
CIDDRAM Mixed-Signal Parallel Distributed
Array Processor

Roman Genov, Student Member, and Gert Cauwenberghs, Member

Abscrocr- We present a mixed-signal distributed VLSI architecture for
massively parallel array processing, with fine-grain embedded memory.
The three-transistor processing element in the array combines a charge in-
jection device (CID) binary multiplier and analog accumulator with em-
bedded dynamic random-access memory (DRAM). A prototype 512 x 128
vector-matrix multiplier on a single 3 mm x 3 mm chip fabricated in stan-
dard CMOS 0.5 pm technology achieves 8-bit effective resolution and dis-
sipates 0.5 pJ per multiply-accumulate.

I. INTRODUCTION
One of the greatest challenges in the performance of com-

puter systems today is limited memory bandwidth. Conven-
tional solutions to the speed mismatch between microprocessors
and memory devote a large fraction of the transistors and area of
the chips to static memory caches, leading to sub-optimal com-
putational efficiency and silicon area. Embedded designs with
memory and logic integrated together are clearly more desirable
for memory intensive tasks.

We propose a massively parallel fine-grain array processor ar-
chitecture with each cell containing a computing device and a
storage element. We employ a multiply-accumulate processing
element as a computing device to perform very computation-
ally intensive operation, vector-matrix multiplication (VMM) in
large dimensions. VMM in large dimensions is one of the most
common, but computationally most expensive operation in al-
gorithms for machine vision, image classification and pattern
recognition:

N-1

y (m) = W(m.n)X(") (1)
n=O

with N-dimensional input vector X(n), M-dimensional output
vector Y(m) , and N x M matrix elements W(n~m) .

Architectures with distributed processors and embedded
memories have been central to recent efforts in implementing
parallel high-performance processors. Numerous approaches
exist to digital distributed array processing: MIT pixel-parallel
image processor [l], NEC integrated memory array processor
for vision applications [2], computational RAM [3], FPGA-
based bit-level matrix multiplier [4]. Array-based analog com-
putation has been developed by SGS-Thomson Microelectron-
ics [5] for numerous applications in signal processing and
Pouliquen, Andreou et. al. in pattern recognition 161.

The problem with most parallel systems is that they re-
quire centralized memory resources i.e., RAM shared on a bus,
thereby limiting the available throughput, or do incorporate
memories and digital processing elements together, but tend to

The authors are with the Department of Electrical and Computer Engi-
neering, Johns Hopkins University, Baltimore, MD 21218, U.S.A., E-mail:
{roman,gert) @bach.ece.jhu.edu.

This work was supported by NSF MIP-9702346 and ONR N00014-99-1-
0612. Chips were fabricated through the MOSIS foundry service.

use a lot of silicon area to implement those, significantly lim-
iting the dimensions of the matrices operated on. A fine-grain,
fully-parallel architecture, that integrates memory and process-
ing elements, yields high computational throughput and high
density of integration. The ideal scenario for array processing
(in the case of vector-matrix multiplication) is where each pro-
cessor performs one multiply and locally stores one coefficient.
The advantage of this is a throughput that scales linearly with
the dimensions of the implemented array.

The recurring problem with digital implementation is the Ia-
tency in accumulating the result over a large number of cells.
Also, the extensive silicon area and power dissipation of a digital
multiply-and-accumulate implementation make this approach
prohibitive for very large (100-10,000) matrix dimensions. Ana-
log VLSI provides a natural medium to implement fully paral-
Iel computational arrays with high integration density and en-
ergy efficiency [5]. By summing charge or current on a sin-
gle wire across cells in the array, low latency is intrinsic. Ana-
log multiply-and-accumulate circuits are so small that one can
be provided for each matrix element, making it feasible to im-
plement massively parallel implementations with large matrix
dimensions. Fully parallel implementation of (1) requires an
M x N array of cells, each cell containing a product computing
device and-a storage element. Each cell (m, n) computes the
product of input component X (n) and matrix element W(min),
and dumps the resulting current or charge on a horizontal out-
put summing line. The device storing W(m>n) is usually incor-
porated into the computational cell to avoid performance lim-
itations due to low external memory access bandwidth. Vari-
ous physical representations of inputs and matrix elements have
been explored, using synchronous charge-mode [7], [8], [91,
[lo], asynchronous transconductance-mode [1 I], [121, [131, or
asynchronous current-mode [141 multiply-and-accumulate cir-
cuits.

The main problem with purely analog implementation is the
effect of noise and component mismatch on precision. To this
end, we propose the use of hybrid analog-digital technology to
simultaneously add a large number of digital values in parallel,
with-careful consideration of sources of imprecision in the im-
plementation and their overall effect on the system performance.
Our approach combines the computational efficiency of analog
array processing with the precision of digital processing and the
convenience of a programmable and reconfigurable digital inter-
face.

A mixed-signal array architecture with binary decomposed
matrix and vector elements is described in Section 11. VLSI
implementation is presented in Section 111. Section IV quanti-
fies the improvements obtained in system precision obtained by
postprocessing the quantized outputs of the array in the digital
domain. and compensating for analog computation offset errors

0-7803-6741-3/901/$10.00 0 2001 JEEE 39 1

mailto:bach.ece.jhu.edu

Fig. 1 . Block diagram of one row in the matrix with binary encoded elements w ; (~ - ~) , for a single rn and with I = 4 bits. Data flow of bit-serial inputs z j (n)

and corresponding partial outputs y i , j (m), with J = 4 bits.

in a mutli-chip architecture. Conclusions are presented in Sec-
tion V.

11. MIXED-SIGNAL ARCHITECTURE

A. Internally Analog, Externally Digital Computation

The system presented is internally implemented in analog
VLSi technology, but interfaces externally with the digital
world. This paradigm combines the best of both worlds: it
uses the efficiency of massively parallel analog computing (in
particular: adding numbers in parallel on a single wire), but
allows for a modular, configurable interface with other digital
pre-processing and post-processing systems. This is necessary
to make the processor a general-purpose device that can tailor
the vector-matrix multiplication task to the particular applica-
tion where it is being used.

The digital representation is embedded, in both bit-serial and
bit-parallel fashion, in the analog array architecture (Fig. 1). In-
puts are presented in bit-serial fashion, and matrix elements are
stored locally in bit-parallel form. Digital-to-analog (D/A) con-
version at the input interface is inherent in the bit-serial imple-
mentation, and row-parallel analog-to-digital (AD) converters
are used at the output interface.

For simplicity, an unsigned binary encoding of inputs and ma-
trix elements is assumed here, for one-quadrant multiplication.
This assumption is not essential: it has no binding effect on the
architecture and can be easily extended to a standard one's com-
plement for four-quadrant multiplication, in which the signifi-
cant bits (MSB) of both arguments have a negative rather than
positive weight. Assume further I-bit encoding of matrix ele-

392

ments, and J-bit encoding of inputs:

I-1

J
j = O

decomposing (1) into:

N-1 I-1 .I-I

N-1

n=O

The proposed mixed-signal approach is to compute and accumu-
late the binary-binary partial products (5) using an analog VMM
array, and to combine the quantized results in the digital domain
according to (4).

B. Array Architecture and Data Flow
To conveniently implement the partial products (5) , the binary

encoded matrix elements wi(m+) are stored in bit-parallel form,
and the binary encoded inputs are presented in bit-serial
fashion. The bit-serial format was first proposed and demon-
strated in [8], with binary-analog partial products using analog
matrix elements for higher density of integration. The use of
binary encoded matrix elements relaxes precision requirements
and simplifies storage [9].

Fig. 2. CID computational cell with integrated DRAM storage (fop). Charge
transfer diagram for active write and compute operations (bottom).

One row of I-bit encoded matrix elements uses I rows of bi-
nary cells. Therefore, to store an M x N digital matrix W(min),
an array of M I x N binary cells is needed. One bit of
an input vector is presented each clock cycle, taking J clock cy-
cles of partial products (5) to complete a full computational cy-
cle (1) . The input binary components zj(n) are presented least
significant bit (LSB) first, to facilitate the digital postprocessing
to obtain (4) from (5) (as elaborated in Section IV).

Figure 1 depicts one row of matrix elements W(m*fl) in the
binary encoded architecture, comprising I rows of binary cells

where I = 4 in the example shown. The data flow is il-
lustrated for a digital input series zj(n) of J = 4 bits, LSB first
(i.e., descending index j) . The corresponding analog series of
outputs yi,j(m) in (5) obtained at the horizontal summing nodes
of the analog array is quantized by a bank of analog-to-digital
converters (ADC), and digital postprocessing (4) of the quan-
tized series of output vectors yields the final digital result (1).

The quantization scheme used is critical to system perfor-
mance. As shown in Section IV, appropriate postprocessing
in the digital domain to obtain (4) from the quantized partial
products x,j(m) can lead to a significant enhancement in sys-
tem resolution, well beyond that of intrinsic ADC resolution.
This relaxes precision requirements on the analog implementa-
tion of the partial products (5). A dense and efficient charge-
mode VLSI implementation is described next.

111. CHARGE-MODE VLSI IMPLEMENTATION

A. CID/DRAM Cell and Array

The elementary cell combines a CID computational unit [8],
[93, computing one argument of the sum in (3, with a DRAM
storage element. The cell stores one bit of a matrix element
wi(m’n), performs a one-quadrant binary-binary multiplication
of wi(myn) and ~ j (~) , and accumulates the result across cells

with common m and i indices. The circuit diagram and oper-
ation of the cell are given in Figure 2. An array of cells thus
performs (unsigned) binary multiplication (5) of matrix wi(min)
and vector zj(n) yielding y i , j (m) , for values of i in parallel
across the array, and values of j in sequence over time.

The cell contains three MOS transistors connected in series
as depicted in Figure 2. Transistors M1 and M2 comprise a dy-
namic random-access memory (DRAM) cell, with switch M1
controlled by Row Select signal I?&(”). When activated, the
binary quantity wi(m*n) is written in the form of charge stored
under the gate of M2. Transistors M2 and M3 in turn comprise
a charge injection device (CID), which by virtue of charge con-
servation moves electric charge between two potential wells in
a non-destructive manner [8], 191, [15].

The cell operates in two phases: Write and Compute. When
a matrix element value is being stored, zj (n) is held at V d d and
V o u t at a voltage V d d / 2 . To perform a write operation, either
an amount of electric charge is stored under the gate of M2, if
wi(min) is low, or charge is removed, if wi(m~n) is high. The
amount of charge stored, AQ or 0, corresponds to the binary
value wi(*+).

Once the charge has been stored, the switch M1 is deacti-
vated, and the cell is ready to compute. The charge left under
the gate of M2 can only be redistributed between the two CID
transistors, M2 and M3. An active charge transfer from M2 to
M3 can only occur if there is non-zero charge stored, and if the
potential on the gate of M2 drops below that of M3 [8]. This
condition implies a logical AND, i.e., unsigned binary multipli-
cation, of wi(m*n) and zj(”). The multiply-and-accumulate op-
eration is then completed by capacitively sensing the amount of
charge transferred onto the electrode of M3, the output summing
node. To this end, the voltage on the output line, left floating af-
ter being pre-charged to V d d / 2 , is observed. When the charge
transfer is active, the cell contributes a change in voltage

Avo,, = AQ/CM~ (6)

where Cll.13 is the total capacitance on the output line across
cells. The total response is thus proportional to the number of
actively transferring cells. After deactivating the input ~j(~),
the transferred charge returns to the storage node M2. The CID
computation is non-destructive and intrinsically reversible [8],
and DRAM refresh is only required to counteract junction and
subthreshold leakage.

The bottom diagram in Figure 2 depicts the charge transfer
timing diagram for write and compute operations in the case
when both wi(m~n) and zj are of logic level 1. A logic level
0 for wi(myn) is represented as V d d , and a logic level 1 is repre-
sented as V d d / 2 , where V d d is the supply voltage. For zj(*),
logic level 0 is represented as V d d , and logic level 1 as GND.

Transistor-level simulation of a 5 12-element row indicates a
dynamic range of 43 dB, and a computational cycle of 10 ps
with power consumption of 50 nW per cell. Experimental re-
sults from a fabricated prototype are presented next.

B. Experimental Results

We designed, fabricated and tested a VLSI prototype of the
vector-matrix multiplier, integrated on a 3 x3 mm2 die in 0.5 pm
CMOS technology. The chip contains an array of 512 x 128

393

Fig. 4. Measured linearity of the computational array. The number of active
charge-transfer cells is swept in increments of 64, with the analog voltage
output on the sense line shown on the top scope trace.

dressed below.

Fig. 3. Micrograph of the mixed-signal VMM prototype, containing an array
of 512 x 128 CIDDRAM cells, and a row-parallel bank of 128 Rash ADCs.
Die size is 3 rnrn x 3 rnm in 0.5 pm CMOS technology.

CIDDRAM cells, and a row-parallel bank of 128 gray-code
flash ADCs. Figure 3 depicts the micrograph and system floor-
plan of the chip. The layout size of the CIDDRAM cell is
8X x 45X with X = 0.3pm.

The mixed-signal VMM processor interfaces externally in
digital format. Two separate shift registers load the matrix el-
ements along odd and even columns of the DRAM array. In-
tegrated refresh circuitry periodically updates the charge stored
in the array to compensate for leakage. Vertical bit lines extend
across the array, with two rows of sense amplifiers at the top
and bottom of the array. The refresh alternates between even
and odd columns, with separate select lines. Stored charge cor-
responding to matrix element values can also be read and shifted
out from the chip for test purposes. All of the supporting digital
clocks and control signals are generated on-chip.

Figure 4 shows the measured linearity of the computational
array. The number of active cells on one row transferring charge
to the output line is incremented in steps of 64. The case shown
is where all binary weight storage elements are actively charged,
and an all-ones sequence of bits is shifted through the input reg-
ister, initialized to all-zeros bit values. For every shift of 64
positions in the input, a computation is performed and the result
is observed on the output sense line. The experimentally ob-
served linearity agrees with the simulation results presented in
Section 111-A.

The chip contains 128 row-parallel 6-bit flash ADCs, i.e., one
dedicated ADC for each m and i. In the present implementation,
Y(m) is obtained off-chip by combining the ADC quantized out-
puts X,j(") over i (rows) and j (time) according to (4). Issues
of precision and complexity in the implementation of (4) are ad-

394

Iv. QUANTIZATION A N D DIGITAL RESOLUTION
ENHANCEMENT

A. Accumulation and Quantization

Significant improvements in precision can be obtained by ex-
ploiting the binary representation of matrix elements and vector
inputs, and performing the computation (4) in the digital do-
main, from quantized estimates of the partial outputs (5) .

We quantize all I x J values of K,~(") using row parallel
flash A/D converters. Figure 5 presents the corresponding ar-
chitecture, shown for a single output vector component m. The
partials summation is then performed in the digital domain:

1-1 J-1 K-1
&("I = 2-(2+3+2)&(") 2 J = c 2-(k+2) Q""' k

1 (7)
a=O j=O k=O

wherek = i + j , K = I + J - 1 and

k -- K (k, I)

&'(") k = Q$?, (8)
%Z:K(k , J)

with ~ (k , I) = max(0, Ic - I + 1) and ~ (k , J) E max(0, k -
J + 1). A block diagram for a digital implementation is shown
on the right of Figure 5.

As shown in [161, the effect of averaging the quantization er-
ror over a large number of quantized values of K,3(m) boosts
the precision of the digital estimate of Y(m) , beyond the intrin-
sic resolution of the analog array and the A/D quantizers used.
We obtain an improvement in signal-to-quantization-noise ratio
of a factor 3 and a median resolution gain of approximately 2
bits over the resolution of each ADC.

B. Multi-Chip System with Offset Compensation

Other significant sources of error in analog array-based com-
putation are input-dependent feedthrough, and input and time-
dependent charge leakage in DRAM storage cells introducing

Fig. 5. Diagram for the AID quantization and digital postprocessing block in Figure 1, using row-parallel flash AID converters. The example shown is for a single
m, LSB-first bit-serial inputs, and I = J = 4.

offsets. Both of these errors are compensated for in a multi-
chip VMM architecture by m$ng one reference chip supplied
with identical inputs, synchronous refresh clock and all logic
“0’ matrix elements. Subtraction of outputs of equivalent rows
in digital domain eliminates both input-dependent and temporal
errors as shown in detail in 1171.

V. CONCLUSIONS

A charge-mode VLSI array processor for matrix operations
in large dimensions (N , M = 100-10,000) has been pre-
sented. The architecture embeds storage and multiplication in
distributed fashion, down to the cellular level. With only three
transistors, the cell for multiplication and storage contains little
more than either a DRAM or a CID cell. This makes the analog
cell very compact and low power, and the regular array of cells
provides for a scalable architecture that can easily be extended.
Fine-grain massive parallelism and distributed memory provide
computational efficiency (bandwidth to power consumption ra-
tio) exceeding that of digital multiprocessors and DSPs by sev-
eral orders of magnitude. A 512 x 128 VMM prototype fabri-
cated in 0.5 pm CMOS offers 2 x 10l2 binary MACS (multiply
accumulates per second) per Watt of power.

REFERENCES
J.C. Gealow and C.G. Sodini, “A Pixel-Parallel Image Processor Using
Logic Pitch-Matched to Dynamic Memory,’’ IEEE J. Solid-State Circuits,

Y. Fujita, S.A. Kyo, et. al., 10 GIPS SIMD processor for PC-based real
time vision applications -architecture, algorithm implementation and lan-
guage support,” Proc. of IEEE International Workshop on Computer Ar-
chitecture for Machine Perception, CAMP 97., pp. 22-32, 1997.
D.G. Elliott, M. Stumm, et. al., “Computational RAM: implementing pro-
cessors in memory,” IEEE Design & Test of Computers, vol. 16 (1). pp. 32-
41, 1999.
A. Amira, A. Bouridane, et. al., “A high throughput FPGA implementa-
tion of a bit-level matrix product,” IEEE Workshop on Signal Processing
Systems, SiPS 2000, pp. 356-364.2000.
A. Kramer, “Array-based analog computation,” IEEE Micro, vol. 16 (5),

P. Pouliquen. A.G. Andreou, K. Strohbehn “Winner-takes-all associative

vol. 34, pp 831-839, 1999.

pp. 40-49, 1996.

memory: a hamming distance vector quantizer,” Journal of Analog Inte-
grated Circuits and Signal Processing, vol. 13, pp. 21 1-222, 1997.
A. Chiang, “A programmable CCD signal processor,” IEEE Journal of
Solid-state Circuits, vol. 25 (6). pp. 1510-1517, 1990.
C. Neugebauer and A. Yariv, “A Parallel Analog CCD/CMOS Neu-
ral Network IC,” Proc. IEEE Int. Joint Conference on Neural Networks
(IJCNN’91). Seattle, WA, vol. 1, pp 447-451, 1991.
V. Pedroni, A. Agranat, C. Neugebauer, A. Yariv, “Pattern matching and
parallel processing with CCD technology,” Proc. IEFE Int. Joint Confer-
ence on Neural Networks (IJCNN’92), vol. 3, pp 620-623, 1992.
G. Han, E. Sanchez-Sinencio, “A general purpose neuro-image proces-
sor architecture,” Proc. of IEEE Int. Symp. on Circuits and Systems (IS-

M. Holler, S. Tam, H. Castro and R. Benson, ”An Electrically Trainable
Artificial Neural Network (ETANN) with 10,240 Floating Gate Synapses,”
in Proc. Int. Joint Conf Neural Networks, Washington DC. pp 191-196,
1989.
F. Kub, K. Moon, I. Mack, F. Long, “ Programmable analog vector-matrix
multipliers,” IEEE Journal of Solid-State Circuits, vol. 25 (1). pp. 207-
214, 1990.
G. Cauwenberghs, C.F. Neugebauer and A. Yariv. “Analysis and Verifi-
cation of an Analog VLSI Incremental Outer-Product Learning System,”
IEEE Trans. Neural Networks, vol. 3 (3). pp. 488-497, May 1992.
A.G. Andreou, K.A. Boahen, P.O. Pouliquen, A. Pavasovic, R.E. Jenkins,
and K. Strohbehn, “Current-Mode Subthreshold MOS Circuits for Analog
VLSI Neural Systems,” IEEE Transactions on Neural Networks, vol. 2 (2).

M. Howes, D. Morgan, Eds., Charge-Coupled Devices and Systems, John
Wiley & Sons, 1979.
R. Genov and G. Cauwenberghs, “Charge-Mode Parallel Architecture for
Matrix-Vector Multiplication:’ Proc. 43rd IEEE Midwest Symp. Circuits
and Systems (MWSCAS’2000). Lansing MI, August 8-1 1,2000.
R. Genov. G. Cauwenberghs, “Analog Array Processor with Digital Res-
olution Enhancement and Offset Compensation,” Proc. of Conf on Infor-
mation Sciences and Systems (CISS’2001). Baltimore, MD 2001:

CAS’96). vol. 3, pp 495-498, 1996.

pp 205-213, 1991.

395 -

