
CIDDRAM Mixed-Signal Parallel Distributed 
Array Processor 

Roman Genov, Student Member, and Gert Cauwenberghs, Member 

Abscrocr- We present a mixed-signal distributed VLSI architecture for 
massively parallel array processing, with fine-grain embedded memory. 
The three-transistor processing element in the array combines a charge in- 
jection device (CID) binary multiplier and analog accumulator with em- 
bedded dynamic random-access memory (DRAM). A prototype 512 x 128 
vector-matrix multiplier on a single 3 mm x 3 mm chip fabricated in stan- 
dard CMOS 0.5 pm technology achieves 8-bit effective resolution and dis- 
sipates 0.5 pJ per multiply-accumulate. 

I. INTRODUCTION 
One of the greatest challenges in the performance of com- 

puter systems today is limited memory bandwidth. Conven- 
tional solutions to the speed mismatch between microprocessors 
and memory devote a large fraction of the transistors and area of 
the chips to static memory caches, leading to sub-optimal com- 
putational efficiency and silicon area. Embedded designs with 
memory and logic integrated together are clearly more desirable 
for memory intensive tasks. 

We propose a massively parallel fine-grain array processor ar- 
chitecture with each cell containing a computing device and a 
storage element. We employ a multiply-accumulate processing 
element as a computing device to perform very computation- 
ally intensive operation, vector-matrix multiplication (VMM) in 
large dimensions. VMM in large dimensions is one of the most 
common, but computationally most expensive operation in al- 
gorithms for machine vision, image classification and pattern 
recognition: 

N-1  

y ( m )  = W(m.n)X(") (1) 
n=O 

with N-dimensional input vector X(n), M-dimensional output 
vector Y(m) ,  and N x M matrix elements W(n~m) .  

Architectures with distributed processors and embedded 
memories have been central to recent efforts in implementing 
parallel high-performance processors. Numerous approaches 
exist to digital distributed array processing: MIT pixel-parallel 
image processor [l], NEC integrated memory array processor 
for vision applications [2], computational RAM [3], FPGA- 
based bit-level matrix multiplier [4]. Array-based analog com- 
putation has been developed by SGS-Thomson Microelectron- 
ics [5] for numerous applications in signal processing and 
Pouliquen, Andreou et. al. in pattern recognition 161. 

The problem with most parallel systems is that they re- 
quire centralized memory resources i.e., RAM shared on a bus, 
thereby limiting the available throughput, or do incorporate 
memories and digital processing elements together, but tend to 
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use a lot of silicon area to implement those, significantly lim- 
iting the dimensions of the matrices operated on. A fine-grain, 
fully-parallel architecture, that integrates memory and process- 
ing elements, yields high computational throughput and high 
density of integration. The ideal scenario for array processing 
(in the case of vector-matrix multiplication) is where each pro- 
cessor performs one multiply and locally stores one coefficient. 
The advantage of this is a throughput that scales linearly with 
the dimensions of the implemented array. 

The recurring problem with digital implementation is the Ia- 
tency in accumulating the result over a large number of cells. 
Also, the extensive silicon area and power dissipation of a digital 
multiply-and-accumulate implementation make this approach 
prohibitive for very large (100-10,000) matrix dimensions. Ana- 
log VLSI provides a natural medium to implement fully paral- 
Iel computational arrays with high integration density and en- 
ergy efficiency [5]. By summing charge or current on a sin- 
gle wire across cells in the array, low latency is intrinsic. Ana- 
log multiply-and-accumulate circuits are so small that one can 
be provided for each matrix element, making it feasible to im- 
plement massively parallel implementations with large matrix 
dimensions. Fully parallel implementation of ( 1 )  requires an 
M x N array of cells, each cell containing a product computing 
device and-a storage element. Each cell (m, n) computes the 
product of input component X ( n )  and matrix element W(min), 
and dumps the resulting current or charge on a horizontal out- 
put summing line. The device storing W(m>n) is usually incor- 
porated into the computational cell to avoid performance lim- 
itations due to low external memory access bandwidth. Vari- 
ous physical representations of inputs and matrix elements have 
been explored, using synchronous charge-mode [7], [8], [91, 
[lo], asynchronous transconductance-mode [ 1 I], [ 121, [ 131, or 
asynchronous current-mode [ 141 multiply-and-accumulate cir- 
cuits. 

The main problem with purely analog implementation is the 
effect of noise and component mismatch on precision. To this 
end, we propose the use of hybrid analog-digital technology to 
simultaneously add a large number of digital values in parallel, 
with-careful consideration of sources of imprecision in the im- 
plementation and their overall effect on the system performance. 
Our approach combines the computational efficiency of analog 
array processing with the precision of digital processing and the 
convenience of a programmable and reconfigurable digital inter- 
face. 

A mixed-signal array architecture with binary decomposed 
matrix and vector elements is described in Section 11. VLSI 
implementation is presented in Section 111. Section IV quanti- 
fies the improvements obtained in system precision obtained by 
postprocessing the quantized outputs of the array in the digital 
domain. and compensating for analog computation offset errors 
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Fig. 1 .  Block diagram of one row in the matrix with binary encoded elements w ; ( ~ - ~ ) ,  for a single rn and with I = 4 bits. Data flow of bit-serial inputs z j  ( n )  

and corresponding partial outputs y i , j  (m), with J = 4 bits. 

in a mutli-chip architecture. Conclusions are presented in Sec- 
tion V. 

11. MIXED-SIGNAL ARCHITECTURE 

A. Internally Analog, Externally Digital Computation 

The system presented is internally implemented in analog 
VLSi technology, but interfaces externally with the digital 
world. This paradigm combines the best of both worlds: it 
uses the efficiency of massively parallel analog computing (in 
particular: adding numbers in parallel on a single wire), but 
allows for a modular, configurable interface with other digital 
pre-processing and post-processing systems. This is necessary 
to make the processor a general-purpose device that can tailor 
the vector-matrix multiplication task to the particular applica- 
tion where it is being used. 

The digital representation is embedded, in both bit-serial and 
bit-parallel fashion, in the analog array architecture (Fig. 1). In- 
puts are presented in bit-serial fashion, and matrix elements are 
stored locally in bit-parallel form. Digital-to-analog (D/A) con- 
version at the input interface is inherent in the bit-serial imple- 
mentation, and row-parallel analog-to-digital (AD) converters 
are used at the output interface. 

For simplicity, an unsigned binary encoding of inputs and ma- 
trix elements is assumed here, for one-quadrant multiplication. 
This assumption is not essential: it has no binding effect on the 
architecture and can be easily extended to a standard one's com- 
plement for four-quadrant multiplication, in which the signifi- 
cant bits (MSB) of both arguments have a negative rather than 
positive weight. Assume further I-bit encoding of matrix ele- 
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ments, and J-bit encoding of inputs: 

I-1 

J 
j = O  

decomposing (1) into: 

N-1 I-1 .I-I 

N-1 

n=O 

The proposed mixed-signal approach is to compute and accumu- 
late the binary-binary partial products (5) using an analog VMM 
array, and to combine the quantized results in the digital domain 
according to (4). 

B. Array Architecture and Data Flow 
To conveniently implement the partial products (5 ) ,  the binary 

encoded matrix elements wi(m+) are stored in bit-parallel form, 
and the binary encoded inputs are presented in bit-serial 
fashion. The bit-serial format was first proposed and demon- 
strated in [8], with binary-analog partial products using analog 
matrix elements for higher density of integration. The use of 
binary encoded matrix elements relaxes precision requirements 
and simplifies storage [9]. 



Fig. 2. CID computational cell with integrated DRAM storage (fop). Charge 
transfer diagram for active write and compute operations (bottom). 

One row of I-bit encoded matrix elements uses I rows of bi- 
nary cells. Therefore, to store an M x N digital matrix W(min), 
an array of M I  x N binary cells is needed. One bit of 
an input vector is presented each clock cycle, taking J clock cy- 
cles of partial products ( 5 )  to complete a full computational cy- 
cle (1) .  The input binary components zj(n) are presented least 
significant bit (LSB) first, to facilitate the digital postprocessing 
to obtain (4) from ( 5 )  (as elaborated in Section IV). 

Figure 1 depicts one row of matrix elements W(m*fl) in the 
binary encoded architecture, comprising I rows of binary cells 

where I = 4 in the example shown. The data flow is il- 
lustrated for a digital input series zj(n) of J = 4 bits, LSB first 
(i.e., descending index j ) .  The corresponding analog series of 
outputs yi,j(m) in ( 5 )  obtained at the horizontal summing nodes 
of the analog array is quantized by a bank of analog-to-digital 
converters (ADC), and digital postprocessing (4) of the quan- 
tized series of output vectors yields the final digital result (1). 

The quantization scheme used is critical to system perfor- 
mance. As shown in Section IV, appropriate postprocessing 
in the digital domain to obtain (4) from the quantized partial 
products x,j(m) can lead to a significant enhancement in sys- 
tem resolution, well beyond that of intrinsic ADC resolution. 
This relaxes precision requirements on the analog implementa- 
tion of the partial products (5).  A dense and efficient charge- 
mode VLSI implementation is described next. 

111. CHARGE-MODE VLSI IMPLEMENTATION 

A. CID/DRAM Cell and Array 

The elementary cell combines a CID computational unit [8], 
[93, computing one argument of the sum in (3, with a DRAM 
storage element. The cell stores one bit of a matrix element 
wi(m’n), performs a one-quadrant binary-binary multiplication 
of wi(myn) and ~ j ( ~ ) ,  and accumulates the result across cells 

with common m and i indices. The circuit diagram and oper- 
ation of the cell are given in Figure 2. An array of cells thus 
performs (unsigned) binary multiplication ( 5 )  of matrix wi(min) 
and vector zj(n) yielding y i , j ( m ) ,  for values of i in parallel 
across the array, and values of j in sequence over time. 

The cell contains three MOS transistors connected in series 
as depicted in Figure 2. Transistors M1 and M2 comprise a dy- 
namic random-access memory (DRAM) cell, with switch M1 
controlled by Row Select signal I?&(”). When activated, the 
binary quantity wi(m*n) is written in the form of charge stored 
under the gate of M2. Transistors M2 and M3 in turn comprise 
a charge injection device (CID), which by virtue of charge con- 
servation moves electric charge between two potential wells in 
a non-destructive manner [8], 191, [15]. 

The cell operates in two phases: Write and Compute. When 
a matrix element value is being stored, zj (n) is held at V d d  and 
V o u t  at a voltage V d d / 2 .  To perform a write operation, either 
an amount of electric charge is stored under the gate of M2, if 
wi(min) is low, or charge is removed, if wi(m~n) is high. The 
amount of charge stored, AQ or 0, corresponds to the binary 
value wi(*+). 

Once the charge has been stored, the switch M1 is deacti- 
vated, and the cell is ready to compute. The charge left under 
the gate of M2 can only be redistributed between the two CID 
transistors, M2 and M3. An active charge transfer from M2 to 
M3 can only occur if there is non-zero charge stored, and if the 
potential on the gate of M2 drops below that of M3 [8]. This 
condition implies a logical AND, i.e., unsigned binary multipli- 
cation, of wi(m*n) and zj(”). The multiply-and-accumulate op- 
eration is then completed by capacitively sensing the amount of 
charge transferred onto the electrode of M3, the output summing 
node. To this end, the voltage on the output line, left floating af- 
ter being pre-charged to V d d / 2 ,  is observed. When the charge 
transfer is active, the cell contributes a change in voltage 

Avo,, = AQ/CM~ (6) 

where Cll.13 is the total capacitance on the output line across 
cells. The total response is thus proportional to the number of 
actively transferring cells. After deactivating the input ~j(~), 
the transferred charge returns to the storage node M2. The CID 
computation is non-destructive and intrinsically reversible [8], 
and DRAM refresh is only required to counteract junction and 
subthreshold leakage. 

The bottom diagram in Figure 2 depicts the charge transfer 
timing diagram for write and compute operations in the case 
when both wi(m~n) and zj are of logic level 1. A logic level 
0 for wi(myn) is represented as V d d ,  and a logic level 1 is repre- 
sented as V d d / 2 ,  where V d d  is the supply voltage. For zj(*), 
logic level 0 is represented as V d d ,  and logic level 1 as GND. 

Transistor-level simulation of a 5 12-element row indicates a 
dynamic range of 43 dB, and a computational cycle of 10 ps 
with power consumption of 50 nW per cell. Experimental re- 
sults from a fabricated prototype are presented next. 

B. Experimental Results 

We designed, fabricated and tested a VLSI prototype of the 
vector-matrix multiplier, integrated on a 3 x3 mm2 die in 0.5 pm 
CMOS technology. The chip contains an array of 512 x 128 
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Fig. 4. Measured linearity of the computational array. The number of active 
charge-transfer cells is swept in increments of 64, with the analog voltage 
output on the sense line shown on the top scope trace. 

dressed below. 

Fig. 3. Micrograph of the mixed-signal VMM prototype, containing an array 
of 512 x 128 CIDDRAM cells, and a row-parallel bank of 128 Rash ADCs. 
Die size is 3 rnrn x 3 rnm in 0.5 pm CMOS technology. 

CIDDRAM cells, and a row-parallel bank of 128 gray-code 
flash ADCs. Figure 3 depicts the micrograph and system floor- 
plan of the chip. The layout size of the CIDDRAM cell is 
8X x 45X with X = 0.3pm. 

The mixed-signal VMM processor interfaces externally in 
digital format. Two separate shift registers load the matrix el- 
ements along odd and even columns of the DRAM array. In- 
tegrated refresh circuitry periodically updates the charge stored 
in the array to compensate for leakage. Vertical bit lines extend 
across the array, with two rows of sense amplifiers at the top 
and bottom of the array. The refresh alternates between even 
and odd columns, with separate select lines. Stored charge cor- 
responding to matrix element values can also be read and shifted 
out from the chip for test purposes. All of the supporting digital 
clocks and control signals are generated on-chip. 

Figure 4 shows the measured linearity of the computational 
array. The number of active cells on one row transferring charge 
to the output line is incremented in steps of 64. The case shown 
is where all binary weight storage elements are actively charged, 
and an all-ones sequence of bits is shifted through the input reg- 
ister, initialized to all-zeros bit values. For every shift of 64 
positions in the input, a computation is performed and the result 
is observed on the output sense line. The experimentally ob- 
served linearity agrees with the simulation results presented in 
Section 111-A. 

The chip contains 128 row-parallel 6-bit flash ADCs, i.e., one 
dedicated ADC for each m and i. In the present implementation, 
Y(m)  is obtained off-chip by combining the ADC quantized out- 
puts X,j(") over i (rows) and j (time) according to (4). Issues 
of precision and complexity in the implementation of (4) are ad- 
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Iv. QUANTIZATION A N D  DIGITAL RESOLUTION 
ENHANCEMENT 

A. Accumulation and Quantization 

Significant improvements in precision can be obtained by ex- 
ploiting the binary representation of matrix elements and vector 
inputs, and performing the computation (4) in the digital do- 
main, from quantized estimates of the partial outputs ( 5 ) .  

We quantize all I x J values of K,~(")  using row parallel 
flash A/D converters. Figure 5 presents the corresponding ar- 
chitecture, shown for a single output vector component m. The 
partials summation is then performed in the digital domain: 

1-1 J-1 K-1 
&("I = 2-(2+3+2)&(") 2 J  = c 2-( k+2) Q""' k 

1 (7) 
a=O j=O k=O 

wherek = i + j ,  K = I +  J - 1 and 

k -- K (  k, I )  

&'(") k = Q$?, (8) 
%Z:K( k , J )  

with ~ ( k ,  I )  = max(0, Ic - I + 1) and ~ ( k ,  J )  E max(0, k - 
J + 1). A block diagram for a digital implementation is shown 
on the right of Figure 5. 

As shown in [ 161, the effect of averaging the quantization er- 
ror over a large number of quantized values of K,3(m) boosts 
the precision of the digital estimate of Y(m) ,  beyond the intrin- 
sic resolution of the analog array and the A/D quantizers used. 
We obtain an improvement in signal-to-quantization-noise ratio 
of a factor 3 and a median resolution gain of approximately 2 
bits over the resolution of each ADC. 

B. Multi-Chip System with Offset Compensation 

Other significant sources of error in analog array-based com- 
putation are input-dependent feedthrough, and input and time- 
dependent charge leakage in DRAM storage cells introducing 



Fig. 5. Diagram for the AID quantization and digital postprocessing block in Figure 1, using row-parallel flash AID converters. The example shown is for a single 
m, LSB-first bit-serial inputs, and I = J = 4. 

offsets. Both of these errors are compensated for in a multi- 
chip VMM architecture by m$ng one reference chip supplied 
with identical inputs, synchronous refresh clock and all logic 
“0’ matrix elements. Subtraction of outputs of equivalent rows 
in digital domain eliminates both input-dependent and temporal 
errors as shown in detail in 1171. 

V. CONCLUSIONS 

A charge-mode VLSI array processor for matrix operations 
in large dimensions ( N , M  = 100-10,000) has been pre- 
sented. The architecture embeds storage and multiplication in 
distributed fashion, down to the cellular level. With only three 
transistors, the cell for multiplication and storage contains little 
more than either a DRAM or a CID cell. This makes the analog 
cell very compact and low power, and the regular array of cells 
provides for a scalable architecture that can easily be extended. 
Fine-grain massive parallelism and distributed memory provide 
computational efficiency (bandwidth to power consumption ra- 
tio) exceeding that of digital multiprocessors and DSPs by sev- 
eral orders of magnitude. A 512 x 128 VMM prototype fabri- 
cated in 0.5 pm CMOS offers 2 x 10l2 binary MACS (multiply 
accumulates per second) per Watt of power. 
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