoidal input computed
by the phase-synchronization processor. (b) The corresponding relative percent
error.

Fig. 7. Experimentally measured phase difference between two input sinu-
soids. (b) The corresponding relative percent error.

sensitivity can be further improved by increasing the length of
the moving-average FIR filters.

The experimentally measured power dissipation of the pro-
cessor for a supply voltage of 0.85 V and 1.15 V operating
at various clock frequencies is shown in Fig. 9. For a 0.85 V
supply at 2.5 MHz and 10 MHz the processor dissipates 102
and 412 , respectively. For a 1.15 V supply at 2.5 MHz and
10 MHz the processor dissipates 231 and 897 , respec-
tively. For only one pair of channels, operating at 1.7 kS/s the
processor dissipates 3.6 from a 0.85 V supply. At lower
clock frequencies of 39 kHz and 156 kHz the processor dissi-
pates 4.6 and 17.3 , respectively, from a 1.15 V supply
and 2.4 and 8.5 , respectively, from a 0.85 V supply.

Fig. 8. Experimentally computed PLV when the frequency of one input, � ,
is held constant at 110 Hz and the frequency of the other input, � , is swept
from 60 Hz to 160 Hz.

Fig. 9. Experimentally measured power dissipation at different operating fre-
quencies.

B. Simulated Human EEG Results

A Verilog-AMS model of the phase-synchronization pro-
cessor is too computationally complex to be used in early
seizure detection simulations. Instead, a Simulink model which
had its resolution and accuracy set to match the performance
of the RTL-level implementation of the synthesized processor
was utilized.

The efficacy of the phase-synchronization processor in early
seizure detection was verified and validated on an EEG database
from the seizure prediction project at the University of Freiburg
[31]. It consists of 222 hours of intracranial EEG recording of
three patients with a total of 30 seizures analyzed and labeled by
certified epileptologists as summarized in Table I. The data was
acquired by a Neurofile NT digital video EEG system with 128
channels, 512 Hz sampling rate, and a 16-bit analog-to-digital
converter via implanted depth, strip and grid electrodes.
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TABLE I
EEG DATABASE USED IN VERIFICATION OF THE PHASE-SYNCHRONIZATION

PROCESSOR. SEIZURE TYPES: SIMPLE PARTIAL (SP), COMPLEX PARTIAL (CP),
GENERALIZED TONIC-CLONIC (GTC). SEIZURE LOCATION: HIPPOCAMPAL (H),

NEOCORTICAL (NC). ELECTRODE TYPES: DEPTH (D), STRIP (S), GRID (G)

For each patient, three intracranial electrodes located in the
proximity of an epileptic focus were used. For each electrode
type, a sub-set of contact pairs was selected for the PLV com-
putation as follows. First, only the contact pairs of the same elec-
trode type were used as inputs to the PLV processor to suppress
common-mode noise. Next, a reference electrode was chosen
for each electrode type as the contact furthest away from the
epileptic focus. Then, for each contact pair, the signal spec-
trum was separated into five frequency bands via high-Q band-
pass filters: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), a
sub-band of beta (15–25 Hz) and gamma (30–48 Hz). Finally, a
sub-set of contact pairs across all frequency bands was selected
by pairing each contact with the reference and observing the
channel magnitudes and the PLV within three hours of a clin-
ical seizure onset.

The sensitivity, defined as the true positive rate , of the
phase-synchronization algorithm was evaluated as a function of
seizure occurrence period , seizure prediction horizon

, false positive rate and maximum false positive
rate [22]–[24]. The is defined as the period of
time in which only one seizure is to be expected. It was varied
between 5 and 40 minutes to account for the uncertainty in the
seizure frequency. The was set to between 16 seconds and
5 minutes to allow enough time for the therapeutic intervention,
such as electrical stimulation or a warning signal to the patient.

Three early seizure detection methods were used in the
analysis of the EEG database: magnitude, PLV and combined
magnitude with PLV detectors. The magnitude detector is
active when the amplitudes of both input channels within a
frequency band of interest cross their corresponding thresholds.
The PLV detector is triggered when the phase locking value,
integrated over an adjustable period of time, drops below a
certain threshold. The combined magnitude and PLV detector
output is formed by AND-ing the outputs of the individual
detectors. Each threshold detector, once triggered, remains
active for the duration equal to the sum of and time
periods. All early seizure detection methods were compared
against the random detector.

The experimental results showed highest PLV activity in the
15–25 Hz frequency band. Fig. 10 presents an example of an

Fig. 10. Early seizure detection results example for patient 2. (a), (b) Two input
intracranial EEG signals recorded on electrodes 13 and 23, respectively. (c), (d)
Magnitude of the signals shown in (a), (b), respectively, after they are bandpass
filtered in the 15 Hz to 25 Hz frequency range, computed by the prototyped
phase-synchronization processor. (e) Integrated PLV between the two inputs in
the 15 Hz to 25 Hz frequency band computed by the prototyped phase-synchro-
nization processor.

early seizure detection result computed by the phase-synchro-
nization processor in the 15–25 Hz frequency band for patient
2. The clinical seizure onset is characterized by an increase in
the magnitude and a marked fluctuation (a drop in this case)
in the PLV before the seizure. The phase locking value reaches
1 during the seizure reflecting the synchronized firing of neu-
rons. Similar early seizure detector outputs generated by the pro-
cessor are observed in the 15–25 Hz frequency band of patient 3
as shown in Fig. 11. The magnitude and PLV thresholds are ad-
justed for each patient to achieve the highest sensitivity in early
detection of seizures.

Fig. 12(a) and (b) show the variation of the sensitivity with
and , respectively, for patient 2 in the University of

Freiburg data set. Each plot compares the sensitivity of the three
detectors in comparison to a random detector. The sensitivity
plot in Fig. 12(a) shows that the best detector, the PLV detector,
achieves 66 percent sensitivity with FPR of 0.65 FP/hr, of
30 minutes, and of less than 5 minutes.

The sensitivity plot in Fig. 12(b) shows that when the
is increased to 1.2/hr, the true positive rate reaches

100 percent for a seizure occurrence period greater than 10
minutes. By increasing the to 1.2 FP/hr-2.0 FP/hr
depending on a patient, approaches 100 percent for all
patients. The could not always be made constant by
varying the thresholds; therefore, the average rates
are shown for each early detection method in Fig. 12(b).

The sensitivity results in early seizure detector are compa-
rable to previously reported software-based bivariate prediction
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Fig. 11. Early seizure detection results example for patient 3. (a), (b). Two input
intracranial EEG signals recorded on EEG electrodes 1 and 2, respectively. (c),
(d) Magnitude of the signals shown in (a), (b), respectively, after they are band-
pass filtered in the 15 Hz to 25 Hz frequency range, computed by the prototyped
phase-synchronization processor. (e) Integrated PLV between the two inputs in
the 15 Hz to 25 Hz frequency band computed by the prototyped phase-synchro-
nization processor.

algorithms [22]–[24] as summarized in Table II (with the ex-
ception of [22] which results in 100 percent TPR at FPR=1/hr
versus 100 percent TPR at performance yielded
by the presented phase-synchronization processor architecture).
All of the listed algorithms have been tested on the same bench-
mark data set from the University of Freiburg, but the presented
algorithm is the only one that has been implemented as a low-
power implantable integrated circuit. Recent integrated circuit
seizure detector implementations [19], [20], [32] achieve a high
TPR for a given set of patient seizure data, but have not been
tested on publicly available benchmarking human seizure data
sets such as the one from University of Freiburg and have lower
detection-to-seizure-onset times as shown in Table II.

C. Experimental Human EEG Results

Two-electrode intracranial EEG data from patient 1 from Uni-
versity of Freiburg database was loaded onto a dual-channel
Tektronix AFG3252 arbitrary waveform generator and fed into
the phase-synchronization processor chip. A bandpass filter fil-
tered the inputs to 15–25 Hz frequency band. Two 8-bit ADCs
and four 16-tap FIR filters (two all-pass and two Hilbert filters)
digitized and applied a 90 degree phase shift, respectively, to the
two signals. The processor simultaneously computed both mag-
nitudes, the phase difference and the PLV at 1.7 kS/s dissipating
3.6 from a 0.85 V supply.

Two-electrode intracranial EEG seizure recordings from pa-
tient 1 (electrode-40 and electrode-44) are shown in Fig. 13(a)
and (b). Fig. 13(c) shows the experimentally measured magni-
tude from electrode-40, while Fig. 13(d) shows the the experi-
mentally measured magnitude from electrode-44. For both in-
puts, the experimentally measured magnitude was observed to
increase during the seizure. Lastly, Fig. 13(e) shows the exper-
imentally measured PLV between the two inputs. The PLV was

Fig. 12. Early seizure detection results for patient 2, showing (a) true positive
rate versus false positive rate plot with the seizure occurrence period held at
30 min, and (b) true positive rate versus seizure occurrence period plot. For the
above detectors, MAG refers to magnitude, PLV refers to phase locking value,
and RND refers to random.

observed to drop 15 seconds before the onset of the seizure dis-
playing an early detection, then increasing during the seizure.
Seizure data from other patients were also fed into the processor.
The magnitude was observed to increase before and during the
seizure while a pronounced fluctuation of PLV is observed be-
fore and during the seizure.

VI. CONCLUSIONS

A compact low-power signal processing VLSI architecture
has been presented that computes the phase locking value on two
neuroelectrical signals and the instantaneous magnitude on indi-
vidual neural inputs. The signal processor is used in conjunction
with a neural recording front-end and operates in real time on
frequency bands in the neural spectrum. The processor occupies
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TABLE II
PERFORMANCE COMPARATIVE ANALYSIS OF BIVARIATE SEIZURE DETECTION AND PREDICTION ALGORITHMS

TPR: true positive rate, FPR: false positive rate, SOP: seizure occurrence period. Based on Freiburg intracranial EEG Database [31].

Fig. 13. Experimentally measured early seizure detection results for patient 1.
(a), (b). Two inputs recorded from intracranial EEG electrodes. (c) Experimen-
tally measured magnitude in the 15–25 Hz range of the signal shown in (a). (d)
Experimentally measured magnitude in the 15–25 Hz range of the signal shown
in (b). (e) Experimentally measured PLV between signals in (a) and (b).

0.178 area and dissipates 3.6 operating on a pair of
inputs sampled at 1.7 kS/s from a 0.85 V supply. Results from
pre-recorded human intracranial EEG data demonstrate the ef-
fectiveness of the processor in early seizure detection.
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