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Abstract—An ultra wideband (UWB) 64-channel responsive
neural stimulator system-on-chip (SoC) is presented. It demon-
strates the first on-chip neural vector analyzer capable of wire-
lessly monitoring magnitude, phase and phase synchronization of
neural signals. In a closed-loop, abnormal phase synchrony trig-
gers the programmable-waveform biphasic current-mode neural
stimulator. To implement these functionalities, the SoC integrates
64 neural recording amplifiers with tunable switched-capacitor
(SC) bandpass filters, 64 multiplying 8-bit SAR ADCs, 64 pro-
grammable 16-tap FIR filters, a tri-core CORDIC processor, 64
biphasic current stimulation channels, and a 3.1–10.6 GHz UWB
wireless transmitter onto a 4 mm × 3 mm 0.13 µm CMOS die. To
minimize both the area and power dissipation of the SoC, the SAR
ADC is re-used as a multiplier for FIR filtering and as a DAC and
duty cycle controller for the biphasic neural stimulator. The SoC
has been validated in the early detection and abortion of seizures
in freely moving rodents on-line and in early seizure detection in
humans off-line.

Index Terms—Closed-loop, closed-loop SoC, early seizure de-
tection, implantable wireless SoC, mixed-signal FIR filters, neural
recording, neural stimulation, neural vector analyzer, phase
synchronization.

I. INTRODUCTION

N EUROELECTRICAL activity in the brain generates elec-
trophysiological signals in multiple frequency bands such

as alpha (8–12 Hz), beta (13–30 Hz) and gamma (40–80 Hz).
Through oscillations in these bands, information is communi-
cated among various regions in the brain. These oscillations
have been linked to a wide range of cognitive and perceptual
processes including sleep states and memory [1]. Simple tasks,
such as motor or sensory tasks also often require the coordina-
tion or synchronization of many brain areas [1].
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Fig. 1. Various neurological disorders and the frequency bands of the corre-
sponding abnormal phase synchrony.

On the other hand, abnormal coordinated interactions in var-
ious regions of the brain are widely recognized as key indicators
of pathological brain states in numerous neurological disorders
such as epilepsy, schizophrenia, Parkinson’s disease, autism and
traumatic brain injury [2]. Fig. 1 outlines the frequency bands
where abnormal phase synchrony is exhibited by various neu-
rological disorders and the percentage of the population who
suffer from each disease [3], [4]. Quantifying phase synchro-
nization among neural oscillations in these frequency bands is a
new and promising method for diagnostics, monitoring or treat-
ment of such disorders [5]–[8].
For example, in epilepsy, fluctuations in phase synchrony in

narrow frequency bands are among the best features used for
early detection of seizures [9]. Detecting the seizure before it
develops is critical in a closed-loop implantable device for auto-
mated seizure control. Closed-loop operation yields two major
advantages. Firstly, the chances of aborting a seizure are much
higher if responsive electrical stimulation takes place before
one fully develops [9]. Secondly, closed-loop neural stimula-
tors minimize the overall power dissipation of an implantable
device. Neural stimulators must provide large biphasic currents
to invoke a neural response and exhibit a much higher power
dissipation than neural recording and signal processing units.
By only triggering the neural stimulator when a seizure is de-
tected, the power dissipation of a closed-loop implantable de-
vice can be significantly reduced. This lengthens the battery life
and minimizes tissue damage resulting from the heat generated
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by the neural stimulator. Thus, to improve the performance of
a closed-loop implantable device, a phase synchronization es-
timation algorithm with high performance (e.g., high true-pos-
itive rate and low false-positive rate) is required to be imple-
mented on an integrated circuit within the implant.
Integrated circuits for monitoring electrical activity of the

nervous system typically record the brain activity through
surface electroencephalography (EEG), electrocorticography
(ECoG) or microelectrode arrays (MEA). Systems-on-chip
(SoCs) with a large number of neural recording channels
have been demonstrated [10]–[13]. As many as 100 or more
recording sites in the brain can be monitored simultaneously.
Through multiple recording channels coordinated synchroniza-
tion between various regions of the brain can be monitored.
To observe this phenomenon, an instrument known as a vector
analyzer is required. It measures not only the magnitude, but
also the phase of a signal for all frequencies within its band.
Typically, neural recording SoCs have extracted electrical

information from neurons by recording voltages on electrodes
over a broad frequency range in the neural spectrum [11],
[13]–[20] including our previous work in [21]–[23] and [24].
More recently, researchers have also started performing neural
recording and signal processing that extracts spectral infor-
mation such as the magnitude or energy that exists in specific
frequency bands [25] and [26], operating similarly to an AM
radio receiver. The real-time processing of spectral energy
bands can help establish a closed-loop mechanism. However,
these implementations ignore information that exists in the
phase of each signal and particularly in the phase difference
between signals.
Conventionally, on-chip real-time signal processing is per-

formed on each input independently. This yields no informa-
tion on the correlation among inputs, ignoring the communi-
cation through oscillations that exist among various regions of
the brain. Recording neural activity from two or more elec-
trodes, located in various parts of the brain and then performing
signal processing among these signals constitutes bivariate or
multivariate signal processing, respectively. This offers more
advanced algorithms for diagnostics, monitoring and treatment
of neurological disorders. Computing the amount of phase syn-
chronization that exists between two or more electrodes located
in different regions of the brain is one such bivariate/multi-
variate technique. A signal processing SoC which computes the
amount of phase synchronization between two or more neural
inputs, has not yet been demonstrated.
A number of integrated circuits with other advanced signal

processing algorithms operating in an open loop have been
demonstrated. Our previous work [22] integrates 64 recording
channels with 64 programmable finite impulse response (FIR)
filters and utilizes multiplication within the ADC to overcome
the area and power constraints of integrating 64 16-tap FIR
filters. Neural recording SoCs with multiple channels and
advanced signal processing to assist in seizure detection have
been demonstrated [25], [27], [28]. A 0.18 m eight-channel
EEG acquisition SoC with an on-chip classification processor
for seizure detection was reported in [28]. A 90 nm SoC which
integrates a RISC processor, a FIR filter and other digital

signal processing blocks with 16 neural recording channels
was demonstrated in [27]. These previously published designs
that utilize advanced signal processing [28], [27], [26], [25]
operate in open-loop, have few recording channels and have no
wireless communication capabilities.
SoCs with closed-loop operation have also been demon-

strated which combine neural recording, neural stimulation and
neural signal processing blocks on a single die [16], [14]. For
the design in [16], the neural recording functionality has been
limited to a few recording channels and the signal processing
functionality has been limited to simple FIR filtering. The
work presented in [14] demonstrates a bivariate closed-loop
stimulator. It has a limited number of recording and stimulation
channels (eight recording and eight stimulation channels) and
the signal processing implements spike detection and not a
high-efficacy seizure detection algorithm. The work demon-
strated in [29] and our previous work in [21] and [24] integrate
a large number of neural recording and neural stimulation
channels. However, these systems lack signal processing re-
quired for high-efficacy closed-loop operation, such as neural
stimulation triggered as a result of abnormal phase synchrony
detection.
We present a 64-channel neural recording and 64-channel

neural stimulation SoC that operates in a closed loop based on
a high-efficacy signal processing algorithm. This paper extends
on our earlier report in [30] and includes extensive treatment of
circuit design techniques and additional experimental results.
It is the first on-chip neural vector analyzer with the ability to
process not only the magnitude, but also the phase of neural
signals. It is also the first SoC to demonstrate real-time on-chip
computation of the phase synchrony between neural signals.
The rest of the paper is organized as follows. Section II

discusses the VLSI architecture of the 64-channel neural
recording and stimulation SoC. Section III presents the cir-
cuit implementation of the key functional blocks in the SoC.
Section IV presents electrical experimental results from the
individual blocks and the full system. Section V presents in
vivo on-line animal and off-line human results validating the
SoC in epilepsy treatment.

II. SYSTEM VLSI ARCHITECTURE

A. Top-Level VLSI Architecture

The SoC consists of 64 neural recording and 64 neural stim-
ulation channels to connect to a 64-electrode electrocorticog-
raphy (ECoG) grid or a depth electrode array, both used rou-
tinely for presurgical epilepsy monitoring. Each channel is bidi-
rectional and can be dynamically configured for recording or
stimulation capabilities. A subset of these 64 channels can be
selected for recording electrodes and another subset for lower
impedance stimulation electrodes. Another functionality is to
share the same electrodes for both recording and stimulation.
In this case, low-impedance electrodes are used to both record
neural activity from the brain (e.g., deeper areas of the brain)
and real-time neural stimulation at the same location can be trig-
gered by seizure detection on the same electrodes.
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Fig. 2. Functional diagram of the SoC.

Each recording channel has a low-noise amplifier that am-
plifies signals in the full neural signal band (local field poten-
tials (LFPs) and spikes) consisting of frequencies as low as 0.1
Hz and as high as 10 kHz and with signal amplitudes between
10 V and a few mV. After amplification, there are two cas-
caded programmable band-pass filters in each channel. The first
filter has a broad band (e.g., 0.1 Hz to approximately 10 kHz)
and passes both LFPs and single/multiple unit discharge sig-
nals, as needed for raw data monitoring. The second filter is
narrow-band (e.g., 3 Hz to 5 Hz) and passes only LFPs which
are needed for phase synchrony computation. Higher frequency
bands are used to extract spike information or to process magni-
tude information. For stimulation in order to control seizures in
rat intractable epilepsy models, suitable stimulus signal specifi-
cations are as follows: frequency of 1 to 200 Hz; current of 0.1
to 1.2 mA; pulse width of 40 to 1000 s; burst duration s;
and number of bursts of 1 to 5.
The functional diagram of the SoC is depicted in Fig. 2. The

loop consists of the neural vector analyzer in the feed-forward
path and the phase synchrony-triggered neural stimulator in the
feedback. Pairs of neural signals, and , are amplified and
then filtered within a specific pass-band to monitor the abnormal
phase synchrony of interest in that band. The band of interest
can be adjusted by programming the center frequency of the
bandpass filter.
To monitor the phase synchrony, the in-phase (I) and quadra-

ture-phase (Q) components are then computed by the allpass and
Hilbert filters, respectively. The Hilbert filter introduces a 90 de-
gree phase shift and a time delay, while the allpass filter intro-
duces an equal time delay. This results in a 90 degree phase dif-
ference between the two components. These components com-
prise each neural signal, and , as follows:

(1)

where is the I component and is the Q component.
The allpass and Hilbert filtering are conventionally per-

formed over the full band of frequencies in the signal spectrum.
In the proposed implementation, a narrow-band bandpass filter

is employed before the Hilbert transform to isolate the narrow
frequency band of interest where abnormal oscillations are
monitored. This enables precise computation of the magnitude
and phase at the narrow band center frequency. The algorithm
details are given in [31].
These I and Q components are then used to compute the

magnitude (MAG) and phase of the signals, and their pair-
wise phase differences . The magnitude and instantaneous
phase in the extracted frequency band are then computed as

(2)

where . The vectored outputs are serially wirelessly
transmitted. This implements the function of a wireless neural
vector analyzer.
Phase locking value (PLV) is a common metric of phase syn-

chrony and is computed in the feedback loop of the SoC. In
epilepsy, seizure precursors are abnormally large fluctuations in
PLV which can be detected by thresholding. The biphasic cur-
rent-mode stimulator is triggered when the PLV indicates ab-
normal phase synchrony levels. In epilepsy this is done to abort
an upcoming seizure. The hardware-efficient mean phase co-
herence algorithm [8] was utilized to compute PLV ranging be-
tween 0 and 1 as

(3)

where is the length of the sample observation window and
is the instantaneous phase difference between the -th sam-

ples of the two signals.
1) Early Seizure Detector Preliminary Validation: Three dif-

ferent seizure detector methods were previously analyzed by
us [31]. These are the magnitude, PLV and combined magni-
tude and PLV detectors. The magnitude detector is activated
when the amplitudes of both input channels within a specific fre-
quency band of interest increase above a programmed threshold.
The PLV detector is triggered when the phase locking value, in-
tegrated over an adjustable period of time, drops below a cer-
tain threshold. The PLV detector is known to be an earlier pre-
cursor of a seizure compared to the magnitude detector. Typi-
cally, epileptic seizure onset in humans is characterized by a de-
crease in the phase locking value and a subsequent
increase in brain synchronization . The combined
magnitude and PLV detector output is formed by AND-ing the
outputs of the individual detectors. The threshold was adjusted
for each patient.
In [31] the efficacy of themagnitude and PLV seizure detector

VLSI architecture was verified by us on the intracranial EEG
database from the international seizure prediction project from
University of Freiburg [32]. A 70% detection rate is obtained
when the false positives are set to the rate of 0.6 false posi-
tives per hour. The detection rate approaches 100% when the
false positives rate is set to 1.2–2 false positives per hour across
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Fig. 3. Detailed system block diagram of the SoC.

multiple patients. This performance is comparable to other algo-
rithms for early seizure detection, with the key advantage that
our approach utilizes a low-power SoC that computes on-line
and is implantable, as opposed to existing off-line software pro-
grams running on bulky computers.
2) Algorithm Accuracy: A resolution of 10-bits was selected

for the processor. Fig. 4(a) shows the difference between results
using off-line human seizure data obtained from an ideal reso-
lution processor and a finite resolution processor quantified in
standard deviations. In terms of seizure detection performance
there is little benefit of increasing the processor resolution above
9 bits. As the processor resolution drops below 7 bits, the accu-
racy of the PLV algorithm degrades significantly. As the seizure
in Fig. 4(b) approaches, the lower resolution 7-bit processor is
not able to detect the small variations of synchrony which occur
30–40 seconds before the seizure as depicted in Fig. 4(c). For
resolutions above 9 bits the performance is nearly identical.

B. Detailed VLSI Architecture

A detailed block diagram of the SoC is shown in Fig. 3.
There are 64 ADCs organized in a scalable manner, one per
neural input, for raw neural data monitoring (not shown). In the
neural vector analysis and phase synchrony computation mode,
the ADCs are re-configured as multiplying ADCs (MADCs).
These MADCs perform the multiplications which are the most
computationally intensive operations in allpass and Hilbert
FIR filters. A bank of eight MADCs combined with a 16-tap
folded add-and-delay line yields a 16-tap transposed symmetric
mixed-signal FIR filter. MADCs are time-multiplexed among
eight neural inputs and eight add-and-delay lines to comprise
eight FIR filters [22]. In this design, two sets of eight FIR
filters, eight allpass and eight Hilbert filters are implemented to
compute I and Q components for eight inputs, respectively. The
phase, magnitude and phase synchronization processor utilizes
three digital CORDIC cores. By performing all FIR multipli-
cations within the ADC, and utilizing vector processing in the

Fig. 4. (a) Simulated error of the PLV for different processor resolutions when
compared with an ideal processor resolution. (b) Off-line human seizure data
input for a University of Toronto epilepsy patient. (c) Simulated PLV between
two inputs in the 25 Hz to 35 Hz frequency band computed for a processor
resolution of 7-bits and 10-bits.

CORDIC-based processor, the computationally intensive dig-
ital multiplication operation is avoided entirely. The computed
PLV value is compared with the programmed neural stimula-
tion criteria. When triggered, the 64-channel neural stimulator
generates individually programmable biphasic currents. The
duty cycle and amplitude can be programmed and stored in
the on-chip memory. An UWB wireless transmitter sends raw
ADC data, neural vector parameters and PLV data off-chip.
The SoC also contains 1 kb of on-chip registers that store the
FIR coefficients, stimulation current amplitude and stimulation
current duty cycle. The 0.13 m CMOS SoC utilizes 1 million
transistors and operates from a 1.2 V supply for the neural
recording, signal processing and wireless transmission and a
3.3 V supply for the neural stimulation. An on-chip controller
generates all clocks used by various blocks within the SoC.

III. VLSI CIRCUIT IMPLEMENTATION

A. Neural Recording

1) Low-Noise Amplifier (LNA): Over the two stages the
low-noise amplifier provides a tunable gain between 54 dB
and 60 dB. The first stage of the amplifier has a small output
voltage swing and thus utilizes two diode-connected MOSFETs
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Fig. 5. Neural recording channel including LNA, SC BPF and SC LPF.

which implement two MOS-bipolar pseudo-resistive devices in
its feedback [13]. For a larger output swing such as that of the
second stage, of the feedback element would change re-
sulting in a time-varying resistance and thus time-varying HPF
pole frequency, leading to nonlinearities at low frequencies.
The linearity of the front-end would degrade when the signal
frequency is near the high-pass pole (below 1 Hz).
In the second stage, to ensure a more constant for the

higher output swing and to allow for HP pole frequency tun-
ability, two source followers act as floating DC voltage sources
to track the dynamic output as shown in Fig. 5 [22], [33] and
to ensure a fixed DC bias. This feedback element yields up
to 14 dB improvement (experimentally validated) in linearity
compared with the conventional approach [33]. The NMOS and
PMOS feedback devices are implemented using thick oxide and
the source followers are implemented using low-threshold thin-
oxide devices. Transistor sizes of the feedback element are listed
in Table I.
The first stage utilizes a fully differential folded-cascodeOTA

(OTA1 in Fig. 5) with a 60 dB open-loop gain. To minimize
flicker noise of devices M3/M4 and M5/M6 the first chopping
circuit is placed at the folded node. Placing chopping in front
of the input pair, as is done conventionally [34], would have
resulted in noise multiplication due to a switched capacitor re-
sistor created by the parasitic capacitance of the input pair [25]
and [34]. Conventionally, this is overcome by utilizing very
large capacitors at the input of the amplifier [34] at the expense
of large silicon area.

TABLE I
TRANSISTOR SIZES OF THE TWO OTAS AND THE FEEDBACK ELEMENT (F.E.)
FOR THE NEURAL RECORDING AMPLIFIER AND THE NEURAL STIMULATOR

The low impedance at the folded-cascode node allows for
high-frequency chopping at that node. We choose to chop at that
node. The chopping harmonics are filtered out by the bandpass
filter of the second stage of the low-noise amplifier. Tominimize
flicker noise of the input pair M1/M2, large PMOS devices are
selected. To minimize thermal noise, transistors M1 and M2 are
biased in the sub-threshold regime as needed to maximize their
. Transistors M3/M4 and M5/M6 are biased in saturation to

minimize their . The OTA requires a total of 2.6 A of cur-
rent which includes 1.6 A into the input pair, 0.8 A into the
cascode transistors and 0.2 A for the CMFB amplifier. The
chopping frequency is set to 50 kHz. Comparing this approach
to the same amplifier with chopper disabled, the experimentally
measured input-referred noise improved from 6.5 V to 4.7 V
integrated between 10 Hz and 5 kHz and the NEF improved
from 7.2 to 4.4 for the same power dissipation. In this design,
the bandwidth of the first stage was set higher as a result of min-
imizing the thermal noise (maximizing and reducing the
area of the channel (minimizing . The overall bandwidth
of the front-end is determined by the second-stage amplifier and
the subsequent switched-capacitor filters, described in the next
section. The second stage utilizes a two-stage OTA topology.
This OTA has PMOS input devices, has an open-loop gain of
60 dB (sufficient for 8-bit resolution) and a phase margin of 70
degrees. It draws 350 nA of current from a 1.2 V supply. Tran-
sistor sizes for both OTAs are listed in Table I. All transistors
utilize standard thin oxide devices.
The chopping amplifier was simulated using Spectre with

PSS and Pnoise. When chopping is disabled, 30% of the total
input-referred integrated noise in the frequency band from 10
Hz to 5 kHz is contributed by the flicker noise of M3 and M4 as
shown in Fig. 6(a). When chopping is enabled, the majority of
the total input-referred integrated noise is due to thermal noise
as depicted in Fig. 6(b). Flicker noise is contributed mainly by
the input differential pair. This design allocates 25% of the total
noise contribution to the flicker noise of the input differential
pair which can be further reduced by increasing the size of the
input devices at the expense of silicon area.
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Fig. 6. Summary of simulated noise contributions with the chopper enabled
and disabled.

2) Switched-Capacitor Bandpass Filter: The second-order
bi-quad switched-capacitor (SC) bandpass filter (BPF) selects
the neural band of interest. The circuit architecture as shown
in Fig. 5 was selected as it minimizes the capacitance ratios
resulting in a smaller area. The quality factor (Q) and center
frequency, respectively, are

(4)

with fF, pF and fF. This yields
a Q of 3.2 and a center frequency 78.5 times lower than the
switched-capacitor clock frequency, . A 2 kHz clock yields
a center frequency of approximately 25 Hz.
The two OTAs are implemented using the two-stage

topology, each requiring 350 nA of current with capacitors
implemented as dense dual-MIM capacitors. Adjusting the
SC clock frequency, , enables linear tuning of the center
frequency of the bandpass filter. This allows for filtering in
different neural frequency bands.
3) Switched-Capacitor Lowpass Filters: The SC BPF dis-

cussed above introduces harmonics below the Nyquist rate of
the ADC. To remove these harmonics a switched-capacitor low-
pass filter (LPF) is utilized as shown in Fig. 5 in order to reduce
the area of the on-chip passives required for the low-frequency
filtering. The LPF is a SC LPF which utilizes a clock frequency
that is 16 times higher than that of the switched-capacitor BPF
filter, and attenuates the BPF harmonics. The lowpass pole fre-
quency is

(5)

and yields

(6)

This sets the LP SC filter cutoff frequency to 1.25 times the
center frequency of the SC BP filter.

B. FIR Filtering Circuits

1) Multiplying SAR ADC: A successive approximation reg-
ister (SAR) ADC is often used to digitize the amplified neural
signals since it provides high energy efficiency for medium res-
olutions and sample rates. The implemented ADC is an 8-bit

Fig. 7. Schematic of the SAR multiplying ADC (MADC).

charge redistribution SARmultiplying ADC (MADC) as shown
in Fig. 7 and detailed in [22]. It multiplies two digital values at
the cost of a small overhead of three two-input logic gates per
bit as shown in Fig. 8. The ADC dissipates 1.8 W at 56 kS/s
from a 1.2 V supply. Each channel contains a 22-bit register to
store the 8-bit multiplication coefficient, two 1-bit sign coeffi-
cients for the FIR filter, and 12-bits for neural stimulation mode.
2) Neural Signal Filtering Modes: The SoC is divided into

eight modules each consisting of eight channels. A module in
different configuration modes is shown in Fig. 8(a)–(c). In the
raw-ADC mode, the analog output is digitized directly by the
ADC as shown in Fig. 8(a). In the FIR filtering mode, an OTA
buffer drives the eight parallel MADCs of the mixed-signal FIR
filter. Each MADC is a SAR ADC with a multiplying DAC
(MDAC). In this mode, 64 recording channels use the 64 FIR
filters as depicted for eight channels in Fig. 8(b). In I/Q vector
mode, the OTA buffer drives two sets of eight parallel MADCs.
One set of MADCs implements an FIR filter programmed as
an allpass filter (I-extraction). The other set implements an FIR
filter programmed for the Hilbert transform (Q-extraction). In
this mode, 32 recording channels utilize 64 FIR filters (32 all-
pass and 32 Hilbert FIR filters) as shown for eight channels
in Fig. 8(c). Both the I and Q signals are sent to the on-chip
CORDIC processor to compute the magnitude, phase and phase
synchronization.
Eight or 16 recording channels share the tuneable RC LPF as

shown in Fig. 8(b) and (c), respectively. The RC LPF removes
the higher frequency harmonics of the in-channel SC LPF de-
scribed in Section III.A.3 and switching harmonics of the mul-
tiplexer. The two-stage OTA buffer draws a current of 25 A.
The value of R is tuneable between 365 k to 1.5 M and the
value of C is 25 pF yielding a lowpass pole between 4.2 kHz
and 17.4 kHz. For example, for a SC BPF center frequency of
65 Hz, this requires a SC BPF clock frequency of 5 kHz and
a SC LPF clock frequency of 80 kHz . The 80 kHz
harmonics are then removed by this RC lowpass filter.

C. Phase, Magnitude, and Phase Synchronization Processor

The block diagram of the digital signal processor that com-
putes phase, magnitude and phase synchronization is shown
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Fig. 8. Integrated circuit implementation of eight channels of neural signal fil-
tering for different modes of operation. (a) Raw data ADC mode, (b) general
purpose filtering FIR mode and (c) I/Q extraction mode.

on the right hand side of Fig. 9 and detailed in [31]. The
processor receives vectored inputs, I and Q, for each of the two
channels. The 10-bit processor is fully synthesized utilizing
three CORDIC cores to simultaneously compute the magni-
tude, phase, phase difference and the phase-locking value per
sample. An iterative CORDIC-based architecture was selected
as it does not require any digital multiplication, but only adders,
bit shifters and memory retrieval operations [35]. This mini-
mizes the area and power dissipation while trading-off speed
and latency. It utilizes 41 k gates, requires 18 clock cycles
per operation, occupies an area of 0.178 mm and has a total
latency of 54 clock cycles. It dissipates 200 W from a 1.2 V
supply at 2 MHz at 1.7 kS/channel and scales linearly with the
sampling rate. A digital threshold can be programmed to trigger
a stimulation pulse if the magnitude, phase, phase-difference or
PLV goes above or below a chosen threshold.

D. UWB Transmitter

The block diagram of the all-digital pulsed ultra wideband
(UWB) transmitter is shown in Fig. 10. The input data are
modulated using on-off keying (OOK) modulation at up to 10
Mb/s. UWB pulses are generated on the rising edge of the input
data. The proposed digital UWB transmitter achieves both
power efficiency and spectral compliance in a minimal chip
area by combining a delay line architecture with a capacitively
coupled output combiner [36]–[38]. The input data are passed
through a delay line and a delayed version of the input data are
passed through three pulse generators. The width of the output
pulse depends on the delay in the delay lines. The pulse gener-
ators form a first-order Gaussian pulse at the rising edge of the

Fig. 9. Block diagram of the phase, magnitude and phase synchronization
processor.

Fig. 10. Schematic of the UWB transmitter.

input data. The delay cells in all the paths are implemented as
current-starved inverters to allow for tuning of the UWB pulse
width for two different bands (0–1 GHz or 3.1–10.6 GHz).

E. Neural Stimulator

1) DAC-Sharing Architecture: Any of the 64-channels can
be individually configured as a neural recorder or a neural stim-
ulator. Incorporating neural recording and neural stimulation
capabilities into each channel requires both an ADC for the
recording phase and a DAC and digital controller for the stim-
ulation phase.
The SAR ADC described in Section III.B.1 requires a ca-

pacitor-array DAC and digital SAR logic which take up a sig-
nificant amount of area. The DAC as well as the digital logic
SAR controller can be reused for neural stimulation since the
neural recording and stimulation circuits do not operate at the
same time on one input. Here the SAR MADC is reconfigured
such that the MDAC and the digital logic of the SAR MADC
are reused to set the stimulation current amplitude and its duty
cycle, respectively, as shown in Fig. 11. By sharing the MDAC
and digital logic between the recording and stimulation phases,
a more compact implementation is realized.
In the neural stimulation mode, the MDAC of the SAR

MADC operates as a voltage DAC and the SAR logic of the
MADC is reconfigured to implement duty cycle modulation.
Both are combined with a V-I converter and an output current
driver to implement the current-mode neural stimulator as
shown in Fig. 11. The neural stimulator is a biphasic cur-
rent stimulator with an 8-bit in-channel DAC, a 4-bit duty



ABDELHALIM et al.: 64-CHANNEL UWB WIRELESS NEURAL VECTOR ANALYZER SOC 2501

Fig. 11. MADC reuse in the neural stimulation mode.

cycle controller and the corresponding 12-bit shift register
memory. Biphasic current-mode stimulation is preferred over
voltage-mode stimulation as it offers direct control over the
charge delivered to the tissue and ensures charge balancing
when sinking and sourcing current to and from the neural
tissue. Currents in the range of 10 A–1 mA can be generated
and are sufficient to invoke a neural response [39].
The detailed schematic is shown in Fig. 12(a) with transistor

sizes listed in Table I. The main components of the stimulator
are an 8-bit MDAC capacitor array, low-power SAR digital
logic, the voltage-to-current converter and the high-impedance
biphasic current driver.
2) DAC andDuty Cycle Controller: TheDAC and duty cycle

controller are reconfigured from the SAR ADC architecture.
Each bit is toggled beginning with themost significant bit. There
are eight pulses in a shift register which toggle each bit of the
DAC. To adjust the duty cycle, these pulses are combined to-
gether to form a wider or narrower current pulse. Two conver-
sion cycles are required for a biphasic current pulse generation.
During one conversion cycle up to eight different pulses can
be combined to form the positive phase pulse and similarly up
to eight different pulses can be combined to form the negative
phase pulse. This requires 4-bit storage for adjusting the duty
cycle. The approach to combine pulses to modulate the duty
cycle, is illustrated in an example in Fig. 12(b) an (c), where
five bits are combined to generate the positive biphasic current
pulse. To minimize both area and power, all digital logic uti-
lizes 1.2 V thin-oxide devices with minimum length (0.12 m).
The signal is boosted to 3.3 V to drive the rest of the stimulator
circuitry.
3) Voltage-to-Current Converter: The capacitive DAC

output voltage ranges from 0.3 V to 0.9 V (which matches the
input range of the ADC). The DAC voltage is forced across an
on-chip resistor of 5.5 k by OTA6 as shown Fig. 12. The
current gets multiplied by 10 by setting the current mirror width
ratios of M2:M4 and M5:M6 to 1:10. The common reference
voltage of the DAC is 0.3 V, and thus the generated current is

(7)

Fig. 12. (a) Schematic of neural stimulator. (b)–(c) Example simulation results
showing output bits from the SARADC logic being used to generate a stimulator
current pulse.

Fig. 13. Micrograph of the 4 mm 3 mm 0.13 m CMOS SoC.

which ranges between 5 A and 1.09 mA. This selection of
can be adjusted for the intended application or electrode

impedance. The on-chip resistor value can vary by 10% over
process corners. With a large channel count, to adjust for this,
the currents for each channel can be read off and each channel
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Fig. 14. (a) Layout and (b) micrograph of the recording and stimulation
channel.

can be digitally calibrated. The OTA6 in the voltage-to-cur-
rent converter uses thick oxide 3.3 V devices and a standard
two-stage architecture.
4) Current Driver: For the current driver it is important to

ensure that the positive and negative current pulses are matched
closely to minimize excess charge at the electrode-tissue inter-
face. It is also important to have a high impedance at the elec-
trode node to ensure the current is less sensitive to the load vari-
ations. As shown in Fig. 12(a), during the UP pulse, the current
from the voltage-to-current converter is mirrored to the output
transistor M4. This current is inversely proportional to the elec-
trode voltage at the drain of M4. To match currents between
the UP and DOWN pulses, OTA7 ensures the current during
the DOWN pulse is also inversely proportional to the electrode
voltage at the drain of M7. OTA7 was implemented using a
five-transistor differential amplifier with thick-oxide devices.
A ratio of 1:10 was selected to implement the current mirrors

to reduce area and power dissipation. Capacitor was added to
stabilize the feedback loop with OTA7 across all operating con-
ditions of the current driver. For this feedback loop, capacitor
sets the dominant pole and thus lowers the unity-gain frequency
from 33 MHz to 1.7 MHz while increasing the phase margin to
74 degrees. An additional inversion due to the common-source
transistor M5 implements Miller compensation. For lower stim-
ulation currents, the second pole frequency is lowered and sta-
bility degrades. The worst-case operating condition (10 A) has
a phase margin of 54 degrees. OTA7 can also be configured to
remove any excess charge from the tissue after the stimulation
by applying the reference voltage to the electrode [40].

IV. ELECTRICAL EXPERIMENTAL RESULTS

The micrograph of the SoC implemented in a standard 1P8M
IBM 0.13 m CMOS technology is shown in Fig. 13. The SoC
occupies an area of 4 mm 3 mm. There is a total of 1 kb of
on-chip memory and approximately 1 million transistors. The
SoC operates from a 1.2 V supply for the neural recording, dig-
ital signal processing and RF transmitter and a 3.3 V supply
for the neural stimulator. The micrograph and layout of the full
channel including the neural recording amplifier, SC bandpass
filter, biphasic current driver, multiplying SAR ADC/DAC and
a 22-bit memory are depicted in Fig. 14(a) and (b). The full

Fig. 15. Experimentally measured (a) input-referred noise, (b) frequency re-
sponse of neural recording amplifier and (c) total harmonic distortion (THD).
(d) Experimentally measured output waveforms for a 20 Hz 1 mV input
and (e) a 20 Hz 20 input.

channel occupies 300 m 300 m of area. Each channel has
a bondpad to be flip-chip bonded directly to a microelectrode
array.

A. Analog Front-End and Switched-Capacitor BPF

The experimentally measured input-referred noise, ampli-
tude frequency response and total harmonic distortion (THD)
of the neural recording channel are shown in Fig. 15(a)–(c).
The amplifier has an integrated input-referred noise of 4.7 V
and 3.7 V for the frequency bands of 10 Hz to 5 kHz and
1 Hz to 100 Hz, respectively. The NEF of the fully differential
neural recording amplifier is 4.4 for the 5 kHz bandwidth. The
experimentally measured CMRR at 10 Hz and 1 kHz is 75.4 dB
and 71.5 dB, respectively. The frequency response is consistent
across multiple channels on the chip. Both the highpass and
lowpass poles can be adjusted, with the maximum bandwidth
of 0.01 Hz to 10 kHz. The experimentally measured THD is
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Fig. 16. Experimentally measured frequency response of the neural recording
amplifier and the switched-capacitor bandpass filter.

dB when the output is 700 mV between 100 Hz and 5
kHz and drops to dB at 1 Hz due to the non-linearity
introduced by the feedback device of the second stage. The
output waveforms for a 1 mV 20 Hz sinusoid and a 20
V 20 Hz sinusoid inputs are shown in Fig. 15(d) and (e),
respectively. For the 1 mV input (0.5 V output), the
distortion is not visible, with a THD below dB. Fig. 15(e)
depicts the output for a low-SNR signal of 20 V . The
amplifier noise and high frequency ripple due to the chopper
switching can be observed.
The experimentally measured frequency response of the

neural recording amplifier and SC BPF is shown in Fig. 16.
Four different bands are shown when tuning the SC clock
between 625 Hz and 5 kHz that yield the bandpass filter center
frequency of 8 Hz, 16 Hz, 32 Hz and 64 Hz, respectively. The
SC filter provides an additional 2 dB of gain to the analog
front-end.

B. ADC and Full Recording Path

The experimentally measured FFT of an in-channel ADC is
shown in Fig. 17. The ENOB and SFDR are 7.6 bits and 62.4 dB,
respectively. The ADC achieves close to 7 bits over the full
Nyquist bandwidth with consistent performance across multiple
channels on the chip. The experimentally measured INL and
DNL are 0.6 and 0.7, respectively, as shown in Fig. 18. The FFT
of the full recording path output including the analog front-end,
SC bandpass filter and the ADC is displayed in Fig. 19(a). The
5 kHz harmonic clock of the SC BPF is visible in the
spectrum and limits the SFDR to 38 dB. As shown in Fig. 19(b),
when enabling the SC and RC lowpass filters and programming
the FIR filter as a lowpass filter, the SFDR improves to 51 dB.
A larger second harmonic is introduced due to mismatch of uti-
lizing eight different ADCs in the FIR filtering mode.

Fig. 17. Experimentally measured FFT of an in-channel ADC output with a
640 Hz input and sampled at 28 kS/s.

Fig. 18. Experimentally measured (a) INL and (b) DNL of an in-channel ADC,
sampled at 28 kS/s.

C. Neural Vector Analysis and Phase Synchronization

The SoC was characterized to demonstrate the computa-
tion of magnitude, phase and phase synchronization. Fig. 20
depicts experimental results for the full signal path from the
LNA to the SC filter (set to 30 Hz center frequency) then pro-
cessed by two 16-tap FIR filters to generate the real and imag-
inary components. Fig. 20(a) and (b) shows the I/Q extraction
for a low-amplitude (30 V) sinusoid signal. Fig. 20(c) and
(d) shows the case for a larger amplitude input (500 V) si-
nusoid signal. Both cases yield an accurate 90 degree phase
shift. The frequency response of the I/Q extraction measured
starting from the input of the LNA is depicted in Fig. 20(e)
when the SC filter is centered at 30 Hz. Due to the approxi-
mate response of the 16-tap FIR filters, exact gain matching
between I and Q is not achieved with a difference of approx-
imately 2 dB, as expected in Matlab simulations. A higher
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Fig. 19. (a) Experimentally measured output FFT of an in-channel analog
front-end, SC BPF and ADC with a 65 Hz 700 V input sampled at 14 kS/s.
(b) Experimentally measured output FFT of an in-channel analog front-end,
SC BPF, SC LPF, RC LPF and FIR LPF with a 65 Hz 700 V input sampled at
7.2 kS/s.

order FIR filter achieves more accurate gain matching at the
expense of area and power dissipation.
Experimental results for the phase difference computation be-

tween two neural recording channels are shown in Fig. 21(a).
The two input sinusoid signals have an amplitude of 100 V and
a frequency of 30 Hz. The phase difference was varied using
a Tektronix arbitrary waveform generator and the computed
phase was plotted against the phase displayed on the source.
In Fig. 21(b), the two signals were placed at a 180 degree phase
shift and the amplitudes of both signals were swept. At low SNR
(10 V-inputs), the phase varied by 60 degrees over three stan-
dard deviations from the mean. At higher SNR (500 V-inputs),
the phase varied by five degrees over three standard deviations
from the mean.
The magnitude was computed for a single channel as shown

in Fig. 21(c) and (d). Fig. 21(c) displays the extracted magni-

Fig. 20. (a) A low-amplitude sinusoidal input into the neural recording am-
plifier. (b) Experimentally measured I/Q separation of signal in (a) including
full signal path of input (a). (c) A high-amplitude sinusoid input into the neural
recording amplifier. (d) Experimentally measured I/Q separation including full
signal path of input (c). (e) Experimentally measured frequency response of full
signal path for I and Q.

tude for different signal amplitudes from 12.5 V to 400 V
and compares with the ideal magnitude. Fig. 21(d) depicts the
computed magnitude in response to a slow step-wise amplitude
increase of only 25 V into the amplifier. The minimum noise
floor for magnitude extraction is 8 Vrms.
The phase-locking value (PLV) was computed on-chip be-

tween two different inputs for three different frequency bands.
The experimental results are shown in Fig. 22(a). In this case,
a 100 V sinusoid input was held constant at 8 Hz, 30 Hz and
120 Hz with the SC BPF center frequency set to these frequen-
cies. The other 100 V sinusoid signal frequency was swept and
the PLV was computed. The PLV output is 1 as expected when
both frequencies are locked. Any deviation away from the center
frequency yields a lower phase synchronization as expected. In



ABDELHALIM et al.: 64-CHANNEL UWB WIRELESS NEURAL VECTOR ANALYZER SOC 2505

Fig. 21. (a) Experimentally measured phase difference computation results in-
cluding full signal path (100 V inputs). (b) Experimentally measured phase
difference error for different input amplitudes between two neural recording
amplifiers. (c) Experimentally measured magnitude computation including full
signal path and comparedwith the ideal case. (d) Experimentally measuredmag-
nitude computation of a low-frequency step introduced at the input of the neural
recording amplifier.

Fig. 22(b), one 100 V sinusoid was set to 30 Hz and the other
100 V input had its frequency linearly swept from 45 Hz down
to 15 Hz. The PLV tracks the change in the frequency and out-
puts a 1 when both frequencies are 30 Hz.

D. UWB Transmitter

Fig. 23(a) shows transmitted 10 MB/s Manchester encoded-
data. Fig. 23(b) depicts the wirelessly received UWBmodulated
data utilizing the 3.1–10.6 GHz UWB frequency band across a
5 cm distance with a bit-error-rate (BER) of .

E. Neural Stimulator

The neural stimulator reuses the same MDAC as the SAR
MADC and exhibits an INL and DNL below 1 LSB as de-
picted in Fig. 18. The neural stimulator was characterized ex-
perimentally using both a resistive load and a saline solution. In
Fig. 24(a) the DAC was set to output 225 A and the electrode
voltage was swept from 0.3 to 2.7 V. The results show a close
match between the positive and negative current pulses. The UP
and DOWN currents are accurately matched (close to 1%) when
the electrode voltage swings as high as 2.0 V.
If a lower current is used ( A), the currents are

matched when the electrode voltage swings as high as 2.5 V.
When the output voltage is high the UP current source transistor
M1 in Fig. 12(a) enters the triode region and no longer sustains
the proper current. Similarly, when the output voltage is low
the DOWN current sink transistor M6 enters the triode region
and can no longer sustain the proper current. When the output
voltage is high (above 2.5 V), OTA7 can no longer maintain the
proper loop gain. By disabling OTA7 at high output voltage,

Fig. 22. (a) Experimentally measured PLV computation between two different
channels for three different frequency bands. (b) Experimentally measured
PLV computed between two channels, where one frequency is constant for one
channel and the other frequency is increasing for the other channel.

the swing can be extended at the expense of lower current
matching.
The output current for different DAC configurations is de-

picted in Fig. 24(b). The UP and DOWN currents up to 1mA are
closelymatched. Fig. 24(c) and (d) shows various amplitude and
duty cycle configurations for the neural stimulator while gener-
ating a biphasic current pulse into a saline solution. Lastly, the
voltage across a 1 k resistor is shown on the oscilloscope plot
in Fig. 24(e) when the biphasic neural stimulator is programmed
for a 450 A current.

V. EXPERIMENTAL VALIDATION IN EPILEPSY CONTROL

The SoC was demonstrated experimentally in both detection
and control of epileptic seizures. An on-line animal epilepsy
model (in vivo freely-moving rodents) and off-line human
ECoG data from epilepsy patients were used to validate the
SoC.
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Fig. 23. (a) Wireless transmitter digital Manchester-encoded data. (b) Ex-
perimental wirelessly received data from a 5 cm distance @ 10 Mb/s in the
3.1–10.6 GHz band.

Fig. 24. (a) Experimentally measured output current for different output volt-
ages. (b) Output current vs. DAC input for positive and negative current cases.
(c), (d) Experimentally measured neural stimulating current into a saline solu-
tion for different duty cycle and amplitude control settings. (e) Biphasic stimu-
lator set to 450 A output current and connected to a 1 k load.

A. On-Line Early Seizure Detection and Control in Rodents
In Vivo

A model was used in-vivo, which trigger convulsive seizures
in Long Evans rats, aged between 55 and 90 days. The con-
vulsive model induces spontaneous seizures after an injection

Fig. 25. In-vivo testing in a freely moving rat showing detection of a convul-
sive seizure triggered by a kainic acid injection at min.

Fig. 26. Successful abortion of a seizure in a rat using the on-chip neural
stimulator.

of kainic acid. Five electrodes were implanted into the hip-
pocampus of freely moving rats. The electrodes are bipolar
electrodes (Plastics One) and were implanted chronically into
the hippocampi, cortex and thalamus brain regions of the Long
Evans rats (55 to 90 days old) using a stereotaxic apparatus.
Two different pairs of electrode inputs were processed by the
SoC, and another electrode provided a reference. Seizures were
labeled by examining the rodents’s LFPs in realtime recorded
by a benchtop amplifier in parallel, and by observing the rat’s
seizure-like symptoms, both by trained epileptologists.
Rats were injected with kainic acid to induce convulsive

seizure-like events. The administered dose was a 15–20 mg/kg
intraperitoneal injection. Similarly, the magnitude and phase
synchronization were observed to increase before and during
the seizure-onset and disappear after the seizure. In Fig. 25, a
convulsive seizure (at 8 Hz) in a rat is induced by a kainic acid
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Fig. 27. Off-line human seizure detection for a University of Toronto seizure
patient.

Fig. 28. (a) Power dissipation breakdown of the SoC (neural stimulator ex-
cluded). (b) Area breakdown of the SoC. The remaining 5 mm are utilized for
I/O, ESD, test blocks, routing, decoupling capacitors and biasing.

injection at time min. The phase synchrony in the 8 Hz
band increases approximately 20 s before the seizure starts and
the magnitude in the 8 Hz band increases during the seizure. In
Fig. 26, after a seizure was observed, a 5 Hz, 100 A biphasic
current stimulation was invoked and the seizure was aborted.
Overall, on-chip responsive electrical stimulation aborted 80%
of all rat seizures. The stimulation current pulse was invoked
after the seizure onset, delayed on purpose so that the seizure
onset and seizure abortion can be easily observed electrically
and visually. This approach would not yield the best result, as
it is better to stimulate before the seizure onset [41], [42]. In a
future study, we plan to trigger the neurostimulator before the

TABLE II
SUMMARY OF THE EXPERIMENTAL RESULTS

seizure onset and compare the seizure reduction rate between
closed-loop neurostimulation and open-loop neurostimulation
in a large population animal study (over 100).
In early seizure detection in rodents, the real-time processing

of phase synchrony between two inputs in the 4 Hz and 8 Hz
bands was used to provide early seizure detection of between 4
and 20 seconds before the seizure onset. This was better than
the case of observing only magnitude, which increased above a
detection threshold only after a seizure onset.

B. Off-Line Early Seizure Detection in Humans

Results of off-line early seizure detection in human ECoG
data from a University of Toronto patient are shown in Fig. 27.
For spontaneous seizures in humans the SC BPF center fre-
quency was set to 16 Hz to capture abnormal synchrony at that
frequency. The two 16Hzmagnitude outputs both increase early
in and during the seizure. The synchrony in the 16 Hz frequency
band between the two inputs also increases early in and during
the seizure. This trend was observed in multiple patients.
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TABLE III
STATE-OF-THE-ART NEURAL RECORDING AND/OR STIMULATION SOCS

VI. DISCUSSION

A. Resource Utilization

A summary of experimental results is given in Table II. The
power dissipation and area breakdown of the entire SoC are
shown in Fig. 28(a) and (b), respectively. The SoC operating
in the neural vector analysis mode with the UWB TX on dissi-
pates 1.4 mW for 64-channels or 21.6 W per channel when
running the FIR filters at 7.2 kS/s from a 1.2 V supply. The
analog feed-forward path (including biasing) from the LNA to
the output of the ADCs dissipates 886 W or 13.8 W per
channel. The digital adders and registers for the FIR filters, dig-
ital controller and the CORDIC processor dissipate 400 W or
6.25 W per channel.
The neural stimulator (not inlcuded in Fig. 28(a)) dissipates

1.5 mW from a 3.3 V supply for all 64-channels or 23 W per
channel. This includes the DAC, control logic, V-I converter
and output current driver operating with a 1 kHz 50 A biphasic
current at minimum duty cycle. The neural stimulator is not ex-
pected to be active during routine operation of the SoC and thus
its power dissipation is not as critical when compared with the
recording and signal processing functionalities.
In terms of integration area (excluding routing, IO pads, de-

coupling capacitors, etc.), the 64 neural recording amplifiers, 64
ADCs and 64 16-tap 12-bit digital adders and registers for the
FIR filters each utilize approximately 1/4 of the total active area

as shown in Fig. 28(b). The area allocation is well balanced.
The large area required by the conventional digital multipliers
for implementing 64 16-tap FIR filters is saved as the multipli-
cation is performed within the ADC conversion cycle. Adding
64 channels of neural stimulation only requires additional 6% of
area, as the DAC and duty-cycle controller are reused from the
ADC. The SC BPF, SC LPF and RC LPF and buffer stage utilize
a combined 20% of the area. The phase-synchrony processor re-
quires only 3.5% of the total area due to using a CORDIC-based
processor.

B. Comparison to the State of the Art

A comparison with other neural recording and/or stimulation
SoCs is given in Table III. This work demonstrates the highest
degree of integration among recently published state-of-the-art
SoCs by combining 64 recording channels with SC bandpass
filtering, 64 stimulation channels, 64 multiplying SAR ADCs,
64 16-tap FIR filters, a tri-core CORDIC processor and a UWB
transmitter. It is the first published SoC to compute and monitor
neural signals phase and phase synchronization.
It also computes the magnitude or energy in a frequency band

of up to 5 kHz across 64-channels. The work in [27], [28], [25]
and [26] demonstrate 16, 8, 18 and 4 channels, respectively.
These designs also lack a neural stimulator and a wireless trans-
mitter. Even with the high degree of integration the presented
design demonstrates comparable power dissipation and area.
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The SoC also demonstrates seizure detection and seizure abor-
tion in vivo in freely moving rats.

VII. CONCLUSION

A 0.13 m CMOS wireless closed-loop neural recording and
stimulation SoC is presented. The 12 mm die integrates 64
fully differential recording amplifiers with in-channel bandpass
filtering with 64 multiplying SAR ADCs, 64 FIR filters, 64
neural stimulators, a tri-core CORDIC processor, 1 kB of
memory and a UWB RF transmitter. It demonstrates the first
neural vector analyzer and computes phase synchrony between
inputs to trigger a closed-loop biphasic current stimulation.
The total power dissipation is 1.4 mW from a 1.2 V supply
in the recording mode and 1.5 mW from a 3.3 V supply in
the stimulation mode. The system was also characterized in
vivo and demonstrates seizure detection and abortion in freely
moving rodents and off-line seizure detection in humans.
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