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Abstract—A wearable-optimized implementation of a sleep
stage classification algorithm that has low detection latency, high
detection accuracy and low resource consumption is developed
and successfully implemented on a low-power FPGA microsystem
for closed-loop electrical brain stimulation. This implementation
uses EEG and EMG signals as inputs and classifies stages of
sleep. By structurally merging multichannel FIR and window
averaging filters into one reconfigurable, multipurpose filter, the
new implementation maintains a sleep detection accuracy of
79.7%, a REM detection sensitivity of 98.2%, a REM detection
specificity of 89.2% and a detection latency of 0.982 ms, while
consuming 6.8 times fewer logic elements and 96.28% less power
compared with the current state of the art implementation. With
its high performance and low resource usage, this implementation
enables a low-power wearable microsystem to perform neural
recording, real-time REM sleep stage detection, and closed-loop
responsive brain stimulation as a tool to study the mechanisms
of neurodegenerative diseases.

I. INTRODUCTION

Neurodegenerative diseases affect millions of people
around the world. Electrical brain stimulation has shown to
be an effective, low-side-effect option for treating neurode-
generative disorders compared with many conventional phar-
maceutical methods [1]. In the case of Alzheimer’s disease
(AD), epidemiological studies have discovered a correlation
between the development of AD and stages of sleep, which
is dominated by cycles of REM (rapid eye movement) that
disrupts memory consolidation and NREM (non-REM) sleep
that promotes memory consolidation [1], [2]. Studies found
that stimulating the lateral hypothalamus at the peaks of θ-
oscillation (5-10 Hz) significantly increases the chances of
suppressing REM sleep [3]. This motivates the development of
a sleep stage classifier with high accuracy and low detection
latency (< 1 ms) in order to deliver such timely stimuli by
responsive stimulation.

Several software-based algorithms have already been devel-
oped for classifying sleep stages [4], [5]. Although these algo-
rithms often achieve high detection accuracy, they require sig-
nificant amounts of computational power, which prevents their
implementation on low-power, wearable devices. Additionally,
sending the recorded signal from a data acquisition module to
a computer creates long delays that prevent responsive stim-
ulation for REM suppression. These shortcomings motivate
the design for a digital implementation on a FPGA-controlled
wearable device capable of neural recording, real-time REM
sleep stage detection, and close-loop brain stimulation (Fig 1,
top).

Recently, several hardware based REM detection algo-
rithms have been developed [7], [8]. In these algorithms, mul-
tiple bio-signals, such as electroencephalogram (hippocampus
and cortex EEG) and electromyogram (EMG) signals in [7],
are first bandpass-filtered and averaged (Fig. 2). Then, a sleep
stage can be determined via thresholding because θ-oscillations
from filtered hippocampus (5-10 Hz), ∆-oscillation from fil-

NECK EMG
ELECTRODE

CORTEX &
HIPPOCAMPUS

RECORDING
ELECTRODES

R
EC

O
R

D
IN

G
 &

ST
IM

U
LA

TI
O

N
EL

EC
TR

O
D

ES DATA RECEIVER

SLEEP CLASSIFICATION
ANDș-BAND

PEAK DETECTION

SCALP

2 cm

2 
cm

STIMULATION
SITE

3 BIO-SIGNAL
MONITORING AND
3 STIMULATOR

CHANNELS

DIAGNOSTIC
DATA

Fig. 1: A wearable system for sleep stage detection and
responsive REM stage suppression. The integrated circuit was
first reported in [6].
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Fig. 2: Existing REM detection algorithm [7].

tered cortex EEG (0-4 Hz), and EMG oscillations (100-200
Hz) are most prevalent in REM, NREM and AWAKE stages,
respectively. Although these algorithms have been shown to
achieve high REM classification accuracy with low detection
latency, their high power and resource consumption make them
unsuitable for implementing on low-power (< 1 mW) wearable
devices.

In our research, we have investigated the best existing
hardware based REM detection algorithm [7] in order to iden-
tify causes for its high FPGA logic element (LE) and power
usage. Then, an optimized implementation of the algorithm
is proposed to significantly reduce its power and resource
consumption. This implementation is validated with offline
recordings from nine mice on a low-power, low-resource Actel
AGL060 FPGA (1536 logic elements) that controls a wearable
ASIC (Fig. 1, bottom). These recordings consist of icEEG
and EMG signals that were collected with a 16 kHz sampling
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TABLE I: Comparison of logic element usage between the re-
cently reported implementation [7] and the wearable-optimized
implementation on an Actel IGLOO FPGA.

Module Quantity Total LE % of Available
Consumption Resources

Recently Reported Implementation [7]
Signal acquisition 3 240 15.62%
FIR filter 3 6130 399.09%
Window
averaging filter 3 2022 131.64%

Thresholding &
classification

1 589 38.35%
Control logic 1 50 3.26%
Total 11 9031 587.96%

Wearable-optimized Implementation
Signal acquisition 1 80 5.21%
FIR & window
averaging filter 1 835 54.36%

Thresholding &
classification

1 277 18.03%
Peak detection 1 49 3.19%
Control logic 1 76 4.95%
Total 5 1317 85.74%

rate using a headstage pre-amplifier with corresponding sleep
stages manually scored by an expert [7]. After validation,
the resource consumption, detection accuracy and detection
latency of the optimized implementation on its FPGA are
compared with the current state of the art implementations.

The rest of the paper is organized as follows: Section II
outlines algorithmic design specifications and provides a re-
source utilization analysis. Section III highlights innovations in
the optimized implementation that significantly reduces FPGA
resource consumption. Section IV compares the performance
of the new implementation with the current state of the art
implementations.

II. RESOURCE ULTILIZATION ANALYSIS

The breakdown of LE usage in Actel IGLOO FPGA for
a recently reported high-performance sleep stage classifier is
shown in the upper half of Table I [7]. Optimum algorithmic
specifications and main causes for their high-count LE imple-
mentation are discussed below.

A. Parallel Filtering of Input Signals

FIR filters with a minimum of 64 taps are chosen for all
three channels of signals (cortex EEG, hippocampus EEG,
EMG). Additionally, a maximum sampling frequency of 200
Hz and 800 Hz is chosen for filtering EEG and EMG sig-
nals respectively. Based on Matlab simulations, these filter
specifications provide sufficient magnitude attenuation outside
the corresponding bandpass frequency range for each signal.
Furthermore, a window size of 10 seconds for the window
averaging filter is chosen for all three channels to further
improve sleep classification accuracy (Fig. 3).

The implementation in [7] requires three channels of
signals to be processed separately by their dedicated FIR
and window averaging filters, which are preconfigured with
channel specific filtering parameters. Although parallel filtering
shortens signal processing time, it consumes a significant
amount of resources.
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Fig. 3: Matlab simulation result of sleep stage classification
algorithm: detection accuracy vs. window size of the window
averaging filter.

B. Storage of Filter Data and Coefficients

Each FIR and window averaging filter needs to store and
retrieve input data and filtering coefficients. For instance, each
FIR filter requires the storage of 64 data inputs with its 64
corresponding filtering coefficients. Additionally, each window
averaging filter needs to store and retrieve 512 data inputs.

Since the implementation in [7] of the FIR and window
averaging filters stores data and coefficients in registers, a sub-
stantial amount of logic elements in the FPGA are consumed.

C. Integer Division

In an Actel FPGA, the integer division between two 8-bit
unsigned numbers consumes 550 logic elements. This leads to
high LE consumption in the thresholding module, which uses
such division.

III. COMPACT VLSI ARCHITECTURE

Due to their high resource utilization, sharing the FIR and
window averaging filters among the three channels signifi-
cantly reduces the number of logic elements. It involves al-
gorithmic structural sharing and low resource integer division,
which are discussed below.

A. FSM Control of Time-Multiplexed Module Execution

Sharing the FIR and averaging filters requires time-
multiplexing them among different channels. This is possible
as the filter is clocked at 1.7 MHz, which is much faster than
the highest required sampling frequency of 800 Hz (for the
EMG channel).

Since the shared filter can only process one channel of
signal at a time, a finite state machine (FSM) is needed
to select the appropriate channel and trigger the execution
of different data processing modules along the signal path.
Major blocks inside such FSM are shown at the top of Fig. 5.
At the rising edge of the 800 Hz sampling clock, the timing
control block enables the deserializer module to convert the
serialized EMG signal into a parallel 8-bit signal. Once the
data is deserialized, it is filtered by the bandpass FIR and
then by the window averaging filter, both implemented in
the same module. The module’s filtering mode is controlled
by the FSM. Once filtering is completed, the FSM either
waits for the next rising edge of the 800Hz clock for another
EMG signal or immediately switches to one of the EEG
signal for data processing. Since the two EEG channels are
sampled at 200 Hz, the FSM enables the data processing
of these channels once after every fourth processing of the
EMG channel. Once filtering is complete, the FSM enables
the detection modules. Different sleep stages are determined
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Fig. 4: Logic diagram for a reconfigurable multichannel FIR and window averaging filter.
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Fig. 5: Block diagram for the presented implementation.

by thresholding the average filtered EMG signal and the ratio
of two filtered EEG signals. Simultaneously, another module
processes the filtered hippocampus EEG signal for θ-band
peak detection.

B. Multichannel FIR Filtering Using Memory Address Offsets

Since one FIR filter is used for channels with different
bandwidths, it has to be programmable. Also, to make the
system work stand-alone for an implantable / wearable appli-
cation, the coefficients must be saved on the FPGA. Since
the filtering coefficients are constant and symmetric, only
half of them (32 coefficients) for each channel are required
to be stored. The coefficients are stored in the non-volatile
FlashROM memory of the FPGA, which significantly reduces
the number of required logic elements. Fig. 4 shows the
process of coefficient retrieval for the shared FIR filter, using a
multiplexer (OFFSET MUX) that chooses the proper address
offset for every channel.

The same technique is used to set the offset for the FIR
input data storage and retrieval from the RAM. In this case,
64 input data samples from each channel are needed to be
stored and accessed in one RAM block on the FPGA. To store
or retrieve different sets of channel-specific FIR input data

with a constant range of RAM input address (0-63), a channel
specific RAM offset address has to be selectively added to
each input address by the Offset Calculations block shown in
Fig. 4.

The bottom half of Table I summarizes the LE usage after
sharing the FIR and window averaging filters, and applying the
storage and retrieval techniques for the filter coefficients and
data samples. The resource usage is reduced by approximately
6.8 times compared with the recently reported implementation.

C. Merging the FIR and the Window Averaging Filter

To further reduce the LE usage, the FIR and averaging
filters are also merged. This is possible due to the similarity of
logic structures for both filters. Both filters effectively require
the addition of a specific number (k) of data samples (Di),
which are multiplied by a certain coefficient (Ci),

Dout = Σk
i=1Ci ·Di (1)

For the FIR filter, Ci is the filter coefficient, Di is the input
data, and k is the number of taps. For window averaging filter,
Ci is always one, Di is the input data, and k is the window
size.

As shown in Fig. 4, a multiplexer (COEFFICIENT MUX)
is used to choose between a FIR coefficient or a constant
one for Ci. To choose the correct Di, a multiplexer (RAM
SELECTION MUX) directs the address to the appropriate
memory block to retrieve the filter specific data via a second
multiplexer (DATA INPUT / OUTPUT MUX). Since one
addition operation is performed per clock cycle, the total
number of summations (k) can be easily controlled by the
number of clock cycles.

D. Integer Division Using High Rate Substraction

The thresholding module requires the integer division of
two EEG signal amplitudes to make a detection. To avoid
a multi-bit divider that increases resource utilization signif-
icantly, the division operation is performed by counting the
number of times that the denominator must be subtracted from
the numerator before the output becomes negative. A higher
clock frequency (40 MHz) is used for this block to avoid any
significant additional delay to the algorithm.
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Fig. 6: Sample simulation results for the new implementation.

IV. RESULTS

A. Classification Accuracy

The detection results are shown in Fig. 6. The first two
plots show the EEG ratio and the EMG signal after filtering.
From these plots, a higher EEG ratio corresponds to the REM
stage and a higher EMG signal corresponds to the AWAKE
stage. The third plot is the hypnogram, which is produced
by manual sleep stage scoring and acts as a reference for
detection outputs. The last two plots show the similarity of
the Matlab and FPGA generated outputs with the hypnogram.
The detection accuracy of the FPGA algorithm is 79.7% over
all sleep stages. Furthermore, the sensitivity and specificity for
REM sleep stage detection are 98.2% and 89.2% respectively.

B. Classification Latency

The wearable-optimized implementation is validated on the
Actel IGLOO AGL060 FPGA, which controls the low-power
body-interfacing ASIC. The algorithm needs 1670 clock cycles
(using 1.7 MHz clock) to generate an output, which translates
to a detection latency of 0.982 ms (< 1 ms). Although the
implementation [7] in Table II has a lower detection latency, it
is unable to perform peak detection and consumes significantly
more LEs and power.

To further reduce latency, data from different channels can
be processed in parallel instead of in series. Thus, a multi-
stage pipeline system can be implemented so that data from
different channels can be de-serialized, filtered and classified
simultaneously.

V. CONCLUSION

The wearable-optimized implementation of the sleep clas-
sifier maintains high detection accuracy and low latency while
consuming very low power. Based on the offline recordings
from nine mice, the implementation has a detection accuracy of
79.7%, a REM detection sensitivity of 98.2%, a REM detection

TABLE II: Comparison amoung existing hardware-based
methods.

Ref. [7] [8] [9] This work

Stages classified W,REM
NREM

W,
S1,S2,
SWS,
REM

W,
Sleep

W,REM,
NREM

Signal(s) used EEG,
EMG ECG ECG,

Resp.
EEG,
EMG

Method
Filtering+

thresholding FNGLVQ
FFT,
PSD,
ANN

Filtering+
thresholding

Peak detection No No No Yes
Accuracy (%) 81.66 68.8 89.4-95.4 79.7
Sensitivity (%) 81.7 64.2 N/R 98.2
Specificity (%) 93.8 64.2 N/R 89.2
Computation time (ms) 0.039 790 3.75 0.982
Real-time Yes No Yes Yes
Order of filter 64 N/R N/A 64

FPGA name Actel
ProASIC3

Spartan-3AN
XCS700AN N/A Actel

IGLOO
FPGA
resource usage (LE) 9031 11108 N/A 1317

Power
consumption (mW) 9.3 N/R 200 0.346

N/A: Not applicable , N/R: Not reported

specificity of 89.2%, a detection latency of 0.982 ms and a
power consumption of 0.346 mW. This new implementation
enables a wearable closed-loop sleep control system to perform
real-time REM suppression. As such, purposeful study of
neurodegenerative diseases can be explored.
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