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Abstract- An internally analog, e x t e d y  digital architec- 
ture for matrix-vector multiplication is presented. Fully paral- 
lel processing allows for high data throughput and minimal la- 
tency. The analog architecture incorporates an array of charge- 
mode analog computational cells with dynamic storage and mw- 
parallel fiash analog-to-digital converters (ADC). Each of the cells 
includes a dynamic storage element and a charge injection de- 
vice computing binary inner product of two arguments. The ma- 
trix elements are stored in the array of computational cells in 
bit-parallel fashion, and the input vector is presented bit-serially. 
Digital post-processing is then performed on the ADC outputs to 
construct the resulting product with precision higher than that 
of each conversion. The analog architecture is tailored for high- 
density and low power VLSI implementation, and matrix dimen- 
sions of 128 x 512 and ADC resolution of 6 bits for an overall 
resolution in excess of 8 bits are feasible on a 3 mm x 3 mm chip 
in standard CMOS 0.5 pm technology. 

I. INTRODUCTION 

Real-time applications in multimedia and sensory signal pro- 
cessing place extreme demands on computing power, in ex- 
cess of even the most powerful processors available today. At 
the core of many algorithms for signal processing, and pattern 
recognition in particular, is the need for matrix-vector multipli- 
cation in very large dimensions. Implementations in software 
or on general-purpose DSPs lack the massive parallelism and 
memory bandwidth needed for efficient and real-time imple- 
mentation. Networks of parallel computers could be capable 
of very high peak throughput rates, but are very costly, and im- 
practical for embedded real-time applications. Currently exist- 
ing parallel computational systems are limited in the degree of 
parallelism and still make use of centralized memory resources 
(i.e., dedicated off-chip DRAM). More desirable would be a 
fine-grain, fully-parallel architecture in which each processor 
performs a multiply and locally stores one coefficient. The re- 
curring problem with such an implementation is the Iatency in 
accumulating the result over a large number of cells. To this 
end, we propose the use of hybrid analog-digital technology 
to efficiently add a large number of digital values simultane- 
ously in parallel, with careful consideration of sources of im- 
precision in the implementation and their overall effect on the 
system performance. 

Among elementary operations in signal processing and pat- 
tern recognition algorithms that call for a parallel implementa- 
tion, matrix-vector multiplication is one of the most common, 
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but also one of the computationally most expensive: 

with N-dimensional input vector X(*), M-dimensional out- 
put vector Y(m), and matrix elements W(n*m), for n = 
0,1, ..., N - l a n d m = O , l ,  ..., M-l.Inneuralnetworks,the 
matrix elements correspond to weights, or synapses, between 
neurons. In signal processing, the elements could represent, for 
instance, coefficients in a filter, or templates yAm) = ~ ( m 7 n )  

in a vector quantizer. Specialized architectures have been de- 
veloped for specific needs. 

Analog VLSI solutions offer significant benefits in computa- 
tional density and'energy efficiency 113, [21, [31. Analog mul- 
tiplier circuits in this case can be so small  that one can be pro- 
vided for each matrix element, making it feasible to implement 
massively parallel implementations with large matrix dimen- 
sions. Fully parallel implementation of (1) requires an M x N 
array of cells, each cell including a product computing device 
and a storage element. Each cell (m, n) computes a product of 
an input component X(*) and a matrix element W(min) with 
the horizontal node being the output summing line. The stor- 
age device can usually be effectively incorporated into a cell 
to avoid performance limitations due to low external memory 
access bandwidth. Tailored to particular applications, systems 
with various input and matrix elements representations have 
been explored [ 13. 

Besides other performance considerations, the type of in- 
put and output interface, and the ubiquitous availability of 
low-power and parallel A/D or D/A data conversion arrays, 
often justify appropriate input and matrix element encoding: 
analog--common for direct interactions with external ana- 
log world [4], or digital--for chips incorporated in digital 
systems [5]. In addition, analog implementations can be 
customized to operate in one of several computing modes, 
e.g.charge [6], 171, conductance [l], or current [SI, to fit 
requirements on the signals they operate on, such as dy- 
namic range, synchronicity (continuous-time, asynchronous, 
or clocked), and the computation that needs to be performed 
at the periphery. The architecture presented here is suited for 
a synchronous digital interface, and emphasizes computational 
density, energy efficiency and large-scale implementation. In 
choosing an effective solution, a charge-mode approach with 
binary encoded bit-serial inputs and bit-parallel matrix ele- 
ments, was investigated. 
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where 

Fig. 1. Computational cell with dynumic storage (top) and charge t w e r  
diagram for the all-one p h t  case (bottom). 

11. MIXED-SIGNAL ARCHITECTURE 

A. Internally Analog, Extemlly Digital Computation 

The system presented is a bit unconventional in that it is inter- 
nally implemented in analog VLSI technology, but interfaces 
externally with the digital world. This paradigm combines the 
best of both worlds: it uses the efficiency of massively parallel 
analog computing (in particular: adding numbers in parallel on 
a single wire), but allows for a modular, configurable interface 
with other digital pre-processing and post-processing systems. 
This is necessary to make the processor a general-purpose de- 
vice that can tailor the matrix-vector multiplication task to the 
particular application where it is being used. 

The digital representation is embedded, in both bit-serial and 
bit-parallel fashion, in the analog architecture. hiputs are pre- 
sented in bit-serial fashion, and matrix elements are stored lo- 
cally in bit-parallel form. D/A conversion at the input interface 
is inherent in the bit-serial implementation, and row-parallel 
flash A/D converters are used at the output interface. 

For simplicity, an unsigned binary encoding of inputs and 
matrix elements is assumed here, for onequadrant multiplica- 
tion. This assumption is not essential: it has no binding effect 
on the architecture and can be easily extended to a standard 
one’s complement for four-quadrant multiplication, in which 
the significant bits (MSB) of both arguments have a negative 
rather than positive weight. Assume further I-bit encoding of 
matrix elements, and J-bit encoding of inputs: 

The equation (1) can be rewritten as: 

n=O 

B. Analog Implementation 

The multiplier cell constituting the basic element of the pro- 
cessor array computes one argument of the sum in the equa- 
tion (5). Its diagram is presented in Figure l. The cell performs 
multiplication of two 1-bit (unsigned) binary numbers: wjmvn) 
and zy), for one particular i and j. A logic level 0 is repre- 
sented as V d d ,  and a logic level 1 is represented as V d d / 2  and 
0 Volts for wjmin) and zy’ respectively, where V d d  is the sup 
ply voltage. The cell contains three serially connected MOS 
transistors as shown at the top of the figure. Transistor M1 is 
a switch controlled by the Row Select signal, RS(m). When 
activated, it allows to write a binary number corresponding to 
wjrnyn) in the form of charge stored under the gate of M2. Tran- 
sistors M2 and Ivl3 comprise a charge injection device (CID), 
which by virtue of charge conservation moves electric charge 
between two potential wells in a nondestructive manner [7], 
[61, Wl. 

The cell operates in two phases: write and compute. When 
a matrix element value is being stored, zy) is held at Vdd 
and Vout at a voltage Vdd/2. When a ‘’write” is performed, 
depending on the value of wjm7n), a fixed amount of electric 
charge is either stored under the gate of M2, when w ! ~ ’ ~ )  is 
low, or removed from under the M 2  gate, when wim’*) is high. 
The amount of charge being moved corresponds the value of 
wjm’n) and ideally is AQ or 0 respectively. The bottom di- 
agram in Figure 1 depicts the charge transfer diagram for the 
case when both w ! ~ ’ ~ )  and zy) are of logic level 1. 

Once the charge has been stored, the switch MI turns off. 
Then the cell is ready to compute. The charge under the gate of 
M 2  can only be redistributed between the two CID transistors. 
If the gate of M3 is now left floating at the precharged level 
of Vdd/2, the voltage Vout will ideally change only when 
both charge AQ was stored under the gate of M 2  and, in the 
computation phase, z?) of 0 volts was applied. This produces 
a binary output which is a boolean AND function of the input 
vector component and the matrix element component. When 
both arguments are 1, the voltage Vout will change by: 

The computational cells are arranged in an array with each 
row containing a summing output node to produce Y$) in the 
equation (5). Transistor-level simulation of 5 12-element row 
shows nonlinearity of 1 LSB level with a dynamic range of 
43dB as shown in Figure 2. Computation speed is of the or- 
der of 10pSec for the whole array. With potentially millions of 
cells operating in parallel, this gives a computational through- 
put exceeding by far the fastest processors available to date. 
At this rate, real time implementation of demanding computa- 
tional tasks in multimedia and pattern recognition is practical. 
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Fig. 2. Simulaied linearly-frtted transfer chamcieristic (top) and differential 
nonlinean'ly (bonom) for 8-bit resoluiion for a 512seN TOW of the compuia- 
tional arrq, using SpecaeS and iransisior modpLF extractedfmm a 0.5 pm 
CMOS pmess .  

Fig. 3. Block diagram for one ourput component m in ihe parallel architec- 
ture, with I = J = 4. 

C. Data n o w  Organization and Digital Postprocessing 

Although analog inside, externally the system is fully dig- 
ital. For convenience of implementation, matrix elements are 
stored in bit-parallel, and inputs are presented in bit-serial fash- 
ion, with least-significant bit (LSB) first. One row of I-bit en- 
coded matrix elements uses I rows of the computational array. 
Therefore, to store an M x N matrix, a computational array 
of M I  x N capacity is needed. One bit of an input vector is 
fed in for each clock cycle yielding a full computational cycle 
length of J clock cycles. 

Figure 3 presents the architecture of a set of rows in common 
for one output component m, with I-bit matrix elements and a 
J-bit input vector. The analog outputs at each of the horizon- 
tal summing nodes are converted to a digital vector with row- 
parallel ADCs. Over J clock cycles a I x J matrix is produced. 
Its elements are Y$) as defined by the equation (5). Diagonals 
of this matrix marked in the figure with dashed lines contain el- 
ements of the same binary weight. Digital summation of these 
elements along the diagonals produces K = I + J - 1 bits of 
the resulting inner product value, as can be seen by rearranging 

To asses the overall system performance (i.e., precision in 
effective number of bits), let us assume that each of the row 
parallel AID converters quantizes the value on the horizontal 
summing node in L bits with noise, e, of less than 1 LSB level. 
We first consider the case when L < 1092(N), and assume that 
e is random and uniform. 

For a full signal range s of I$), Vi ,  j ,  and large I ,  the signal 
range of Y (4 can be approximated as: 

1 K - 2 k + 1  
s x  -s - = s  

2 k  
k=O 

(9) 

Let the variance of the uniform quantization noise e introduced 
to y!?), Vi, j by an ADC be g2. This noise component is rel- 
ative to the full ADC scale, and scales linearly in amplitude 
with the signal when the output is binary weighted, and thus 
quadratically in variance. The cumulative quantization error 
in the summation in (8) can be roughly approximated by Cen- 
tral Limit Theorem for additive variances. For large I and J, 
each sum over k can be considered a n o d  process with cu- 
mulative variance of each of the arguments. Each signal com- 
ponent with binary weight 2-(i+j! thus contributes a variance 
2-2('+j) to the noise, and the total variance for large I and J 
can be expressed as: 

Therefore, the standard deviation of the total noise in Y (m) is 
1/39. The effective overall Y(m) noise level is: 

5lxi!Z s 3 s  
For a normal process, to be contained within 1 LSB on average, 
the noise level can be estimated as: 

Qave = 0.69Q = 0.23q t 12) 

and the average effective signal-to-noise ratio as: 

Therefore, for the case when L < log2 (N), the overall system 
precision is below the ideal ( I  + J + Zogz(N)) and is limited 
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111. CONCLUSIONS 

An internally analog, externally digital architecture for 
matrix-vector multiplication has been presented, tailored for 
a high-density and low-power VLSI implementations. Fine- 
grain and massively parallel with distributed memory, the ar- 
chitecture easily provides real-time operation making it suit- 
able for a wide range of computation-intensive tasks in multi- 
media signal processing and pattern recognition. The architec- 
ture embeds storage and multiplication in distributed fashion, 
down at a cellular level. With only three transistors, the cell 
for multiplication and storage contains little more than either a 
DRAM or a CID cell. This makes the analog cell very com- 
pact and low power, and the regular array of cells provides for 
a scalable architecture that can easily be extended. 

The combination of internally analog and externally digital 
processing also provides for an overall accuracy that exceeds 
the intrinsic precision (of the analog array and parallel ADC) 
by at least 2 bits. V i a l l y  unlimited precision can be ob 
tained by carefully conQuring the array so that the resolution 
of the analog computation and the ADC matches the number 
of columns for each block. This makes the internal analog im- 
plementation of the architecture truly transparent to the user at 
the digital interface. 

Fig. 4. Simulated average overall system preciswn for different A/D converter 
resolutions L. and for Z = J = 4, N = 512. 

mainly by the precision of the AID converter. However, by 
digitally combining outputs from bit slices as described, the 
overall precision is better than that of each ADC result in the 
sum. With the lower bound as defined by (1 l), on average 
this digital architecture boosts the system precision by 2 bits 
above L bits. This is not surprising since improved precision 
at the macro level is generally an attribute of large scale analog 
computation [9]-[ll]. 

In the case when L = Zog2(N), no information is lost in the 
ADC quantization step, and the effective system resolution is 
I + J + log2 (N) bits, which can be arbitrarily larger than L. 
The key here is that the analog array performs in essence a dig- 
ital (or, more precisely, quantized) computation: adding binary 
numbers in parallel, one per column. As long as the precision 
of the ADC resolves each individual column in the sum, and 
the combined effect of noise in the analog summation and the 
ADC is within one LSB, then the binary addition is retrieved 
from the ADC with zero error. Fortunately, the precision re- 
quirements on the analog MOS array and ADC increase only 
with the Zogarirhm of the number of columns in the parallel 
analog sum, and a large number of columns (several hundreds) 
is practical. Computations with higher dimensionality, and still 
at maximum possible precision, can easily be achieved by cas- 
cading multiple chips. To extend matrix column space, sys- 
tems with shorter word lengths can be effectively combined to 
perform a computation in a wider space by using, for example, 
modulo arithmetics [12]. Extension of row space is in princi- 
ple also unlimited. The digital outputs from AID converters on 
multiple chips can be multiplexed on a same bus, read out and 
processed by a digital postprocessor. 

Results of Monte Carlo simulations validating the precision 
of the architecture are presented in Figure 4. The bit compo- 
nents of inputs and matrix elements were gener- 
ated as i.i.d. Bernoulli random variables. Inner products of the 
input vector and each of the rows of the binary array of ma- 
trix elements were overlayed with uniform quantization noise 
over the interval ( -1 /2~+ l ,  1 / 2 ~ + l ) .  The values then were 
quantized to L bits and combined according to the above al- 
gorithm. The resulting average computational precision was 
recorded for different values of ADC resolution. As predicted, 
when L < log2 (N) the system precision was on average over 
2 bits better than individual A D  converter resolution. For 
I = J = 4, N = 512 and an ADC resolution of L = 9 
bits, an ideal precision of 17 bits is obtained. 
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