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Abstract— We present an architecture and very-large-scale
integration (VLSI) implementation of a microsystem for
neural activity monitoring and time-frequency analysis. The
key functional blocks of the microsystem, the integrated
neural interface and the wavelet transform processor, have
been prototyped in a 0.35-µm standard complementary metal-
oxide-semiconductor (CMOS) technology. Its utility is vali-
dated in autonomous early detection of epileptic seizures in
an in vitro epilepsy model of recurrent spontaneous seizures
in mouse hippocampal brain slices.

Index Terms— Epilepsy, Seizure detection, Seizure predic-
tion, Integrated neural interface, Wavelet transform.

I. INTRODUCTION

APPROXIMATELY 50 million people worldwide are
epileptic. While epilepsy is the third most common

neurological disorder following stroke and Alzheimer’s
disease, it carries higher cost to the society than stroke.
Present day therapy to control epilepsy includes several
strategies with various degrees of efficacy.

Pharmacotherapy requires the long-term use of systemi-
cally administered drugs, which in some cases are toxic [1].
Surgery involves the excision of a relatively large volume
of brain tissue, with the concern of neurological disability

This work was supported by Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and Krembil Fund.

J. N. Y. Aziz was with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada.
He is now with Broadcom Corporation, Singapore, 757716 (email:
joseph@eecg.utoronto.ca).

R. Karakiewicz was with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada. He
is now with SNOWBUSH Microelectronics, Toronto, ON M5G 1Y8,
Canada (e-mail: raf@snowbush.com).

R. Genov is with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON M5S 3G4, Canada (email:
roman@eecg.utoronto.ca).

A. W. L. Chiu is with the Department of Biomedical Engineer-
ing, Louisiana Tech University, Ruston, LA 71272, USA (email:
alanchiu@latech.edu).

B. L. Bardakjian is with the Institute of Biomaterials and Biomed-
ical Engineering, Department of Electrical and Computer Engineer-
ing, University of Toronto, Toronto, ON M5S 3G9, Canada (e-mail:
berj@cbl.utoronto.ca).

M. Derchansky, and P. L. Carlen are with the Toronto Western Re-
search Institute and the Department of Physiology, University of Toronto,
Toronto, Canada (e-mail: carlen@uhnres.utoronto.ca).

from the removal of either normal or functionally necessary
tissue. Also there is the real but small risk of any invasive
neurosurgical operation.

Approximately 60 percent of epileptic patients suffer
partial seizures, 30 percent of whom are intractable and
do not respond to medication. A significant percentage of
these patients are not suitable for surgical therapy. For such
patients, brain stimulation is presently done via peripheral
nerve stimulation (i.e., vagal) or via implanted electrodes
using protocols which are often empiric, and have no
direct relationship to the underlying neuronal dysfunctional
activity [2], [3], [4]. Continuous vagal nerve stimulation
is often effective in reducing the number of seizures in
patients with intractable epilepsy, but only five percent of
treated patients have been rendered seizure-free [2]. Deep
brain stimulation of the thalamus and white matter has
recently been discussed [3], [4]. Several studies have used
continuous open-loop electrical stimulation [5], [6], [7].
These and many other results are significant and suggest
that efficacy of open-loop methods for seizure control can
be further improved by feedback techniques.

The evolution of a seizure involves a preictal (i.e., prior
to seizure) transitional state that dynamically differs from
the interictal (i.e., between seizures) and ictal (i.e., during
seizure) states [8]. We define the onset of a preictal
activity as that when the complexity (as measured by the
maximum Lyapunov exponent) of the higher frequency
(super gamma) activity begins to decrease, whereas the
ictal activity is defined as that when the complexity of
the higher frequency activity is at its minimum value.
Clinically, when recording intracranially or extracranially,
there are often clear electrographic changes which can
be seen before the clinical seizure starts, although the
opposite also often occurs wherein the clinical seizure
manifests prior to clearcut electrographic abnormalities.
This is presumed to be in part due to the position of the
recording electrodes, be it near or far from the site of
seizure activity and onset.

The implication of this distinction in the states is that
there is a possibility for seizure detection or prediction and
subsequent preventive intervention. Previous studies have
reported algorithms which detect the ictal state and stimu-
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Fig. 1. The top-level block diagram of an implantable medical device
for autonomous prediction and prevention of seizures. The device is
implemented as a dynamic control loop that consists of feedforward and
feedback pathways to predict and prevent intractable seizures respectively.

late to stop it, often leading to reduction in the number of
seizures [9] with as many as 17 percent of treated patients
rendered seizure-free [10]. These important results suggest
that early detection of the preictal state before the clinical
seizure manifests itself may further enhance the efficacy
of automated seizure control. Although preictal states are
not always apparent on the human electroencephalogram
(EEG), they usually are very clearly apparent (exhibit
themselves well) in in vitro and in vivo animal seizure
models. This work employs an in vitro epilepsy model of
recurrent spontaneous seizures in mouse hippocampal brain
slices [11]. Thus in the remainder of this work we refer to
our early seizure detection strategy as seizure prediction as
valid in animal models.

Control of seizures by electrical stimulation can be
considered as control of a dynamical system with the
goal of keeping it away from the stable manifold. Once
the stable manifold is firmly established, this becomes
a laborious and challenging task. Consequently, in this
context, the ultimate prerequisite for any control algorithm
is the ability to predict the onset of undesirable dynamics
prospectively, not to detect it retrospectively. Hence, the
real-time prediction of state transitions becomes the key to
a successful control strategy.

A number of effective methods have been developed
to find the earliest possible cues to an epileptic seizure
onset. They include power spectrum, principal component
analysis, phase correlations, correlation dimension, Lya-
punov exponents and wavelet artificial neural networks
[12], [13], [14], [15], [16]. A thorough review or seizure
prediction algorithms can be found in [17]. The seizure pre-
diction method utilizing wavelet artificial neural networks
(WANNs) is chosen in this work for its suitability for
an implantable hardware implementation. The inherently
parallel architecture of a WANN can be directly mapped
onto a compact low-power silicon microchip. Additionally,
WANNs perform well in presence of differences among
subjects, and do not require parameter adjustment or any
assumptions about biological signals which are often highly
non-stationary.

In this paper we present the design and experimental
validation of key functional blocks of an implantable
device that senses, amplifies, adaptively learns and clas-
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Fig. 2. A Morlet wavelet with a 5Hz center frequency.

sifies the abnormal brain activity of epilepsy in order to
predict seizures before they take place. Figure 1 depicts
a simplified block diagram of the envisioned autonomous
seizure prediction microsystem with a preventive feedback
shown. The feedforward signal path predicts a seizure. The
feedback path activates a therapeutic intervention upon a
positive prediction. The intervention can be in the form of
an electrical stimulation [18], [19], or a chemical anticon-
vulsant injection [20]. In this paper we focus on a miniature
implantable implementation of the key components of the
feedforward seizure-predicting path.

The rest of the paper is organized as follows. Sec-
tion II introduces the WANN seizure prediction algorithm.
Section III presents a VLSI implementation of the main
functional blocks of the microsystem for seizure prediction.
Section IV contains the experimental results validating the
functionality and efficacy of the microsystem.

II. SEIZURE PREDICTION ALGORITHM

It has been demonstrated in many instances that fre-
quency domain information was important for seizure
or seizure-like event (SLE) onset prediction [21], [22],
[23], [24]. Significant changes in power spectra of various
frequency bands had been found within 20-second time
windows preceding transitions to SLEs in rats [25], [26].
It was also observed that as the extracellular electrical
field recording moved from an interictal state towards
a preictal state, higher frequency components appeared
with progressively greater energies. Using sensitivity mea-
sures and principles of set theory, it was demonstrated
that delta (<4Hz), super gamma (100-250Hz) and fast
ripple (250-400Hz) frequency bands are critical for ac-
curate classification [27]. This observation suggested the
importance of high frequencies (i.e., above 100Hz) during
the development of SLEs and that the time-frequency
information can serve as a significant precursor to an
epileptic seizure. Frequency-related information may be
related to the entrainment of neuronal population firing.
High-frequency epileptiform oscillation is suggested to
be useful in localizing regions of seizure onsets and in
understanding the mechanisms behind seizure generation.



IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING 3

WAVELET

TRANSFORM

z
-1

z
-1

z
-1

INTERICTAL

PROBABILITY

PREICTAL

PROBABILITY

ICTAL

PROBABILITY

S
P

E
C

T
R

O
G

R
A

MS(t)

MOVING WINDOW

{
{

SEIZURE PREDICTION

ICTAL 

PREICTAL 

0.5

0

0..5

A
m

p
lit

u
d

e

0 50 100 150 200 250 300
0

0..5

1

P
ro

b
a

b
ili

ty

Time (s)

INTERICTAL 

{

{

0

0..5

1

P
ro

b
a

b
ili

ty

0

0..5

1

P
ro

b
a

b
ili

ty

Fig. 3. Architecture of the WANN (two layers of the neural network are shown for simplicity). Each WANN output unit generates an estimate
between zero and one, at fixed time intervals, denoting the probability of one possible system state (interictal, preictal or ictal). An example of a
seizure recording in the seizure data set and resulting WANN outputs is shown.

Wavelet transforms are commonly used to generate a
signal spectrum that is localized in time. They have been
employed for spike and seizure localization [28] and to
determine the start times of seizures [29], both in multi-
channel subdural EEG data. Wavelet transforms combined
with artificial neural networks (ANNs) are well suited for
predicting seizures because ANNs can learn to generalize
and solve complex problems, while wavelet transforms
can generate time-varying frequency domain features [16],
[23]. These WANNs are suitable for processing biolog-
ical signals because of their inherent nonlinearity. The
utilization of time-varying frequency information as the
input feature for state classification was the direct result
of experimental findings reported in [21] and [24]. A
major advantage of a WANN is that it captures variations
in the recorded extracellular field potentials during the
progression of SLE episodes. The intrinsic characteristics
of the WANN training allow easy elimination of the
“common” frequency information. Therefore, WANN is a
connectionist approach to understanding the relationship
between the variation of the frequency over time and the
current seizure state.

The WANN was initially implemented in software in
order to validate its functionality. Morlet wavelets are
employed [30]. The Morlet wavelet is a locally periodic
wavetrain constructed by localizing a complex sine wave
with a Gaussian envelope [31] as shown in the example
in Figure 2. Appropriate frequency bands in the range of
0-400Hz are selected as input sequences to the ANN [27].
The WANN utilizes the time-frequency distribution of the
recorded biological signals as its input layer and generates
the probability of seizure states at its output. The synaptic
weights of the WANN were trained using back-propagation
supervised learning [32].

Training and testing of the WANNs was done on in vitro
extracellular field recordings from rat hippocampal slices.
The training set includes data from 14 rats containing a
total of 50 seizure episodes. The test set consists of in vitro

extracellular field recordings from the same rats containing
52 seizure episodes. Neural signals were recorded with a
commercially available bench-top instrumentation ampli-
fier at 1kHz sampling rate. Hippocampal slice recordings
were obtained from male Wistar rats (17-25 days old).
Spontaneous recurrent seizure events were induced by
superfusing the slice with an artificial cerebrospinal fluid
(ACSF) solution containing 0.5mM Mg2+ [33], [11]. This
seizure model has a characteristically short preictal phase.
The duration of preictal activities in the data set ranged
between 15 seconds and 120 seconds.

The wavelet transform was computed over overlapping
moving time windows of 9.5 seconds that capture the time-
frequency content of the recorded neural data at 2 second
intervals (i.e., there is a 7.5 second overlap between suc-
cessive time windows). Based on the data, the optimum
network consists of 40 input units representing the power
of the appropriate frequency bands, a hidden layer of
size 100 and the output layer of size four. Each output node
represents one of the possible states (interictal, preictal,
ictal, and none of the above).

Figure 3 depicts the architecture of the WANN and
includes an example of how the WANN classified data
from a recorded test data set. An episode from a test
data set with an in vitro extracellular field recording over
approximately 280 seconds containing one SLE is shown.
A corresponding time-frequency map was computed using
Morlet wavelets with 40 frequency bins ranging between
0Hz and 400Hz. In this example, an ictal state onset
was identified at t=240s as shown at the bottom right of
Figure 3. The WANN was able to successfully and accu-
rately recognize preictal activity as early as 120 seconds
prior to the ictal onset by choosing the output with the
highest probability. When tested on the test set, the WANN
predicted 90 percent of SLEs as early as preictal states
started with approximately 15 percent of false predictions.
We have also performed preliminary experiments with
human data, confirming the utility of the WANN in early
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seizure detection in vivo. Results of these experiments once
completed will be reported elsewhere.

A number of other wavelet-based strategies for classifi-
cation of ictal activities have been reported [34], [35], [36],
[37], [38], [39]. Daubechies level-four wavelet transform
formulated as a 22-coefficient finite impulse response filter
is employed in [34] and [35]. This algorithm involves
selection of filter characteristics appropriate for a recorded
signal. In our approach, the neural network pruning strategy
selects appropriate combination of frequency band features
in an automated manner. The topology of the network is
also tunable based on standard pruning techniques. Fur-
thermore, the ANN allows for the estimation of nonlinear
relations between the different frequency component and
the observed pathological states of the brain. In [36] the
importance of selecting suitable mother wavelet and using
multiple features such as energy, variance and relative
amplitude for classification is addressed. This may re-
quire certain subjectivity, such as in setting appropriate
thresholds. In our case, the threshold of the output units
of the ANN is selected based on the curvature of the
receiver operating characteristic (ROC) obtained on the
validation data set. In [37] wavelets are utilized to isolate
frequency subbands, before complexity and chaoticity are
measured. Both of these measures may require some degree
of subjectivity in choosing the linear regions. Compared
to [38] and [39] our network uses a wider range of
frequency and subsequently prunes out irrelevant frequency
bins.

III. VLSI IMPLEMENTATION

The neural activity monitoring and time-frequency anal-
ysis microsystem implements the main components of the
WANN seizure prediction algorithm described above on
a miniature low-power platform. It forms the feedforward
path of the block diagram in Figure 1 consisting of the
neural recording interface and the wavelet processor with
an ANN.

The envisioned implantability limits the size of the mi-
crosystem to under one square centimeter. Additionally, the
amount of power dissipated by the microsystem is limited
by tissue heating constraints. Preliminary reports suggest
that heat dissipation resulting in heating of the cortex tissue
by one degree Celsius is safe, which corresponds to power
density of approximately 80mW/cm2 [40]. This section
presents validation of feasibility of a compact and low-
power VLSI implementation of the neural recording inter-
face and the wavelet processor, with the ANN implemented
in software.

A. Neural Recording Interface

Most of the frequency content of the extracellular neural
activity in the brain is concentrated below 5 kHz. Neural
signals amplitude typically ranges from a few microvolts
to a few millivolts. The primary function of the neural
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Fig. 4. Architecture of the neural recording interface comprised of the
neural pre-amplifier and band-pass filter, the second-stage programmable-
gain amplifier, the sample-and-hold cell, and the A/D converter.

recording interface is to amplify such weak neural signals
with minimal circuit noise and non-linearities added to
the output. Due to electro-chemical effects at the tissue-
electrode interface, DC voltage offsets with several orders
of magnitude above the actual signal level are common
across differential recording electrodes and have to be
removed.

The main functional components of the neural recording
interface are shown in Figure 4. The neural signal is
filtered, amplified and digitized. The channel employs two
stages of amplification with the first stage including a band-
pass filter, and the second stage having a programmable
gain. The high-pass filter (HPF) blocks the random DC
voltage offset at the tissue-electrode interface in order to
avoid amplifier saturation. The low-pass filter (LPF) limits
the effect of out-of-band noise and acts as an anti-aliasing
filter. The subsequent sample-and-hold circuit samples the
analog voltage and holds it on a capacitor as needed for
the analog-to-digital converter (ADC).

The tolerable internal circuit noise level of the channel
dictates the minimum amount of power consumption per
channel and minimum dimensions of each channel. A
critical component of the neural recording interface is
the first-stage amplifier as it dominates the noise, power
and area requirements. The amplifier in the first stage of
the channel is a wide-swing transconductance amplifier
with the current-mirror topology optimized for low-noise
operation under power and area constrains [41]. In the
closed loop configuration, the overall midband gain of
the amplifier is determined by the ratio of the capacitors
Cin

Cf
. Based on thermal noise considerations, Cin is chosen

to be 5pF. The 100fF feedback capacitor Cf yields the
mid-band gain of 50. The low-pass corner frequency is
determined by the first stage and is approximately equal to

gm

2πCload

Cf

Cin
. It is tunable in the range of 1kHz to 10kHz

as controlled by the bias current of the differential input
stage. The high-pass corner frequency is (2πCfRf )−1,
where Rf is the resistance connected in parallel with Cf .
To achieve a HPF cut-off frequency below 0.1Hz, a large
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Fig. 5. Micrograph of the main components of the integrated neural
interface fabricated in a 0.35-µm CMOS technology.

resistance is implemented as a MOS device biased in the
subthreshold region of operation [42]. As preserving local
field potentials is important in seizure prediction, the gate
of the high-resistance pMOS transistors is connected to
Vdd. In general, the HPF cut-off frequency can be tuned
by varying this voltage.

The noise requirements of the second stage are reduced
by the gain of the first stage. The second stage employs
the same amplifier topology as the first stage, but can be
biased at a lower power. Gain programmability is achieved
by a configurable bank of capacitors in the feedback of the
second stage. The gain ranges between 200 and 5000, with
the output voltage range of 1.5V.

The sample-and-hold circuit employs a capacitor with
input-independent charge injection, buffered by a source
follower. The ADC utilizes an algorithmic switched-
capacitor topology with four-phase clocking insensitive to
capacitor mismatch [43]. The ADC resolution of 8 bits is
sufficient for epileptic seizure prediction as described here
and can be extended at the expense of moderate increases
in power dissipation and integration area if needed in other
applications.

A micrograph of the neural recording interface fabricated
in a 0.35-µm CMOS technology is shown in Figure 5.
The experimentally measured amplifier input-referred noise
is 13µVrms over the 10Hz-10kHz bandwidth. This corre-
sponds to less than 0.7LSB at 5mV input voltage range
and 8-bit ADC resolution. The two-stage neural amplifier,
filter and sample-and-hold circuit occupy approximately
0.03mm2 area. The two-stage neural amplifier and filter
dissipate 23µW of power. The sample-and-hold circuit
dissipates 33µW at the sampling rate of 10ksps. The ADC
occupies 0.025mm2 area and dissipates 327µW of power
at 50ksps sampling rate as measured on a separate test
chip. The results are comparable to characteristics of other
previously reported integrated neural interfaces [41], [44],
[45], [46], [47].

The power dissipation and integration area character-
istics of the neural interface allow for its multi-channel
implementations on a single chip. Simultaneous recordings
on hundreds of sites in the brain can be performed [48].
Multi-site recordings yield spatial information about a
seizure such as its foci and spatial progression [49]. Such
multi-channel neural interface implementations yield a

vast amount of data [50], [51]. Due to the prohibitive
computational complexity, these data generally have to be
reduced before an on-chip seizure prediction algorithm
can be applied. Multi-channel spike detection has been
employed for neural data reduction [52] but may be of
limited use for seizure prediction. Another approach is
to perform on-chip temporal differentiation of recorded
signals [53] in order to identify an optimal recording
site where the WANN algorithm is to be invoked. Other
seizure localization methods based on multi-channel EEG
recordings have been reported [28]. Currently, on-chip
seizure detection and prediction in multi-site intracranial
neural recordings remain a subject of extensive research.

B. Wavelet Processor

The WANN seizure prediction algorithm described in
Section II requires extensive computing resources to com-
pute the wavelet transform and to perform weight multi-
plication in the two layers of the ANN. The computational
core of these linear transforms can be expressed in terms
of vector-matrix multiplication (VMM) which implies cal-
culation of products between input vectors and a pre-
determined matrix of coefficients. The required computa-
tional throughput is beyond the capabilities of conventional
digital processors, particularly given a small power budget,
as they are typically limited by the serial nature of their
architectures and low memory bandwidth. Due to its inher-
ent parallelism, VMM lends itself well to high-throughput
parallel computing architectures. The parallel architecture
of the WANN implementation presented here is depicted
in Figure 6 (left). Each linear transform is computed on a
corresponding computing array.

The discrete wavelet transform is computed by cor-
relating the input with a set of precomputed wavelets
of different frequencies stored on an array. Instead of
a conventional tree-based approach, wavelet coefficients
are computed in parallel. The frequencies of wavelets
dictate the dimensions of the array. As shown in Figure 2,
most of the energy of the Morlet wavelet falls within an
interval equal to five periods of the wavelet. For the lowest
Morlet wavelet frequency of 5Hz and the sampling rate
of 1ksps, an array with 1024 input dimensions is needed
(i.e., N=1024). The highest Morlet wavelet frequency is
400Hz. To accommodate 40 frequency bins in this range,
the array has 40 outputs (i.e.,M=40). A correlation of
the input vector with the set of wavelets is computed
for every sample, every 1ms. The outputs of the array
are accumulated by the accumulator over the duration
of the input moving window. The accumulator performs
one addition per millisecond and is of low computational
complexity.

As the wavelet matrix is large, an analog VLSI im-
plementation of the parallel computational array of the
wavelet processor is desirable as it can yield high integra-
tion density [54]. In addition to high integration density
analog VLSI implementations can achieve high energy
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Fig. 6. Parallel WANN architecture (left), circuit diagram of CID computational cell with integrated DRAM storage (right, top), and charge transfer
diagram for active write and compute operations (right, bottom).

efficiency [55], [56]. These benefits may come at the cost
of reduced accuracy [54], [56], which is often not critical
in neural recording applications.

We designed, prototyped and experimentally validated a
massively parallel mixed-signal (i.e., analog-digital) VLSI
processor for computing linear transforms such as Mor-
let wavelet transform. Internally analog, externally digital
VMM computation combines the energy efficiency and
density of analog array processing with the precision of
digital processing, and the convenience of a programmable
and reconfigurable digital interface.

Each unit cell in the wavelet processor array shown
in Figure 6 (right) is comprised of a dynamic random
access memory (DRAM) cell and a charge-injection device
(CID) [57] cell, both sharing transistor M2. During the
write operation the data to be stored is broadcast on the
vertical bit-lines (BLs), which extend across the array. A
row to be written to is selected by activating its word-
line (WL) turning transistor M1 on. The output match-
line (ML) is held at Vdd during the write phase creating
a potential well under the gate of transistor M2. This
potential well is filled with electrons or emptied depending
on whether the BL is logic-one or logic-zero respectively.
Logic-one on BLs corresponds to 0V, while logic-zero
corresponds to Vdd. During the compute operation, the
input data is broadcast on the compute-lines (CLs) while
MLs, previously precharged to Vdd, are now left floating.
Logic-one CL bit corresponds to voltage 2Vdd, while logic-
zero corresponds to 0V. Each cell performs a one-quadrant
binary-binary multiplication between its stored logic value
and its CL logic value. An active charge transfer from M2
to M3 can occur only if there is a non-zero charge stored,
and if the potential on the gate of M3 rises above that
of M2, to 2Vdd. In this case, the high-impedance gate of
M2 couples to its channel and raises above Vdd by a fixed
voltage depending on the charge and capacitance of M2.
The cell performs non-destructive computation since the

transferred charge is sensed capacitively on the MLs. Once
computation is performed, the charge is shifted back from
M3 into the DRAM storage transistor M2.

Capacitive coupling of all cells in a single row into a
single ML implements zero-latency analog accumulation
along each row. An array of cells thus performs analog
multiplication of a binary vector with a binary matrix. The
analog array is interfaced with a bank of on-chip row-
parallel ADCs to provide convenient digital outputs. The
architecture is scalable, limited only by sensitivity of sense
amplifiers and accuracy of row-parallel analog addition. It
easily extends to multi-bit data with wavelets stored in a
bit-parallel form in the array (i.e., an I-bit wavelet is stored
on I rows of the array) and inputs presented bit serially (a
J-bit input takes J clock cycles to be fed in) [58].

An integrated prototype of the wavelet processor fabri-
cated in a 0.35µm CMOS technology is shown in Figure 7.
Morlet wavelet templates are stored in the four on-chip
128×256-cell DRAM-based analog arrays in a row-parallel
fashion. The arrays are configured in a 128×1024 orga-
nization (i.e., 1×4 arrays) to accommodate low-frequency
wavelets as discussed earlier. Input data are presented
serially into the input shift registers of the four arrays. In
every computational cycle, a 1024-sample window of the
input signal is correlated with 32 4-bit wavelet templates
stored in the on-chip memory in a bit-parallel format. The
wavelet frequency ranges from 5Hz to 300Hz. Correlation
is performed in parallel on each array, in 256-sample
segments per array. The computed partial inner products
are quantized by four banks of 128 row-parallel ADCs and
added in digital domain to yield full 1024-component inner
products. The processor prototype performs 128×1024
binary multiplications and analog accumulations for every
input sample. At 13.7kHz computing frequency, the four-
quadrant array delivers 1.8 billion binary multiply-and-
accumulate operations per second and dissipates 95µW
of power, which corresponds to computational efficiency
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Fig. 7. The wavelet processor prototype micrograph and floorplan. The
die was fabricated in a 0.35-µm CMOS technology and occupies an area
of 4mm × 4mm.

of over 19 billion binary operations per second for every
milliwatt of power. A further 25-fold improvement in
energy efficiency can be achieved by adiabatic clocking,
with the total load capacitance of the array resonating
with an off-chip inductor in order to generate a sinusoidal
waveform clock [59].

Not included in the power dissipation figure are the
power dissipated in the ADCs and other peripheral circuits
such as control logic, shift registers and sense amplifiers.
The bank of 512 ADCs dissipates 6.3mW at 15ksps
sampling rate. When the ANN is implemented in the
analog VLSI domain the ADCs are not needed, but are
included in the current implementation for convenience
and flexibility of testing. Other peripheral digital circuits
are operated at kHz clock speeds which ensures their low
power dissipation.

The seizure prediction algorithm described in Section II
utilizes 40 frequency bins with 8-bit encoded wavelet
coefficients. This is beyond the capacity of the fabricated
processor due to the costs of low-volume prototyping. To
accommodate these requirements the small-scale prototype
in Figure 7 has to be scaled up by a factor of 2.5 in the
number of rows (320 rows instead of existing 128, to store
40 8-bit wavelets instead of 32 4-bit wavelets). This can be
easily accomplished by increasing the number of rows in
each one-quadrant array to 160 and doubling the number
of arrays, for a total chip area of under 40mm2 and a
proportional increase in power dissipation.

C. ANN

The ANN classifies the underlying dynamics of sponta-
neous in vitro events into interictal, preictal and ictal neural
activity based on the Morlet wavelet features of the neural
signal computed on the wavelet processor. The number of
hidden nodes of the ANN, P , is 100, and the number of

the output nodes, Q, is 4 as shown in Figure 6 (left). It
performs one classification per input moving window, every
2 seconds. The computational complexity of the ANN is
four orders of magnitude less than that of the wavelet
transform (one order in matrix dimensions and three orders
in time).

As the computational requirements and integration area
of the ANN are negligibly small compared to those of
the wavelet transform, it can be easily synthesized in
digital VLSI domain, with relatively small integration area
and power dissipation. Mixed-signal and analog VLSI
implementations are also feasible. In fact, one simple way
to implement the ANN is to re-use the same design as
that employed for the wavelet processor. An example of
such an implementation of a neural network is given
in [60]. To multiply 40 inputs by 100 8-bit weights each, a
800×40 array of CID/DRAM cells is sufficient. Multiply-
ing 100 hidden nodes by four weights each and computing
four non-linear functions on the output nodes requires small
additional resources. Further reduction in power dissipation
of the system can be obtained by eliminating the ADC bank
in the wavelet transform processor and by employing a
fully analog ANN implementation such as the one reported
in [61]. This comes at the cost of reduced programmability
and possibly limited accuracy.

As the ANN can be implemented by re-using the same
computing technology and requires negligibly small com-
puting resources and thus small integration area and power,
its prototyping is not needed to validate the feasibility of
such a VLSI implementation. To maintain the flexibility
needed in experimental training and run-time operation of
the prototype, in this work the ANN was implemented in
software.

IV. EXPERIMENTAL VALIDATION

Both the functionality of all main components of the
microsystem, and its efficacy in seizure prediction have
been experimentally validated as described next.

A. Functionality Validation

In order to validate the functionality of the microsystem,
the two main components, the neural recording interface
and the wavelet processor described in the previous section,
were experimentally characterized in seizure recording and
time-frequency analysis.

The functionality of the neural recording interface has
been validated in in vitro extracellular neural activity
recording experiments. The recording channel was con-
nected to differential recording electrodes. The electrodes
were inserted in a rat hippocampus where SLEs were in-
duced in the presence of low Mg2+ ACSF [11]. Figure 8(a)
shows a SLE recording in vitro from a rat hippocampus
amplified and filtered by the neural recording interface
chip.

The neural recording in Figure 8(a) was fed to the input
of the wavelet processor. To validate the functionality of
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Fig. 8. (a): An example of a seizure recording performed by the
neural recording interface chip; (b): a corresponding time-frequency map
computed on the wavelet transform processor chip; and (c): resulting ANN
outputs. Each output unit generates an estimate between zero and one, at
fixed time intervals, denoting the probability of one possible system state
(interictal, preictal or ictal).

the wavelet processor, a time-frequency map of this record-
ing was computed on-chip. The output of the processor
represents the time-frequency map of the acquired signal.
Figure 8(b) depicts the time-frequency map of the SLE
recording shown in Figure 8(a) computed by the wavelet
processor. The frequency range from 0.6Hz to 25Hz with
the recording downsampled by a factor of 10 was chosen
in this experiment in order to visually validate the accuracy
of the time-frequency map. Below 5Hz at the start of the
ictal state, seizures have two characteristic energy bands
with their frequencies linearly decreasing over time. These
bands can be clearly observed on the time-frequency map
in Figure 8(b). A software emulation of the processor in
Matlab yields identical results.

The time-frequency map computed and quantized on the
wavelet processor was fed into the software-based ANN.
Figure 8(c) shows the outputs of the ANN classifying the
recording in Figure 8(a) using the time-frequency map in
Figure 8(b) as its input. In this example, the network detects
the onset of the preictal and ictal states adequately even in
the absence of high-frequency information. As described
in the next section, high-frequency Morlet wavelet coeffi-
cients were computed on the wavelet processor in order to
validate its efficacy in seizure prediction.

B. Efficacy Validation

The efficacy of the neural activity monitoring and time-
frequency analysis microsystem in predicting seizures was
validated on an in vitro extracellular field recording data
set. As detailed in Section II, the low-Mg2+ in vitro model
of spontaneous recurrent seizure in mouse hippocampal
slices was utilized. The training and test sets include data
from 14 rats containing a total of 102 seizure episodes
sampled at 1kHz.

Time-frequency maps of in vitro extracellular field
recordings in this data set were computed on the wavelet
processor shown in Figure 7. Time-frequency maps of time
windows corresponding to 50 seizure episodes were used
to train the ANN. The ANN was tested on time windows
corresponding to the remaining 52 seizure episodes. The
microsystem correctly detects 90 percent of seizures with
50 percent false positive rate. These results are identical to
those obtained by emulating the hardware in Matlab.

The high false positive rate is due to simplifications
in the prediction algorithm made in order to reduce the
integration area of its on-silicon implementation (32 fre-
quency bins from 5Hz to 300Hz at 4-bit resolution). When
the wavelet processor capacity is extended to include
40 frequency bins at 8-bit resolution ranging from 5Hz
to 400Hz, it is expected that approximately 90 percent
of seizures will be predicted correctly with approximately
15 percent of false predictions, as detailed in Section II.

To reduce the false positive rate in the hardware-based
implementation, the recorded neural activity episodes clas-
sified as seizures by the microsystem are subsequently fed
to the WANN seizure prediction algorithm trained on the
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Fig. 9. Receiver operating characteristic (ROC) of the system.

same data set. The software-based classification is only
triggered whenever the hardware makes a positive predic-
tion. As the number of non-seizure episodes is usually
much greater than the number of seizure episodes, this
double-pass approach yields savings in the computational
load of a factor of two which makes the WANN algorithm
suitable for implementing on a low-power digital signal
processor (DSP).

The resulting relationship between the true positive rate
and the false positive rate in seizure prediction is described
by the ROC curve shown in Figure 9. The depicted ROC
demonstrates that approximately 85 percent of seizures in
the test data set were predicted correctly as soon as a
preictal state started with approximately 8 percent of false
predictions. According to Figure 1, this translates into an
8 percent overhead in therapeutic brain stimulation. This is
a significant improvement in selectivity of brain stimulation
compared to currently available continuous stimulation
techniques [2].

C. Area and Power Considerations

As described in Section III, the area of the large-
scale implementation of the seizure prediction microsystem
accommodating 40 frequency bins with 8-bit coefficients is
dominated by the array computing the wavelet transform.
The wavelet transform processor is estimated to occupy
over 90 percent of the silicon area, with the remaining
10 percent utilized by the integrated neural interface and
an on-chip implementation of the ANN. The total silicon
area is estimated to be under 45mm2. Such a die size
is well within maximum die size limitations of the VLSI
technology as dictated by yield considerations.

Given the area of the microsystem, the power density of
80mW/cm2 deemed safe for the cortex [40] yields the total
power budget of 36mW. As detailed in Section III, the total
power dissipation of the large-scale implementation of the
seizure prediction microsystem is well within this budget,
ensuring heat dissipation that is safe for the brain tissue.

TABLE I

SUMMARY OF SYSTEM CHARACTERISTICS

NEURAL INTERFACE
Programmable Gain 46dB - 74dB
Input-referred Noise 13µVrms

Noise Bandwidth 10Hz - 10kHz
LPF Cut-off Frequency 1kHz - 10kHz
HPF Cut-off Frequency below 0.1Hz
Max Sampling Rate 40ksps
Integration Area 0.055mm2

Power Dissipation
Amplifier 23µW

S/H circuit, 10ksps 33µW

ADC, 50ksps 327µW

WAVELET PROCESSOR
Wavelet Coefficient Resolution 4-bits
Memory Dimensions 128 × 1024
Wavelet Frequency Range 5Hz - 300Hz
Number of Frequency Bins 32 bins
Integration Area 16mm2

Power Dissipation
Array, 13.7kHz 95µW

ADC bank, 15ksps 6.3mW

This makes the system suitable for early seizure detection
in vivo. While initial in vivo experiments can be performed
on animals with implanted recording electrodes connected
to the system by an electro-magnetically shielded cable,
full implantation will require adding auxiliary circuits such
as biasing network and clock generation circuits as well as
a wired or wireless communication interface.

A summary of experimental characteristics of the system
is given in Table I.

V. CONCLUSION

We have presented an architecture and VLSI imple-
mentation of a neural activity monitoring and time-
frequency analysis microsystem for early detection of
epileptic seizures. The microsystem is comprised of a
neural recording interface for acquiring extracellular neural
activity, and a wavelet ANN processor for real-time time-
frequency analysis and anticipating the onset of a seizure.
The neural recording interface and the wavelet transform
processor have been prototyped in a 0.35-µm CMOS
integrated circuit technology. The main components of the
microsystem were experimentally validated in recording
electrical activity of the rat brain and its time-frequency
analysis. Performance of the silicon prototype validates the
effectiveness of the approach in early detection of epileptic
seizures.
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