
Connecting the Dots - Exploring the Benefits of Cross-Disciplinary Learning

in a First-Year Programming Course

Abstract

Engineering students often perceive their first-year course as disconnected, leading to

disengagement with subjects they view as irrelevant to their fields. This issue is amplified when

course assignments focus narrowly on specific concepts without showcasing interdisciplinary or

real-world applications. However, as students progress in their studies and careers, they often

recognize the interconnectedness of these foundational topics. In this work, we investigate the

impact of integrating interdisciplinary concepts into programming labs and assignments, drawing

on principles from Dynamics and Electrical Fundamentals. By embedding these core engineering

concepts into a first-year programming course, we aim to foster a broader perspective, enhance

problem-solving skills, and spark greater engagement among students. Our approach involved

designing assignments that incorporated cross-disciplinary content and others without such

integration, enabling comparative analysis. Anonymous surveys captured students’ perceptions,

learning experiences, and engagement levels. A mixed-methods research design combined

quantitative survey data with qualitative feedback. Our results reveal that 78% of students felt

cross-disciplinary assignments enhanced their understanding of real-world programming

applications, while 92% recognized connections between programming and concepts from

Dynamics and Electrical Fundamentals. Moreover, 60% found these assignments more engaging,

with one student noting they provided "a taste of what upper-year projects might look like." We

conclude that incorporating cross-disciplinary content enhances the student learning experience

through observing fields intertwining and their knowledge applied to real-world applications.

Introduction

Engineering students often perceive different subjects that they study are unrelated, particularly

in their first year of studies. This perception can lead to a lack of engagement with courses they

deem irrelevant to their chosen fields. The issue is exacerbated when course assignments focus

narrowly on specific concepts, without demonstrating real-world relevance or interdisciplinary

connections. As a result, students may struggle to appreciate the broader applicability of these

foundational topics taught in various courses [1]. Perhaps later as students progress in their

studies or when they transition into professional roles, they often realize how related the

concepts they learned truly are.

Research shows that students learn better when they can see clear, real-world connections among

the topics they study [2]. However, creating strong links between foundational courses requires

thoughtful curriculum design that highlights shared principles and interdisciplinary applications.

For example, Schulz et al. [6] introduced interdisciplinary learning in design courses to meet

sustainable development goals in design projects [7]. In some cases, it requires creating new

courses as Baker et al. did to promote an interconnected view of concepts [8]. Also, linking

topics from different fields together is not restricted to a particular level as prior efforts show its

effectiveness in all levels [3-5].

The problem is in many introductory programming courses the focus often remains on teaching

syntax, algorithmic thinking, and basic programming constructs. Although crucial for technical

competence, this narrow approach can inadvertently de-emphasize how programming skills

integrate with other engineering disciplines, such as Dynamics and Electrical Fundamentals. As a

result, students may struggle to see immediate connections between their programming

assignments and practical applications in engineering contexts—thereby contributing to

disengagement and a lack of motivation.

In this study, we explore the impact of integrating interdisciplinary concepts from other courses

students are currently taking into the design of programming labs and homework assignments.

Specifically, we incorporated principles from Dynamics and Electrical Fundamentals into a

first-year programming course. Our approach reflects a belief that students engage in a

Problem-Based Learning approach that promotes transferable skills, fosters a more holistic

understanding enhancing students' problem-solving skills, ultimately producing well-rounded

engineers capable of addressing complex challenges [9].

The goals of this work are threefold: (1) to develop a broader perspective on the relevance of

programming to engineering tasks, (2) to provide opportunities for students to apply theoretical

knowledge to practical scenarios, reinforcing their ability to transfer concepts across different

contexts, and (3) to engage students with cross-disciplinary content, sparking curiosity and

deeper engagement with the material.

Our research questions are:

1. Does incorporating cross-disciplinary content in programming labs improve students’

perceptions of real-world applications of programming?

2. Are students’ knowledge getting reinforced when exposed to interdisciplinary

programming assignments?

3. To what extent does embedding Dynamics and Electrical Fundamentals concepts affect

student engagement and motivation in programming courses?

This approach may serve as a framework for integrating interdisciplinary learning in other

foundational courses, demonstrating how targeted cross-disciplinary assignments can improve

both student engagement and conceptual understanding. This paper’s findings have implications

for curriculum designers, instructors, and administrators who seek to cultivate a more cohesive

and applied engineering education experience.

Methodology

Design of the Assignments

We designed a series of programming assignment questions for a first-year programming course,

i.e. APS 105 Computer Fundamentals, that draws on concepts from MIE 100 Dynamics and ECE

110 Electrical Fundamentals. We call these questions related-to-other-courses questions. Other

assignment questions were created without interdisciplinary connections, which we call

“conventional” assignments or questions. There are three programming assignment types: a

programming assignment with (i) only conventional questions, (ii) only related-to-other-courses

questions, or (iii) both kinds of questions. The presence of a variety of questions in programming

assignments allow for a comparative analysis as inspired by Prince et al. [10].

A team of instructors teaching programming, dynamics and electric fundamentals in first year

engineering met to discuss the concepts discussed in dynamics and electric fundamentals that we

can create a program for. We did not want to introduce new concepts that have not been taught to

students as this defeats the purpose of engaging students with other familiar topics. We also

ensured that we did not create questions on topics not yet discussed in the dynamics or electric

fundamental courses. Topics we focused on were kinematics and motion in space in dynamics

and electric forces and circuit analysis in electric fundamentals.

Question 1: In another question, students were asked to calculate the escape velocity, which is

the minimum initial velocity to escape a planet’s gravitational pull, of a particular planet. The

programming concepts required are using math library functions and arithmetic operations.

Students were told about this program for a small probe that is exploring a mystery planet as part

of a space exploration initiative to link it to a real-world application.

Question 2: A question designed to link programming with electrostatic forces asked students to

calculate the force along with the units between two particles of known charges and distance

between them. This required students to apply the Coulomb’s law equations after doing the

appropriate unit conversions, and print the force with appropriate units. The programming

concepts required are using math library functions, nested-if statements to determine the

appropriate unit conversions at the time of calculating and printing the force. Students were told

this program is helping a scientist in a lab determine the force quickly to link it to a real-world

application.

Question 3: The question that related kinematics to programming was asking students to find the

angle at which a robot has to throw a ball to score a goal in basketball. This required knowledge

of projectile motion and loops in programming. Students had to program a code that loops over

angles and plug it in the projectile motion equations until it finds the angle that scores a goal.

The question was framed as a story where students are told this is part of a robot basketball

shooting competition to link it to a real-world application. The projectile motion equations were

given to students to help them review the concepts.

Question 4: In another programming assignment, students were asked to write a program for a

circuit simulator. The circuit simulator stores the values of resistors in a circuit in series to

insert/remove resistors, calculates the current across resistors and the voltage across one resistor.

This requires knowledge of Ohm’s law and circuit analysis from electric fundamentals in

addition to linked lists in programming to add data structures of resistors into the list/circuit.

In all of the related-to-other-courses questions, first, we were relating coding tasks to real-world

engineering scenarios that students were already exposed to in other courses. Second, by

leveraging programming skills in other disciplines, we aimed to have students transfer their

foundational knowledge of other courses to programming and vice versa. Third, linking multiple

areas of study fosters curiosity and sense of purpose increasing engagement with material studied

in the curriculum.

These questions were mixed with other conventional questions such as finding the arrival time of

a trip given the start time and the length of the trip, setting rules for lucky numbers and writing a

program that finds if a number is lucky, playing the word puzzle using 2D arrays, and estimating

the value of pi using Monte Carlo estimation technique. These questions were added to have

allowed students to reflect on their experience by comparatively analysing the difference.

Measuring the Effectiveness

Anonymous surveys were administered to assess students' perceptions of the integrated

approach, its impact on their learning, and overall satisfaction. Ethical approval for this study

was obtained from the University of Toronto under protocol number RIS Protocol Number

46956. A mixed-methods research design was employed, combining quantitative survey data

with qualitative feedback from open-ended questions.

The goal of the survey was to ask the students on their experience to answer our research

questions. For our first research question, “Does incorporating cross-disciplinary content in

programming labs improve students’ perceptions of real-world applications of programming?”,

we asked students to what extent related-to-other-courses questions helped them link

programming concepts and dynamics and electric fundamentals concepts together and did

related-to-other-courses questions allow the student to see real-world applications.

For our second research question, “Are students’ knowledge getting reinforced when exposed to

interdisciplinary programming assignments?”, we asked students to what extent

“related-to-other-courses” programming questions reinforce knowledge of other engineering

concepts.

For our third research question, “To what extent does embedding Dynamics and Electrical

Fundamentals concepts affect student engagement and motivation in programming courses?”, we

asked students to what extent including “related-to-other-courses” content made programming

lab assignments more interesting and engaging compared to the “conventional” assignments.

To help us determine if there is bias, we asked students to what extent was it easy to understand

related-to-other-courses courses and conventional questions.

Our open-ended questions involved asking if there were any challenges students faced doing

related-to-other-courses questions and if there are any other suggestions they have.

The survey was distributed to 550 students taking a first-year programming course at the end of

the semester shortly before final exams, and after the last lab of the course was released. For

survey questions that have asked for a rating, the score is 1 for strongly disagree, 2 for disagree,

3 for neutral, 4 for agree and 5 for strongly agree.

Results and Discussion

Out of 550 students, 50 students participated in the survey. Looking at how students perceive the

related-to-other-courses questions and conventional questions, students thought that both

questions had the same level of difficulty. The responses show that students rated the easiness of

conventional and related-to-other-courses questions 4.36 out of 5 on average. We can safely

assume that the level of difficulty did not affect students' perception in determining their

experience.

In Fig. 1, we show the students answers to if students were able to see the connection between

the courses in related-to-other-courses questions. 92% students were able to see the connection

between the courses, which allows us to ask these students if this connection had an impact on

their experience.

Fig. 1. Were students able to see a connection between the programming course (APS 105) and

the other courses (MIE 100 and ECE 110)?

In Fig. 2, we observe students were capable of seeing real-world applications of programming

through related-to-other-courses questions, which helps us answer the first research question

with 78% of students strongly agreeing or agreeing.

Fig. 2. Were students able to see real-world applications of programming in

related-to-other-courses questions?

In Fig. 3, we observe students having different opinions on where related-to-other-courses

questions reinforce their understanding of other engineering courses. This helps us answer the

second research question that 74% of students are agreeing or neutral, which shows that there is

at least no harm done to their understanding of other engineering courses. From the challenges

that students shared, a student mentioned that related-to-other-courses questions brought the

challenges they have with other courses into a programming course. This made them afraid that

they may not score high on these programming questions for reasons unrelated to their

programming skills. This may explain the reason for 26% disagreeing with the statement.

Fig. 3. Were students’ knowledge of other courses getting enforced.

In Fig. 4, we observe 60% of students find related-to-other-courses more engaging and

interesting than conventional questions and 16% are neutral. This helps us answer our third

research question.

In the open-ended questions where students were asked if there is something they would like us

to continue or start doing, many students mentioned that they appreciate their inclusion and were

interested in having problems from Calculus included as well. Multiple students commented that

the related-to-other-courses questions were not focusing on difficult or challenging concepts.

This was put in mind as we were developing the questions ensuring we give the students the

equations needed to solve the problem. For example, a student mentioned “I believe that the

“related to other courses” are more interesting than conventional ones. I like the fact that they are

related, but do not require difficult skills that would shift the attention away from coding.”

However, there were other students who thought the engineering concepts were simplistic:

“Perhaps consider choosing more difficult problems because the students are mostly familiar

with the basics, so creating a program that only calculates resistors in series was a little easy.

Regardless, lab9 did teach me a lot about linked lists in the end, so not really much of a

complaint if I understood the topic.”

Some of the comments mentioned that the related-to-other-courses made them feel like an

engineer, for example, a student mentioned: “I really enjoyed the "related-to-other-courses" parts

for the labs. I think having more of them would be a great idea. It really makes you feel like an

engineer, when you are able to use knowledge from different courses to code software.” Also,

the same student appreciates the relation to real-world applications in the problem as they said: “

When coding things for MIE 100 and ECE 110, it is very easy to pretend that you're doing

something cool like coding for a spaceship software or a cool robot. As well, it gives us a

taste of what future projects might look like (I've seen upper year hardware/software design

courses). So in the future, I think other students would appreciate having more

"related-to-other-courses" parts or even full labs.”

However, some students in the open-ended questions about challenges mentioned that they

dropped the dynamics and electric fundamentals courses or struggled with these two other

courses, which made them feel they are at a disadvantage to other students due to reasons

unrelated to programming. In the future, we may mention in lab assignments that since the

problem is explained in the lab handout, we don’t believe if someone is not taking the other

courses, they won’t feel at a disadvantage.

Conclusion

Our study highlights the significant benefits of integrating interdisciplinary concepts into

programming courses for engineering students. By connecting foundational programming skills

with real-world applications drawn from Dynamics and Electrical Fundamentals, we observed

increased student engagement, improved perceptions of the relevance of programming, and

enhanced problem-solving skills. The majority of students appreciated the interdisciplinary

approach, with many noting that it deepened their understanding of real-world programming

applications and provided a glimpse into the complexities of upper-year projects.

Qualitative feedback further emphasized the value of these assignments, as students expressed

how they felt more like engineers applying knowledge across disciplines. However, the results

also revealed important considerations for future implementations. While many students found

the assignments engaging and appropriately challenging, some suggested incorporating more

complex problems to better align with their growing expertise. Conversely, others who struggled

with Dynamics or Electrical Fundamentals felt at a disadvantage, raising the need for clearer

communication that the assignments are designed to be accessible regardless of prior

coursework.

In response to this feedback, future iterations of the labs will aim to balance complexity with

accessibility, ensuring all students can engage meaningfully with the material. Additionally,

expanding the interdisciplinary scope to include concepts from Calculus and other core

engineering courses could further enhance the learning experience and broaden the appeal of

these assignments. Overall, our findings showed the value of interdisciplinary integration in early

engineering education and provide a framework for designing programming assignments that

prepare students for the multifaceted challenges of their future careers. In addition, this paper’s

findings have implications for curriculum designers, instructors, and administrators who seek to

cultivate a more cohesive and applied engineering education experience. For future work, we

aim to extend this approach to another second-year programming course and include more

advanced problems as suggested by the students.

References

[1] T. A. Litzinger, L. R. Lattuca, R. G. Hadgraft, and W. C. Newstetter, "Engineering education
and the development of expertise," Journal of Engineering Education, vol. 100, no. 1, pp.
123–150, 2011. doi: 10.1002/j.2168-9830.2011.tb00006.x.

[2] A. H. Espera and N. P. Pitterson, "Exploring Students’ Learning of Electric Circuits in

Real-world Context," presented at the 2021 ASEE Virtual Annual Conference Content

Access, Virtual Conference, Jul. 2021. doi: 10.18260/1-2--37148.

[3] Y. Zhang, X. Zhang, T. Li, and M. Ye, "Design of Embedded Interdisciplinary Educational

Program: A Case Study-based on an AI Certification Program," presented at the 2024 ASEE

Annual Conference & Exposition, Portland, Oregon, Jun. 2024. doi: 10.18260/1-2--47127.

[4] R. Lavi, C. Cong, Y. Lai, J. A. Lavallee, G. L. Long, N. Melenbrink, and A. B. Mitra, "The

Evolution of an Interdisciplinary Case-Based Learning First-Year Course," presented at the

2023 ASEE Annual Conference & Exposition, Baltimore, Maryland, Jun. 2023. doi:

10.18260/1-2--44451.

[5] P. Xu, W. Zhang, and W. Zhang, "Influence of Interdisciplinary Teaching System on

Interdisciplinary Competence of Engineering Graduate Students: Analysis of Mediating

Effects of Interdisciplinary Identity," presented at the 2023 ASEE Annual Conference &

Exposition, Baltimore, Maryland, Jun. 2023. doi: 10.18260/1-2--43692.

[6] M. Borrego, J. E. Froyd, and T. S. Hall, "Diffusion of engineering education innovations: A
survey of awareness and adoption rates in U.S. engineering departments," Journal of
Engineering Education, vol. 99, no. 3, pp. 185–207, 2010. doi:
10.1002/j.2168-9830.2010.tb01056.x.

[7] A. Schulz, C. Shriver, B. Seleb, C. Greiner, D. Hu, R. Moore, M. Zhang, N. Jadali, and A.

Patka, "A Foundational Design Experience in Conservation Technology: A

Multi-Disciplinary Approach to Meeting Sustainable Development Goals," presented at the

2022 ASEE Annual Conference & Exposition, Minneapolis, MN, Aug. 2022. doi:

10.18260/1-2--40887.

[8] J. M. Baker, K. Chandrashekhara, R. H. Hall, and S. E. Watkins, "Interdisciplinary Learning

through a Connected Classroom," International Journal of Engineering Education, vol. 20,

no. 6, pp. 1167–1176, 2004.

https://doi.org/10.1002/j.2168-9830.2011.tb00006.x
https://doi.org/10.1002/j.2168-9830.2010.tb01056.x

[9] J. Strobel and A. van Barneveld, "When is PBL more effective? A meta-synthesis of
meta-analyses comparing PBL to conventional classrooms," Interdisciplinary Journal of
Problem-Based Learning, vol. 3, no. 1, pp. 44–58, 2009. doi: 10.7771/1541-5015.1046.

[10] M. J. Prince and R. M. Felder, "Inductive teaching and learning methods: Definitions,
comparisons, and research bases," Journal of Engineering Education, vol. 95, no. 2, pp.
123–138, 2006. doi: 10.1002/j.2168-9830.2006.tb00884.x.

https://doi.org/10.7771/1541-5015.1046
https://doi.org/10.1002/j.2168-9830.2006.tb00884.x

	Connecting the Dots - Exploring the Benefits of Cross-Disciplinary Learning in a First-Year Programming Course

