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1.1 TMACS/mW Fine-Grained Stochastic Resonant
Charge-Recycling Array Processor
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Abstract—We present a resonant adiabatic mixed-signal 128
256 array processor that achieves the energy efficiency of 1.1

TMACS (���� multiply accumulates per second) per mW of
power operating from a 1.6 V DC supply. The � � � � �

3T NMOS unit cell with a single-wire pitch multiplexed bit/com-
pute line provides charge-conserving 1b-1b multiplication and
single-node charge-domain analog accumulation. A stochastic
data modulation scheme minimizes on-chip capacitance vari-
ability maintaining sinusoidal clock oscillations near resonance.

Index Terms—Adiabatic, charge-recycling, matrix-vector multi-
plication, mixed-signal and charge-mode.

I. INTRODUCTION

L OW-POWER dissipation is a dominant objective in the
design of integrated circuits for consumer devices. De-

spite dramatic improvements in energy efficiency, today’s solid-
state circuit technology still operates far from the fundamental
kT/bit energy limits. CMOS process and voltage scaling have
contributed remarkable savings in power, but are approaching
physical limits as silicon technology enters the nano-regime and
voltages approach thermal noise limits [1].

Array-based mixed-signal integrated circuits such as inte-
grated sensor arrays, memories, and parallel processors share
many unique architectural and circuit-level design solutions
necessitated by their massive parallelism. These features can
be exploited in order to reduce their power dissipation. A class
of such circuits known as mixed-signal VLSI computing arrays
take advantage of such features. Various implementations both
with on-chip sensors such as computational CMOS imagers
[2]–[4] and integrated acoustic array sensors [5], and as stand-
alone sensory data processors [6]–[11] have been reported,
often with unsurpassed energy efficiency characteristics.
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Analog or mixed-signal VLSI signal processing often allows
for increases in integration density, computational throughput,
and energy efficiency beyond what is achievable by digital pro-
cessors, typically at the expense of reduced accuracy. High in-
tegration density is achieved by compact analog circuits such as
those operating in charge domain. Computational throughput is
enhanced by larger dimensions of computing arrays with com-
pact cells and by the low-cost nature of some of analog op-
erations such as zero-latency addition in charge domain. En-
ergy efficiency is increased as clocking is reduced. Lower accu-
racy of computation is a result of nonidealities of analog com-
ponents such as inherent nonlinearity and mismatches and is
typically only weakly dependent on the dissipated power for
a given implementation. A detailed quantitative analysis of the
analog-versus-digital tradeoff is given in [12]. In applications
such as sensory pattern recognition and sensory data classifica-
tion a modest accuracy of under 8 bits is often sufficient.

In this paper, we combine adiabatic CMOS circuit approaches
with stochastic encoding techniques to achieve record-level en-
ergy efficiency in massively parallel array computation. These
design solutions are well suited to other array based integrated
circuits.

Reversible and adiabatic computing have been introduced as
a means to overcome the dynamic energy dissipation
in digital CMOS circuits [13], [14] and further in mixed-signal
VLSI [15]. Adiabatic drivers slowly ramp the supply voltage
from 0 V during the pull-up phase to reduce the voltage drop
across the pull-up network. The voltage drop is made arbitrarily
small by keeping the ramp period sufficiently longer than the
time constant of the driver. For long ramp periods, the voltage
across is approximately equal to the supply ramp and the en-
ergy taken from the voltage source is , the min-
imum required to charge to . In the pull-down phase, the
energy stored on is discharged back into the supply voltage
source by slowly ramping back to 0 V.

Linear voltage ramps generation to provide constant charging
and discharging currents requires energy dissipation in the
supply generator. This is often impractical for low-power
applications and an oscillatory waveform, or hot-clock, from
a resonator is typically used instead [14], [16]. The increased
energy dissipation in the pull-up network, due to the nonoptimal
sinusoidal shape, is offset by the low energy dissipation and
simplicity of resonant hot-clock generation. Resonant adia-
batic circuits recycle charge energy through transfer between
electrostatic and inductive power in resonant circuits. In
theory, the adiabatic energy consumption per unit computation
approaches zero as the computation cycle extends to infinity, so
that distributing the computation in parallel architecture (more
but slower silicon) leads to net energy savings. In practice,
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Fig. 1. CID/DRAM computational array, with 3-T unit cell and with peripheral
functions (left). Compact, single-pitch layout of the cell (right).

the energy efficiency is limited by the conversion efficiency
between static and AC power in the resonant clock generator.
Previously reported adiabatic processors achieve power gains
of up to seven [16] over their nonadiabatic modes.

We present a 128 256-cell adiabatic charge-mode com-
puting array achieving 85-fold improvement over the energy
efficiency obtained when resonant drivers are replaced with
CMOS drivers. The massive-parallel nature of the architecture
yields high computational throughput at low clock frequency
significantly reducing resistive losses. In order to maintain
approximately constant resonant frequency, low load capaci-
tance variability is achieved by a simple input data stochastic
encoding and decoding scheme. The array yields twice the
integration density and six times the energy efficiency of our
previously reported prototype [17], [18]. Applications include
pattern recognition [18], data compression [19], and CDMA
matched filters [9], where 128 dimensions of the input vector
are often sufficient. The array dimensions can be increased by
tiling multiple arrays either in the column space or the row
space or both on the same die, subject to conventional CMOS
fabrication yield constraints [18]. This paper extends on an
earlier report of the principle and demonstration in [20], and
offers a more detailed analysis and experimental results charac-
terizing the power saving performance. The rest of this paper is
organized as follows. Section II describes the architecture and
circuit implementation of the charge-mode computing array. In
Section III, a resonant adiabatic clock generator is introduced
in order to achieve high energy efficiency of the array-based
computation. Limitations of the resonant clock generator are
formulated and analyzed. Section IV describes a stochastic data
modulation scheme that overcomes these limitations. Section V
presents experimental results from the adiabatic array processor
prototyped in a 0.35- CMOS technology.

II. ARRAY ARCHITECTURE AND CIRCUIT IMPLEMENTATION

The mixed-signal array computes linear transforms in the
general form of vector-matrix multiplication (VMM)

, with -dimensional input vector , -dimensional output
vector , and matrix elements ( ,

). The array architecture and the cell circuit diagram are

Fig. 2. Simplified timing diagram illustrating the three operation types of one
row of the CID/DRAM computational array. The write operation takes place
once for a given matrix to be stored. Many compute operations are performed
for each refresh operation.

shown in Fig. 1 (left). The analog array is interfaced with a bank
of on-chip row-parallel analog to digital converters (ADC) to
provide convenient digital outputs as needed in some general
purpose applications as well as in the array experimental testing
and demonstration.

Similarly to the design in [18], the unit cell in the analog array
shown in Fig. 1 (left) combines a charge injection device (CID)
computational element [21], [22] with a dynamic random ac-
cess memory (DRAM) storage element [23]. Each CID cell per-
forms a one-quadrant binary-binary multiplication between the
bit stored in it and the input bit on its bit/compute-line (BCL). In
contrast to [18], the bit line and compute line are multiplexed on
a single minimum wire-pitch (BCL) yielding a compact layout
shown in Fig. 1 (right) with twice cell packing density of that
reported in [17] and [18].

As depicted in the timing diagram in Fig. 2, during the write
operation the data to be stored are broadcast from the input reg-
ister onto the vertical (BCL), which extend across the array. A
row to be written into is selected by activating its world-line
(WL) turning transistor M1 on. The output match-line (ML)
is held at during the write phase. The refresh operation
is similar to the write operation, but in this case the charge in
the DRAM cell is sensed and rewritten by a column-parallel
sense amplifier. During the compute operation, the input data are
broadcast on the BCLs and applied to the gate of transistor M3,
while MLs, previously precharged to are now left floating.

Capacitive coupling of all cells in a single row into a single
ML implements zero-latency analog accumulation along each
row. An array of cells thus performs analog multiplication of a
binary matrix with a binary vector.

During the write operation, the data to be stored are broad-
cast on the vertical folded multiplexed BCLs, and written into
the row with the active WL, as depicted in Fig. 3. An active
charge transfer from M2 to M3 can only occur if there is nonzero
charge stored, and if the potential on the gate of M3 rises above
that of M2, as shown in Fig. 3 (right). The cell performs non-
destructive computation since the transferred charge is sensed
capacitively on the MLs. Once a computation is performed the
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Fig. 3. Charge transfer diagram for write and compute operations with logic-
zero (left) and logic-one (right) stored in the CID/DRAM cell.

Fig. 4. Writing (a) logic-one and (b) logic-zero into the BCL multiplexed CID/
DRAM cell.

charge is shifted back into the DRAM cell. The write, refresh,
and compute operations are analyzed next in more detail.

A. Write

During write operation, the BCL is charged to 0 V (logic-one)
or (logic-zero) and the ML is held at . When the WL
goes high, electrons are stored under the gate of M2 if the BCL
is at 0 V, as shown in Fig. 4(a), or are swept away if BCL is at

, as shown in Fig. 4(b). When the WL goes low, the bit is
stored as either trapped charge

(1)

or lack of charge

(2)

under M2, where is the gate area of M2, is the unit area
gate capacitance, and is the threshold voltage of a NMOS
transistor. This write operation is functionally similar to that of
the cell in [18]. The difference is that here when storing logic-
zero in a cell, the gates of all M3 transistors in that column are
also driven to . This has no effect on the final state of the cell
being written into since either way all the charge is removed. In
the remaining rows, the MLs can be left floating to ensure no
charge is lost. The significant advantage of the design is that
multiplexing the bit-line and the compute-line on a single BCL
reduces the cell area by a factor of two.

B. Refresh

The stored bits in the cells are periodically refreshed to
compensate for subthreshold leakage to the BCL, and junction

Fig. 5. During refresh, the BCL is first (a) precharged to the sense amplifier
trip point before (b) the stored charge � is shared with the BCL.

leakage to the substrate. During refresh, the BCL is precharged
to the trip-point, , of the sense amplifier and the ML is held
at , as shown in Fig. 5(a). When the access transistor, M1,
is turned on by pulsing its WL, the charge stored in the cell is
shared with the charge on the BCL, as shown in Fig. 5(b). In the
case of a logic-one stored in the CID/DRAM cell, when charge
is stored under the gate of M2, and ignoring body effect, the
change in voltage on the BCL when M1 turns on is given by

(3)

where is the gate area of M2, is the trip-point voltage
of the sense amplifier, and is the total capacitance of the
BCL. In the case of a logic-zero stored in the CID/DRAM, when
no charge is stored under the gate of M2, and ignoring the body
effect, the voltage change on the BCL when M1 turns on is given
by

(4)

In differential configuration, the voltage on the two BCLs con-
nected to the sense amplifier change in opposite directions as
given by (3) and (4). The differential voltage change on the two
BCLs is thus

(5)

The WL is de-asserted once the sense amplifier has replenished
or removed the charge in the cell, restoring the bit.

The BCL capacitance is approximately given by

(6)

where is the number or rows in the array, is the area of
the junction connecting M1 to the BCL, is the junction
capacitance at reverse bias voltage, is the gate area of M3,
and is the metal line parasitic capacitance of BCL. The
cost of increased cell packing density compared to a design with
separate bit-line (BL) and compute-line (CL) [18] is a higher
BL capacitance due to transistor M3. However, this additional
capacitance can be made very small by choosing the trip-point
voltage of the sense amplifier to be below the threshold voltage
of transistor M3. In this case, when sensing is initiated transistor
M3 is below threshold. There is no channel under its gate and
its gate capacitance is the parallel plate capacitance between
the gate and the substrate which is small. This results in only
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Fig. 6. Computing with (a) logic-one and (b) logic-zero stored in the multi-
plexed cell.

a minor increase in the total BCL capacitance above that in [18]
or a conventional DRAM architecture. For a given technology,
sense amplifier sensitivity, and size of array, the required area
for the storage transistor M3 is obtained from (3) and (4).

C. Compute

The cell performs a one-quadrant binary-binary multiplica-
tion (AND operation) between its stored value and its BCL
value, and accumulates the result on the ML across cells in the
same row. The computation in each cell occurs as follows. First,
the BCL is driven low and the ML is precharged to and left
floating. Then, if the input to the cell is a logic-zero, the BCL re-
mains low and the ML voltage remains unchanged. If the input
to the cell is a logic-one, the BCL is driven to by periph-
eral energy recovery logic (ERL) drivers from a resonant supply
generator as described in Section III.

If a logic-one is stored in the cell and the BCL is driven high, a
channel is formed under both M2 and M3 once the BCL voltage
reaches the threshold voltage of M3. Further increase in the BCL
voltage is strongly coupled through the channels of M2 and M3
to the ML, as shown in Fig. 6(a). The change in the ML voltage
in a single cell not connected to other cells is given approxi-
mately by

(7)

Given that is a digital signal, the voltage on the
floating gate of transistor M2, when not connected to anything
else, raises above by a fixed value depending on the ca-
pacitances of transistors M2 and M3 (which in turn depend on
the presence of charge in the cell). When the gate of transistor
M2 in a given cell is connected to the gates of M2 in all other
cells in the same row, the change in its voltage depends on
the number of active cells in that row. In fact, as all cells are
capacitively coupled to ML, its voltage represents the normal-
ized accumulation of all output voltages produced by each cell.
The output of a row is a discrete analog quantity reflecting the
number of active cells coupling into the ML of that row.

When a logic-zero is stored in the cell and the BCL is driven
high, there is no channel present to capacitively couple the BCL
to the ML, as shown in Fig. 6(b), and the ML voltage remains
unchanged. In practice, the parasitic overlap capacitance, ,
causes some of the BCL voltage to feedthrough to the ML
causing a change in the ML voltage given approximately by

(8)

where and are the widths of transistors M2 and M3,
respectively. This parasitic feedthrough is minimized by careful
layout or its effect is removed altogether by using differential
computation where it appears as an input independent offset.

The added diffusion capacitance of all the access transistors
is also charged during the compute operation if the corre-
sponding BCL goes high. This has a negligible effect on the
overall power dissipation due to the small area of the junction,
which is shared with the adjacent cell, and the use of adiabatic
computing which recycles energy back into the voltage supply
source, as described next.

D. ADC

In order to validate the computing array functionality in
general purpose applications, a 128-channel row-parallel ADC
bank was implemented on the same chip. Each ADC channel
is an 8-bit hybrid -algorithmic ADC. Its architecture is
detailed in [17]. In the algorithmic ADC mode its sampling rate
is matched to the resonant frequency of the computing array
(e.g., 20 ksps). In the oversampling ADC mode its effective
sampling rate is equal to the resonant frequency of the com-
puting array divided by the oversampling ratio. Combination
of algorithmic ADC and first-order incremental -modulated
ADC techniques results in a sampling rate within this range
[17].

III. RESONANT POWER GENERATION

Power in the array is dissipated by charging and discharging
the total capacitance of all active BCLs. The capacitance of a
BCL is approximately equal to the sum of capacitances of all
charge injection device (CID) cells in the corresponding array
column. CID cells perform reversible computation by shifting a
charge between two potential wells without destructing it. This
reversibility allows for recovery of the energy spent in a com-
putation by using a resonant clock generator. Instead of con-
ventional static CMOS logic, a resonant clock generator drives
all active BCLs. It is implemented by coupling all active BCLs
to an external inductor through a bank of energy recovery logic
(ERL) drivers, as shown in Fig. 7(a). A simplified ERL driver is
shown.

The circuit diagram of a modified ERL driver shown in
Fig. 7(b) is utilized [17], [18]. When the input vector compo-
nent bit, , is logic-one, the corresponding BCL, , is
connected to the inductor through a pass gate. The maximum
voltage on the inductor is , while the logic-one level of

is . A cross-coupled PMOS transistor pair ensures that
the pass gate is turned off completely when is low.

To compensate for resistive losses in the tank in Fig. 7(a),
the signal is pulsed at the resonant frequency. The
energy dissipation approaches zero when is pulsed at
the minima of the hot clock voltage, . The capacitance
of all active BCLs varies as a function of input data and stored
data. Variations in this load capacitance cause energy losses.

A simplified model of a variable-capacitance oscillator
is shown in Fig. 8, where has a mean value of and re-
sistive losses are assumed to be zero for simplicity. The tank
capacitor represents the capacitive load of all active CID
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Fig. 7. (a) �� tank oscillator driving an array of charge-recycling CID cells.
One cell is shown, with two charge-coupled MOS transistors M2 and M3 ac-
cording to Figs. 1 and 3. (b) Double-range input-enabled energy recovery logic
(ERL) driver.

Fig. 8. Lossless �� oscillator with variable load capacitance � and examples
of three corresponding � ��� waveforms (left). Energy dissipation in switch
� of a lossless varying-capacitance �� oscillator (right).

cells and implies that they are being driven by the resonant
clock. The signal is pulsed at the mean-capacitance
resonant frequency. The dependence of the tank instanta-
neous resonant frequency on variations in load capacitance
causes the power dissipation to fluctuate depending on the rel-
ative timing of switch , as illustrated in the special cases ,
and shown in Fig. 8. The energy dissipated in each compu-
tation is plotted on the right of Fig. 8. When (case

) or (case ), completes one or two full
oscillation(s), respectively, before is pulsed. At its res-
onance condition, the voltage difference across the switch is
minimum upon closure. The energy dissipation approaches zero
over a wider range of capacitance at point in Fig. 8.

A more detailed analysis of energy dissipation in the tank
includes a careful consideration of the resistive losses [18]. It
can be shown that theoretically, for a fixed tank capacitance, en-
ergy dissipation in the tank can be made arbitrarily small by
increasing . This corresponds to lowering the frequency of

. In practice, the dynamic energy dissipation asymptot-
ically approaches a finite value, limited by the quality of the in-
ductor. Thus increasing beyond a certain level may not be jus-

Fig. 9. Mixed-signal array and stochastic modulation architecture.

tifiable as it yields diminishing reduction in energy dissipation.
This result also implies that increasing the frequency of
leads to an increase in energy dissipation due to resistive losses
in the tank. This suits well with a parallel computing architec-
ture performing very many operations in each clock cycle and
maintaining a high overall throughput.

IV. STOCHASTIC DATA MODULATION

Variations in the number of active inputs in the multiplication
imply a variable capacitive load, leading to variations in power
consumption. With appropriate preprocessing of data in a typ-
ical pattern recognition application, the bit-level statistics of the
array input and stored matrix can be made sufficiently random
such that the spread in number of actively charge-coupling cells
in the array during each computation can be narrowed down sig-
nificantly, so that the resonance condition can be maintained for
minimum power loss in the clock generator [17], [18]. However,
this balance of capacitive load is highly sensitive to the distri-
bution of the data, which cannot always be controlled. To min-
imize resonant power supply energy dissipation due to data-de-
pendent array capacitance variability, we investigate a coding
scheme where the input data are stochastically modulated such
that in every clock cycle half or near half of all bit/compute lines
are active, as shown in Fig. 9.

A bit/compute line has approximately constant capacitance,
, independent of the data stored in its DRAM cells, as tran-

sistor M3 is biased either in inversion or accumulation. For input
bits that are equally probable zero or one, the number of com-
pute lines that are connected to the inductor follows a Gaussian
distribution with the mean halfway the range at , and vari-
ance , where is the input dimension .
Thus, for random inputs in high dimensions , 95% of the
time the array capacitance is typically (95% of cases) within a
range (twice the standard deviation) from the mean,
a factor closer than the full allowable range from 0 to

.
To randomize the bit-level distribution of a nonrandom

digital input, a randomly chosen but fixed integer in the
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Fig. 10. Adiabatic VMM processor micrograph and floor plan. The die area is
��� � ��� �� in 0.35-�� CMOS.

range is added to each input component
[24]. While this adds an additional bits to the input,
it produces pseudo-random coded bits at the input of the array
leading to a narrow load distribution, as depicted in Fig. 9. The
modulated inner products in are demodulated by digitally
subtracting the inner products obtained for and . The
random dithering vector is chosen once, so its inner product
with the templates is precomputed upon initializing or pro-
gramming the array. The implementation cost is thus limited to
one component-wise vector addition and one component-wise
vector subtraction, achieved using one-bit full adder
cells and one-bit registers, as well as external ROM
cells to store and , respectively. All of the overhead
circuits scale linearly with the array dimensions and operate at
the low clock frequency of the array (kHz-range) and thus have
small power dissipation overhead. This stochastic modulation
scheme also presents significant benefits in reduced require-
ments on linearity of analog accumulation and on resolution of
row-parallel ADCs [24].

V. EXPERIMENTAL RESULTS

The 0.35- CMOS integrated prototype of the adiabatic
VMM processor shown in Fig. 10 contains 32 768 CID/DRAM
cells and 128 row-parallel 8-bit algorithmic ADCs [23], as
well as pipelined input shift registers, sense amplifiers, refresh
logic, and scan-out logic. All supporting digital clocks and con-
trol signals are generated on-chip.

Various size cell configurations are included to experimen-
tally validate the theoretical model discussed in Section II-C.
Fig. 11 shows experimentally measured ML voltage as a func-
tion of . The array is operated in the differential mode. In
the first case, logic-one is stored in every CID/DRAM cell and
the BCLs are driven to 3.3 V causing a large voltage change
on the ML due to the strong capacitive coupling between the
BCLs and MLs. In the second case, logic-zero is stored in every
CID/DRAM cell and the BCLs are driven to 3.3 V causing only
a small voltage change on the ML due to the weak parasitic cou-
pling between the BCLs and MLs. In both cases, as the ratio

increases so does the ML voltage when the BCLs are
driven high as predicted by (7) and (8). The ML voltage can
be further increased by operating the array in the single-ended

Fig. 11. Experimentally measured ML voltage as a function of � �� for the
two cases of logic-one and logic-zero stored in all CID/DRAM cells. The array
is operated in differential mode with BCL voltage of 3.3 V.

Fig. 12. Experimentally measured (dotted line) and theoretical (solid line)
array dynamic energy dissipation as a function of input data statistics in
adiabatic resonant mode and static CMOS mode. Three corresponding exper-
imentally measured hot clock waveforms are shown. The probability density
function of modulated input data is shown in gray.

mode instead of differentially, doubling the number of cells cou-
pling into the ML. Also, ERL drivers can be used to approxi-
mately double the ML voltage by driving the peak BCL voltage
to .

Fig. 12 shows experimentally measured energy consumption
per computation cycle of the CID/DRAM array in the static
CMOS driver mode and in the adiabatic mode as a function of
the number of active inputs (number of logic-“1” bits in the
input vector). The adiabatic power measured through the
pin includes all losses in the inductor, energy recovery logic
(ERL) drivers and CID/DRAM array. Worst-case uniformly
distributed 8-bit data is stochastically modulated producing
12-bit pseudo-random inputs to maintain array capacitance
within of its mean for 95 percent of the data. As
shown in Fig. 12, this 95 percent interval is positioned to
coincide with a broad region of resonance, minimizing energy
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TABLE I
EXPERIMENTALLY MEASURED ARRAY CHARACTERISTICS

loss across at activation of . This broad tuning of
resonance and load balancing yields an improvement in energy
efficiency from 12.9 GMACS/mW in static CMOS mode to
1.1 TMACS/mW in adiabatic mode, independent of the input
distribution. This corresponds to multiply accumu-
lates per second at 0.59 power from 1.6 V DC supply.
A second region of resonance in Fig. 12 should ideally occur
when the number of active inputs is 32. This corresponds to
point in Fig. 8. In practice, the second minimum occurs at
a number of inputs less than 32. This is likely due to parasitic
capacitances in the tank which are more prominent when
the tank capacitance is small. A summary of the computing
array characteristics is given in Table I.

The stated energy efficiency figures do not include the power
dissipated in the ADCs and other peripheral circuits. Common
digital peripheral circuits such as shift registers can be effi-
ciently implemented using conventional digital adiabatic design
techniques. In the present prototype, the ADCs were included
for convenience of characterization. Applications in pattern
classification, such as vector quantization or nearest neighbor
classification, call for winner-take-all (WTA) or rank-ordered
selection of best template matches. WTA selection is efficiently
implemented using a cascade of comparators potentially oper-
ating adiabatically in the charge domain [25], or using other
low-power charge-based circuits [26]. In non-WTA classifiers
such as support vector machines (SVM) computing the kernel
and the linear weighting may also be implemented using similar
adiabatic circuits.

By virtue of the parallel architecture and the favorable prop-
erties of the stochastic modulation for large , this adiabatic
mixed-signal computing technology scales to large throughput
at a moderate and linear cost in power. Interestingly, the
TMACS/mW performance of the array exceeds the power
efficiency of the human brain which attains roughly
synaptic connections per second at 15 W of power, although the
MACS measure provides a very incomplete metric of neural
computation.

VI. CONCLUSION

An adiabatic array processor for general purpose VMM op-
erations has been presented. A single wire pitch multiplexed
bit/compute line cell design yields twice cell packing density. A
simple stochastic scheme allows to minimize losses in the reso-
nant power generator due to capacitive load variability. Input
data are modulated such that the array capacitance follows a

small-variance Gaussian distribution. The overhead of modu-
lating the inputs and demodulating the outputs is out-weighted
by a boost in energy efficiency. The 0.35- CMOS adiabatic
computational array integrated prototype delivers 1.1 TMACS
for every mW of power for worst case data distribution. This
constitutes a 85-fold improvement in energy efficiency in its
resonant adiabatic mode, compared to its already intrinsically
low energy efficiency when operating in the static CMOS driver
mode.
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