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Abstract
A 0.13-micron CMOS fully integrated 48-channel UWB

label-free DNA analysis SoC is demonstrated in prostate can-
cer screening. The 3mm×3mm die includes 578 nanostruc-
tured DNA sensors, 48 pH sensors, and 48 temperature sensors
and reuses key circuits for cyclic voltammetry, amperometry
and temperature regulation.

Introduction
Amperometric electrochemical DNA sensors [1] have

emerged as a low-cost, high-throughput and real-time alterna-
tive to conventional optical and electrochemical sensory meth-
ods [2]. We have reported in Nature Nanotechnology amper-
ometric electrochemical sensors fabricated on passive silicon
that do not require cumbersome tagging of DNA with chem-
ical or optical labels [3]. These gold microelectrodes have
fine-tuned nanostructured patterns on their surface that yield
an over 110dB input dynamic range and 1aM sensitivity suf-
ficient for PCR-free DNA detection. In this paper we present
a 0.13µm CMOS DNA analysis SoC with 578 nanostructured
gold microelectrodes grown directly on the die which performs
label-free DNA analysis, pH sensing and temperature regula-
tion for cancer detection.

System Description
The nanostructured gold microelectrodes are electrostati-

cally grown on a Ni/Pd/Au base on the CMOS top metal as
depicted in Fig. 1 (center). The dynamic range and sensitivity
are a function of the electrode nanostructure grain size, shape
and degree of anisotropy which are controlled by the potential
difference between the working electrode (WE) and a Ag/AgCl
reference electrode as shown in Fig. 1 (middle and bottom).
Potassium ferrocyanide reporter K4[Fe(CN)6] is utilized as a
redox chemical current generator, as depicted in Fig. 1 (top)
for the case of oxidization. The oxidization current IOX drops
when the Au electrode surface is hybridized with negatively
charged probe DNA. When the complementary DNA binds
with the probe DNA, the surface negative charge further in-
creases and the oxidization current is further reduced. This
change in the current is a key indicator of the target DNA pres-
ence and concentration.

The block diagram of the SoC is presented in Fig. 2 (top,
left). Three current-mode sensors: an array of nanostructured
DNA sensors, a pH sensor and a CTAT/PTAT temperature sen-
sor, share each of 48 signal acquisition channels. The dual-
slope multiplying ADC (MADC) generates a digital represen-
tation of the product of an analog input current and a digital co-
efficient. Accumulation is implemented by an extended ADC
counter. As a result, a digital multiplier and an accumulator
are eliminated. As shown in Fig. 2, the channel circuits are
reused to implement three commonly required sensory modali-
ties: a) cyclic voltammetry (CV) for DNA sensing, b) constant-
potential amperometry (CPA) for pH sensing, and c) tempera-
ture regulation.

The circuit implementation of one channel is depicted in
Fig. 3 (top). The type-II bi-directional input current conveyer
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Fig. 1. On-CMOS nanostructured label-free DNA microsensors.
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Fig. 2. SoC architecture resources reuse in three modes of operation.

is chopper-stabilized internally. Its output current mirrors are
regulated and dynamically matched. Low-leakage switches are
utilized. The MADC employs three gain stages with the first
stage chopper-stabilized. Multiplication of the input current
by a digital coefficient 0 < M < 1 is implemented by scaling
the duration of the charging phase in the counter by M , which
requires no additional resources [4]. The pulsed UWB trans-
mitter modulates Manchester-encoded input data using on-off
keying as shown in Fig. 3 (bottom, right).

The temperature sensing and regulation circuits are shown
in Fig. 4. In-channel PTAT and CTAT BJTs share common
peripheral circuits to generate two currents as the input and
reference currents to the MADC, respectively. The differ-
ence between these currents is proportional to the tempera-
ture. Temperature regulation is implemented by a mixed-signal
PID feedback controller. The PID controller compares the pro-
grammed desired temperature value with the measured temper-
ature and adjusts the duty cycle of the fully digital 12-bit pulse
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Fig. 3. VLSI circuit implementation of the channel and UWB TX.
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Fig. 4. Circuit implementation of the temperature regulator.

width modulator (PWM). The PWM controls the in-channel
heater to deliver an average power necessary to maintain the
desired temperature.

Experimental Results
The static digital output of one channel for three clock fre-

quencies is depicted in Fig. 5(a). Fig. 5(b) shows the FFT of
the measured ADC output at 12MHz clock with ENOB of 9.1.
The combined linear input dynamic range is 110dB. The in-
channel pH sensor is implemented by a floating gate PFET
with an aspect ratio of 0.5/6µm. The sensitivity of the ISFET
to pH of liquids and the 3σ error bars (from 3 chips) are shown
in Fig. 5(c). The inaccuracy of the temperature regulation after
calibration is ±0.5 C as depicted in Fig. 5(d) for five packaged
dice. An example of a temperature regulation cycle is shown
in Fig. 5(e). The measured output power spectrum of the UWB
transmitter is plotted in Fig. 5(f).

The SoC was extensively validated in DNA analysis for de-
tection of prostate cancer. Fig. 6(a) shows CV scans of an on-
chip Au electrode in a 20µM K4[Fe(CN)6] solution. The bare
electrode CV scan demonstrates well-defined oxidation and re-
duction peaks of K4[Fe(CN)6]. Microelectrodes hybridized
with 5µM single-stranded prostate cancer probe DNA show
a reduction in the oxidation/reduction peak current due to the
increase in the negative surface charge. Adding a 5µM non-
complementary target DNA does not significantly change the
CV plot indicating that non-specific adsorption is negligible.
Adding a 5µM complementary prostate cancer target DNA
leads to elimination of K4[Fe(CN)6] redox peaks. This is due
to the additional negative surface charge resulting from forma-
tion of double-stranded DNA on the electrode surface. The 3σ
error bars (from 3 chips) with the detection noise margin of
approximately 2.34nA are shown in Fig. 6(b).

The die micrograph and a summary of the SoC measured
characteristics are depicted in Fig. 7. The 48 channels are ar-
ranged in a 8×6 array on a 3mm×3mm 0.13µm CMOS die.
Two channel types with different WE configurations are im-
plemented. A set of 42 channels scan 4 WEs each, with three
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Fig. 6. Experimental on-die prostate cancer DNA detection results.

different WE sizes to cover a 110dB dynamic range, perform
initial detection of DNA. A set of 6 channels (in the second
bottom row of the array) scan a sub-array of 8×8 2µm×2µm
WEs each. These redundant-electrode sub-arrays are utilized
for DNA detection cross-validation and for titer DNA concen-
tration measurements.
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