
Embedded Dynamic Memory and Charge-Mode
Logic for Parallel Array Processing

Roman Genov and Gert Cauwenberghs
Department of Electrical and Computer Engineering

Johns Hopkins University, Baltimore, MD 21218, U.S.A.
E-mail: froman,gertg@bach.ece.jhu.edu

Abstract—We present a mixed-signal distributed VLSI architecture for
massively parallel array processing, with fine-grain embedded memory.
The three-transistor processing element in the array combines a charge in-
jection device (CID) binary multiplier and analog accumulator with em-
bedded dynamic random-access memory (DRAM). A prototype 512� 128
vector-matrix multiplier on a single 3 mm � 3 mm chip fabricated in stan-
dard CMOS 0.5�m technology achieves 8-bit effective resolution, dissipates
0.5 pJ per multiply-accumulate and offers 2� 1012 binary MACS (multiply
accumulates per second) per Watt of power.

I. INTRODUCTION

One of the greatest challenges in the performance of com-
puter systems today is limited memory bandwidth. Conven-
tional solutions to the speed mismatch between microprocessors
and memory devote a large fraction of the transistors and area of
the chips to static memory caches, leading to sub-optimal com-
putational efficiency and silicon area. Embedded designs with
memory and logic integrated together are clearly more desirable
for memory intensive tasks.

We propose a massively parallel fine-grain array processor ar-
chitecture with each cell containing a computing device and a
storage element. We employ a multiply-accumulate processing
element as a computing device to perform very computation-
ally intensive operation, vector-matrix multiplication (VMM) in
large dimensions. VMM in large dimensions is one of the most
common, but computationally most expensive operation in al-
gorithms for machine vision, image classification and pattern
recognition:

Y (m)
=

N�1X

n=0

W (m;n)X(n) (1)

with N -dimensional input vector X (n), M -dimensional output
vector Y (m), and N �M matrix elements W (n;m).

Architectures with distributed processors and embedded
memories have been central to recent efforts in implementing
parallel high-performance processors. Numerous approaches
exist to digital distributed array processing: MIT pixel-parallel
image processor [1], NEC integrated memory array processor
for vision applications [2], computational RAM [3], FPGA-
based bit-level matrix multiplier [4]. Array-based analog com-
putation has been developed by SGS-Thomson Microelectron-
ics [5] for numerous applications in signal processing and
Pouliquen, Andreou et. al. in pattern recognition [6].

The problem with most parallel systems is that they re-
quire centralized memory resources i.e., RAM shared on a bus,
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thereby limiting the available throughput, or do incorporate
memories and digital processing elements together, but tend to
use a lot of silicon area to implement those, significantly lim-
iting the dimensions of the matrices operated on. A fine-grain,
fully-parallel architecture, that integrates memory and process-
ing elements, yields high computational throughput and high
density of integration. The ideal scenario for array processing
(in the case of vector-matrix multiplication) is where each pro-
cessor performs one multiply and locally stores one coefficient.
The advantage of this is a throughput that scales linearly with
the dimensions of the implemented array.

The recurring problem with digital implementation is the la-
tency in accumulating the result over a large number of cells.
Also, the extensive silicon area and power dissipation of a digital
multiply-and-accumulate implementation make this approach
prohibitive for very large (100-10,000) matrix dimensions. Ana-
log VLSI provides a natural medium to implement fully paral-
lel computational arrays with high integration density and en-
ergy efficiency [5]. By summing charge or current on a sin-
gle wire across cells in the array, low latency is intrinsic. Ana-
log multiply-and-accumulate circuits are so small that one can
be provided for each matrix element, making it feasible to im-
plement massively parallel implementations with large matrix
dimensions. Fully parallel implementation of (1) requires an
M �N array of cells, each cell containing a product computing
device and a storage element. Each cell (m;n) computes the
product of input component X (n) and matrix element W (m;n),
and dumps the resulting current or charge on a horizontal out-
put summing line. The device storing W (m;n) is usually incor-
porated into the computational cell to avoid performance lim-
itations due to low external memory access bandwidth. Vari-
ous physical representations of inputs and matrix elements have
been explored, using synchronous charge-mode [7], [8], [9],
[10], asynchronous transconductance-mode [11], [12], [13], or
asynchronous current-mode [14] multiply-and-accumulate cir-
cuits.

The main problem with purely analog implementation is the
effect of noise and component mismatch on precision. To this
end, we propose the use of hybrid analog-digital technology to
simultaneously add a large number of digital values in parallel,
with careful consideration of sources of imprecision in the im-
plementation and their overall effect on the system performance.
Our approach combines the computational efficiency of analog
array processing with the precision of digital processing and the
convenience of a programmable and reconfigurable digital inter-
face.
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Fig. 1. Block diagram of one row in the matrix with binary encoded elements wi(m;n), for a single m and with I = 4 bits. Data flow of bit-serial inputs xj (n)

and corresponding partial outputs Yi;j (m), with J = 4 bits.

A mixed-signal array architecture with binary decomposed
matrix and vector elements is described in Section II. VLSI
implementation is presented in Section III. Section IV quan-
tifies the improvements obtained in system precision obtained
by postprocessing the quantized outputs of the array in the digi-
tal domain. An expanded architecture using multiple processors
and compensating for analog computation offset errors is dis-
cussed in Section V. Conclusions are presented in Section VI.

II. MIXED-SIGNAL ARCHITECTURE

A. Internally Analog, Externally Digital Computation

The system presented is internally implemented in analog
VLSI technology, but interfaces externally with the digital
world. This paradigm combines the best of both worlds: it
uses the efficiency of massively parallel analog computing (in
particular: adding numbers in parallel on a single wire), but
allows for a modular, configurable interface with other digital
pre-processing and post-processing systems. This is necessary
to make the processor a general-purpose device that can tailor
the vector-matrix multiplication task to the particular applica-
tion where it is being used.

The digital representation is embedded, in both bit-serial and
bit-parallel fashion, in the analog array architecture (Fig. 1). In-
puts are presented in bit-serial fashion, and matrix elements are
stored locally in bit-parallel form. Digital-to-analog (D/A) con-
version at the input interface is inherent in the bit-serial imple-
mentation, and row-parallel analog-to-digital (A/D) converters
are used at the output interface.

For simplicity, an unsigned binary encoding of inputs and ma-
trix elements is assumed here, for one-quadrant multiplication.
This assumption is not essential: it has no binding effect on the
architecture and can be easily extended to a standard one’s com-
plement for four-quadrant multiplication, in which the signifi-
cant bits (MSB) of both arguments have a negative rather than

positive weight. Assume further I-bit encoding of matrix ele-
ments, and J-bit encoding of inputs:

W (m;n)
=

I�1X

i=0

2
�(i+1)w

(m;n)
i

(2)

X(n)
=

J�1X

j=0

2
�(j+1)x

(n)
j

(3)

decomposing (1) into:

Y (m)
=

N�1X

n=0

W (m;n)X(n)
=

I�1X

i=0

J�1X

j=0

2
�(i+j+2)Y

(m)
i;j

(4)

with binary-binary VMM partials:

Y
(m)
i;j

=

N�1X

n=0

w
(m;n)
i

x
(n)
j

: (5)

The proposed mixed-signal approach is to compute and accumu-
late the binary-binary partial products (5) using an analog VMM
array, and to combine the quantized results in the digital domain
according to (4).

B. Array Architecture and Data Flow

To conveniently implement the partial products (5), the binary
encoded matrix elementswi(m;n) are stored in bit-parallel form,
and the binary encoded inputs xj (n) are presented in bit-serial
fashion. The bit-serial format was first proposed and demon-
strated in [8], with binary-analog partial products using analog
matrix elements for higher density of integration. The use of
binary encoded matrix elements relaxes precision requirements
and simplifies storage [9].
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Fig. 2. CID computational cell with integrated DRAM storage (top). Charge
transfer diagram for active write and compute operations (bottom).

One row of I-bit encoded matrix elements uses I rows of bi-
nary cells. Therefore, to store an M�N digital matrixW (m;n),
an array of MI �N binary cells wi(m;n) is needed. One bit of
an input vector is presented each clock cycle, taking J clock cy-
cles of partial products (5) to complete a full computational cy-
cle (1). The input binary components xj (n) are presented least
significant bit (LSB) first, to facilitate the digital postprocessing
to obtain (4) from (5) (as elaborated in Section IV).

Figure 1 depicts one row of matrix elements W (m;n) in the
binary encoded architecture, comprising I rows of binary cells
wi

(m;n), where I = 4 in the example shown. The data flow is il-
lustrated for a digital input series xj (n) of J = 4 bits, LSB first
(i.e., descending index j). The corresponding analog series of
outputs Yi;j

(m) in (5) obtained at the horizontal summing nodes
of the analog array is quantized by a bank of analog-to-digital
converters (ADC), and digital postprocessing (4) of the quan-
tized series of output vectors yields the final digital result (1).

The quantization scheme used is critical to system perfor-
mance. As shown in Section IV, appropriate postprocessing
in the digital domain to obtain (4) from the quantized partial
products Yi;j

(m) can lead to a significant enhancement in sys-
tem resolution, well beyond that of intrinsic ADC resolution.
This relaxes precision requirements on the analog implementa-
tion of the partial products (5). A dense and efficient charge-
mode VLSI implementation is described next.

III. CHARGE-MODE VLSI IMPLEMENTATION

A. CID/DRAM Cell and Array

The elementary cell combines a CID computational unit [8],
[9], computing one argument of the sum in (5), with a DRAM
storage element. The cell stores one bit of a matrix element
wi

(m;n), performs a one-quadrant binary-binary multiplication
of wi(m;n) and xj

(n), and accumulates the result across cells

with common m and i indices. The circuit diagram and oper-
ation of the cell are given in Figure 2. An array of cells thus
performs (unsigned) binary multiplication (5) of matrix wi

(m;n)

and vector xj (n) yielding Yi;j
(m), for values of i in parallel

across the array, and values of j in sequence over time.
The cell contains three MOS transistors connected in series

as depicted in Figure 2. Transistors M1 and M2 comprise a dy-
namic random-access memory (DRAM) cell, with switch M1
controlled by Row Select signal RSi

(m). When activated, the
binary quantity wi

(m;n) is written in the form of charge stored
under the gate of M2. Transistors M2 and M3 in turn comprise
a charge injection device (CID), which by virtue of charge con-
servation moves electric charge between two potential wells in
a non-destructive manner [8], [9], [15].

The cell operates in two phases: Write and Compute. When
a matrix element value is being stored, xj (n) is held at V dd and
V out at a voltage V dd=2. To perform a write operation, either
an amount of electric charge is stored under the gate of M2, if
wi

(m;n) is low, or charge is removed, if wi
(m;n) is high. The

amount of charge stored, 4Q or 0, corresponds to the binary
value wi(m;n).

Once the charge has been stored, the switch M1 is deacti-
vated, and the cell is ready to compute. The charge left under
the gate of M2 can only be redistributed between the two CID
transistors, M2 and M3. An active charge transfer from M2 to
M3 can only occur if there is non-zero charge stored, and if the
potential on the gate of M2 drops below that of M3 [8]. This
condition implies a logical AND, i.e., unsigned binary multipli-
cation, of wi(m;n) and xj (n). The multiply-and-accumulate op-
eration is then completed by capacitively sensing the amount of
charge transferred onto the electrode of M3, the output summing
node. To this end, the voltage on the output line, left floating af-
ter being pre-charged to V dd=2, is observed. When the charge
transfer is active, the cell contributes a change in voltage

4Vout = 4Q=CM3 (6)

where CM3 is the total capacitance on the output line across
cells. The total response is thus proportional to the number of
actively transferring cells. After deactivating the input xj (n),
the transferred charge returns to the storage node M2. The CID
computation is non-destructive and intrinsically reversible [8],
and DRAM refresh is only required to counteract junction and
subthreshold leakage.

The bottom diagram in Figure 2 depicts the charge transfer
timing diagram for write and compute operations in the case
when both wi(m;n) and xj (n) are of logic level 1. A logic level
0 for wi(m;n) is represented as V dd, and a logic level 1 is repre-
sented as V dd=2, where V dd is the supply voltage. For xj (n),
logic level 0 is represented as V dd, and logic level 1 as GND.

Transistor-level simulation of a 512-element row indicates a
dynamic range of 43 dB, and a computational cycle of 10 �s
with power consumption of 50 nW per cell. Experimental re-
sults from a fabricated prototype are presented next.

B. Experimental Results

We designed, fabricated and tested a VLSI prototype of the
inner-product array processor, integrated on a 3 � 3 mm

2 die
in 0.5 �m CMOS technology. The chip contains an array of



Fig. 3. Micrograph of the mixed-signal VMM prototype, containing an array
of 512�128 CID/DRAM cells, and a row-parallel bank of 128 flash ADCs.
Die size is 3 mm� 3 mm in 0.5 �m CMOS technology.

512 � 128 CID/DRAM cells, and a row-parallel bank of 128
gray-code flash ADCs. Figure 3 depicts the micrograph and
system floorplan of the chip. The layout size of the CID/DRAM
cell is 8� � 45� with � = 0:3�m.

The mixed-signal VMM processor interfaces externally in
digital format. Two separate shift registers load the matrix el-
ements along odd and even columns of the DRAM array. In-
tegrated refresh circuitry periodically updates the charge stored
in the array to compensate for leakage. Vertical bit lines extend
across the array, with two rows of sense amplifiers at the top
and bottom of the array. The refresh alternates between even
and odd columns, with separate select lines. Stored charge cor-
responding to matrix element values can also be read and shifted
out from the chip for test purposes. All of the supporting digital
clocks and control signals are generated on-chip.

Figure 4 shows the measured linearity of the computational
array. The cases shown are when all binary weight storage ele-
ments are actively charged and discharged, and an all-ones se-
quence of bits is shifted through the input register, initialized
to all-zeros bit values. For every 1-bit shift, a computation is
performed and the result is observed on the output sense line.
The experimentally observed linearity agrees with the simula-
tion results [16]. The feed-through input dependent offsets are
compensated for as described in Section V.

The chip contains 128 row-parallel 6-bit flash ADCs, i.e., one
dedicated ADC for eachm and i. In the present implementation,
Y (m) is obtained off-chip by combining the ADC quantized out-
puts Yi;j

(m) over i (rows) and j (time) according to (4). Issues
of precision and complexity in the implementation of (4) are
studied below.

Fig. 4. Measured linearity of the computational array. Two cases are shown:
all binary weight storage elements are actively charged (left) and discharged
(right). All logic “1” sequence of bits is shifted through the input register,
initialized to all-“0” bit values. For every 1-bit shift, a computation is per-
formed. Waveforms shown, top to bottom: the analog voltage output on the
sense line; input data - on an input pin in common for both input and weight
shift register; clock for weight shift register.

IV. QUANTIZATION AND DIGITAL RESOLUTION

ENHANCEMENT

A. Accumulation and Quantization

Significant improvements in precision can be obtained by ex-
ploiting the binary representation of matrix elements and vector
inputs, and performing the computation (4) in the digital do-
main, from quantized estimates of the partial outputs (5).

We quantize all I � J values of Yi;j
(m) using row parallel

flash A/D converters. Figure 5 presents the corresponding ar-
chitecture, shown for a single output vector component m. The
partials summation is then performed in the digital domain:

Q(m)
=

I�1X

i=0

J�1X

j=0

2
�(i+j+2)Q

(m)
i;j

=

K�1X

k=0

2
�(k+2)Q

0(m)
k

; (7)

where k = i+ j, K = I + J � 1 and

Q
0(m)
k

=

k��(k;I)X

i=�(k;J)

Q
(m)
i;k�i

; (8)

with �(k; I) � max(0; k � I + 1) and �(k; J) � max(0; k �

J + 1). A block diagram for a digital implementation is shown
on the right of Figure 5.

As shown in [16], the effect of averaging the quantization er-
ror over a large number of quantized values of Yi;j

(m) boosts
the precision of the digital estimate of Y (m), beyond the intrin-
sic resolution of the analog array and the A/D quantizers used.
We obtain an improvement in signal-to-quantization-noise ratio
of a factor 3 and a median resolution gain of approximately 2
bits over the resolution of each ADC.
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Fig. 5. Diagram for the A/D quantization and digital postprocessing block in Figure 1, using row-parallel flash A/D converters. The example shown is for a single
m, LSB-first bit-serial inputs, and I = J = 4.

V. MULTI-CHIP ARCHITECTURE WITH OFFSET

COMPENSATION

A. Multi-Chip Architecture

The proposed method of on-chip VMM computation allows
for an array size of 1000� 1000, in 0.35 �m CMOS technology
implemented on a 6 � 6 mm die. Computations on matrices
of higher dimensionality, at maximum possible precision, can
be performed by using multiple VMM chips. Processors can
be cascaded to expand matrix row or column spaces beyond the
limits of a single chip capacity.

In the ideal case, to extend matrix row space, digital outputs
of systems with shorter input vector lengths can be combined
to perform a computation in a higher dimensional input space.
Extension of column space is in principle also unlimited (assum-
ing high read-out speeds). Cascading along rows of the matrix
(allowing for higher dimensionality of input vectors) requires
addition of digital numbers, while cascading along columns (in
order to increase the number of matrix elements for a fixed in-
put vector dimensionality) only necessitates multi-chip output
multiplexing in time.

In reality, there are a number of sources of error that con-
tribute offsets to the output of each VMM chip. These offset
terms can be compensated for in the multi-chip architecture as
described in the next section.

B. Offset Compensation

In Section III we already considered some of the sources of
computation error. They are imprecision of binary multiplica-
tions through charge sharing between potential wells in a CID
unit with capacitively coupled output, and charge-mode analog
addition on a single line. Because of linearity errors the result
of such a computation is valid up to approximately 7 bits. We
have discussed the effect of these errors and ADC resolution on
the overall system precision in Sections IV.

Other significant sources of error in analog array-based com-
putation are input-output feedthrough and leakage current in

TABLE I

INPUT-OUTPUT MAPPING OF CID/DRAM COMPUTATIONAL CELL. THE

INPUT-OUTPUT FEEDTHROUGH ERROR IS INTRODUCED WHEN THE INPUT IS

LOGIC “1”.

x
(n)
j w

(m,n)
i i,j

00 0
0 1

01
1 1

0
ε
+ε1

y
(m,n)

DRAM storage cells. The architecture presented is capable of
compensating these analog computation errors in digital domain
by using an extra reference VMM chip as shown in Figure 6.

The input-output feedthrough error is a result of capacitive
coupling of input (vertical) lines onto the output (horizontal)
lines through parasitic capacitances (metal lines overlap capac-
itance, gate-to-diffusion capacitance, etc). From Section III we
know that the output of the analog cell ideally changes by�Vout
only when both matrix element coefficient and input vector com-
ponent coefficient are logic “1”: wi

(m;n)
= V dd=2 (charge

stored) and, in the computation phase, xj (n) = 0V (input
switched). Any other combination of input arguments should
produce zero voltage change at the output. The cell is effec-
tively an analog AND gate. In practice, switching of the input
line xj (n), even when no charge is stored in CID cell, causes a
small change in the output voltage, �, as a result of input-output
capacitive coupling. We model this effect as shown in Table I.
The output of a single cell is denoted as yi;j (m;n).

Another important source of errors requiring specific con-
sideration is DRAM leakage current. In a standard two-level
DRAM cell, the exact amount of charge stored is not crucial. It
is used only for binary operations of readout and refresh, and a
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Fig. 6. Multi-Chip Architecture with Offset Compensation.

slow refresh scheme can be used. In contrast, the CID/DRAM
cell produces an analog output which is proportional to the
amount of charge stored in the charge injection device (6). Over
multiple computation cycles, different rows are being refreshed,
producing differences in the temporal decay profile of charge
stored along rows of cells.

In order to compensate for these offsets, once computation
has been performed on chips, the output of the reference chip
is subtracted from the output of processors in digital domain as
described in more detail in [17]. In the multi-chip configura-
tion shown in Figure 6, the refresh clock of the same frequency
as in standard DRAMs is used. It is fed to all processors, in-
cluding the reference chip. Using a reference chip with all cells
containing logic “0” coefficients and refreshed synchronously
with processor chips ensures the same charge decay profile in
its cells and voltage increase profile at its outputs. To compen-
sate for charge decays caused by leakage current, the outputs
from the reference chip are subtracted from the outputs of the
corresponding rows of each of the processors.

Therefore, both input-output feedthrough input-dependent
offset and charge decay input and time-dependent offset are
compensated for in the multi-chip VMM architecture by using
one reference chip supplied with identical inputs, synchronous
refresh clock and all logic “0” matrix elements. Subtraction
of outputs of equivalent rows in digital domain eliminates both
input-dependent and temporal errors.

VI. CONCLUSIONS

A charge-mode VLSI array processor for matrix operations
in large dimensions (N;M = 100–10,000) has been pre-
sented. The architecture embeds storage and multiplication in
distributed fashion, down to the cellular level. With only three
transistors, the cell for multiplication and storage contains little
more than either a DRAM or a CID cell. This makes the analog
cell very compact and low power, and the regular array of cells
provides for a scalable architecture that can easily be extended.
Fine-grain massive parallelism and distributed memory provide
computational efficiency (bandwidth to power consumption ra-
tio) exceeding that of digital multiprocessors and DSPs by sev-
eral orders of magnitude. A 9mm2 512 � 128 VMM prototype
fabricated in 0.5 �m CMOS offers 2�1012 binary MACS (mul-
tiply accumulates per second) per Watt of power.
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