
Advancing Sustainable Communities in Scientific
OSS: A Replication Study with Astropy

Jiayi Sun*, Aarya Patil†, Youhai Li‡, Jin L.C. Guo§, Shurui Zhou*

*University of Toronto, †Max Planck Institute for Astronomy, ‡Carnegie Mellon University, §McGill University

Abstract—Open-source software (OSS) fosters transparency
and collaboration across various domains. Scientific OSS, built on
the open-source model, has been especially valuable in supporting
scientific discovery and the corresponding research communi-
ties. However, ensuring the sustainability of the community
by attracting newcomers and retaining existing contributors is
recognized as a major challenge for the long-term success of
OSS. While previous research has studied sustainability in OSS
broadly, the active involvement of scientists—many of whom
lack formal training in professional software engineering—and
the presence of highly interdependent projects that create a
multi-project ecosystem with interconnected communities may
introduce unique challenges that differ from those in commonly
studied OSS contexts. In this study, we explore sustainability
challenges and opportunities within the scientific OSS commu-
nity, aiming to understand how these aspects align with or differ
from those in previously researched OSS communities. Through
a survey-based replication study in the Astropy Project—a widely-
used OSS ecosystem in astronomy—we gathered insights from
disengaged contributors regarding their motivations, reasons for
disengagement, and suggestions for improving community sus-
tainability. Our findings reveal key motivations driving contribu-
tions to scientific OSS, identify barriers to sustained engagement,
and propose strategies to address these challenges, highlighting
areas for future research.

Index Terms—scientific software, open-source software, sus-
tainable community

I. INTRODUCTION

Scientific discoveries in fields like biology, physics, and as-
tronomy increasingly rely on software to support data analysis
and computational tasks. Scientific software (also known as
research software), encompassing source code, algorithms,
scripts, workflows, and executables created for scientific pur-
poses [1], plays a vital role in advancing these efforts. Build-
ing on the success of open-source models, many scientific
communities have adopted open-source development for their
projects, creating ecosystems like ImageJ for biomedical imag-
ing [2] and Biopython for bioinformatics [3]. These efforts
have boosted research reproducibility and reuse, enabling
scientific breakthroughs like gravitational wave research [4]
and COVID-19 molecular simulations [5]. As reliance on
software grows, ensuring its sustainability—so scientists can
understand, replicate, and expand on results—has become a
major priority [6], [7], with increasing global investments
reflecting this need [8]–[15].

A widely recognized and persistent challenge within the
OSS communities is enhancing sustainability, particularly in
motivating new contributors to join and encouraging existing
members to remain actively engaged over time. Although

prior research has investigated factors contributing to con-
tributor disengagement and suggested approaches to improve
the sustainability of the OSS communities, these efforts have
primarily centered on non-scientific OSS. Scientific OSS com-
munities, however, differ from general OSS communities in
several respects, notably in (1) the diversity of team members’
backgrounds and (2) the complexity of interdependent rela-
tionships with other projects in the larger ecosystem. Specifi-
cally, due to the interdisciplinary nature of scientific software
development, one primary challenge highlighted in previous
research is that scientists generally lack sufficient training in
software engineering (SE), which compromises the quality,
usability, and sustainability of scientific software [16]–[18].
This challenge becomes increasingly important as the software
evolves to be more complex. To address such a challenge, ex-
perienced software engineers are frequently brought on to the
team to handle crucial engineering tasks [19]–[22]. However,
interdisciplinary collaboration between scientists and software
engineers can be difficult because the two groups often have
different objectives (research vs. development), educational
backgrounds, and mindsets [20], [23]–[25], thereby hindering
the software development process [26]–[29]. Furthermore, due
to the interdependencies among projects within the broader
ecosystem of similar scientific domains, OSS communities
are interconnected and often overlap rather than function
in isolation—a dynamic that remains underexplored from
a sustainability perspective. Consequently, these differences
prompt an inquiry into (1) whether scientific OSS encounters
comparable challenges related to community sustainability;
and (2) whether the existing solutions in OSS (e.g., effective
governance of OSS community, sponsors and donations to
support developers [30], [31]) can be directly applied to
scientific OSS communities.

While the sustainability of OSS community can manifest in
different aspects, we focus on the community retention aspect
in current study as understanding why contributors stay—or
disengage—can provide actionable insights for improving
community structures, governance, and support mechanisms.
Therefore, in this study, to understand the challenges and
opportunities regarding sustaining scientific OSS communities,
we explore the following research questions:

• RQ1 (Motivation): What are the motivations for con-
tributing to scientific OSS?

• RQ2 (Disengagement): What are the main factors for
disengaging from scientific OSS?

• RQ3 (Suggestions for improvement): How to improve



the sustainability of scientific OSS communities from
practitioners’ perspectives?

To address these RQs, we conducted a replication study [32],
[33] using a survey with disengaged contributors of the
Astropy project to understand their motivations for contribut-
ing and reasons for disengagement. We selected the Astropy
project—an ecosystem of open-source Python libraries in as-
tronomy with over 10 years of development history—due to its
established community structure and diversity of contributors
across 51 interoperable libraries, each maintained as separate
GitHub repositories (as of August 2022) [34]. This diversity
and scale provide an ideal environment for examining com-
munity sustainability challenges and patterns in contributor
engagement, potentially offering insights applicable to other
scientific OSS communities.

Our findings reveal that while scientific OSS communities
in the Astropy ecosystem share common challenges with
general OSS, such as onboarding new contributors and
maintaining engagement, they also face unique sustainability
issues. Unlike general OSS, where motivations have recently
shifted toward social factors like altruism, scientific OSS
contributors are still predominantly driven by own-use,
reflecting the research-driven nature of these projects. This
focus on own-use also explains why contributors often
disengage as their research interests change or due to the
steep learning curve, suggesting that community-centered
retention strategies alone may be insufficient.

Drawing from our findings, we propose future research and
tool development focused on supporting the long-term viability
of the Astropy project and scientific OSS communities more
broadly, such as developing quantitative metrics for academic
acknowledgment within OSS and improving SE infrastructure
to facilitate contribution workflows.

II. RELATED WORK

A. Scientific Software Development & Scientific OSS

Research has identified key technical obstacles in scientific
software development, from design [35] to testing [36] and
release [37]. Scientific software often struggles to meet quality
standards, particularly in traceability [38], [39], reproducibil-
ity [16], [40], [41], and sustainability [6], [7]. Many funding
bodies now emphasize the need for long-term sustainable soft-
ware [42]–[46], recommending improvements include training
scientists in programming [16], [18] and strengthening main-
tenance infrastructure [26]. However, reproducibility and sus-
tainability challenges persist [41], [47] despite ongoing efforts.

In recent years, scientific OSS communities also pub-
lish papers to document their experiences, share insights on
project and community management, and promote citation to
enhance contributor recognition. For example, the rOpensci
community [48] shared strategies for building sustainable
communities through social media engagement, workshops,
and reproducibility-focused workflows [49]. The Astropy com-
munity published three major papers [50]–[52] over nine years,
covering software features, community efforts, governance,
and funding. Similarly, the 2019 CS&S report [53] highlighted

sustainability themes like funding and leadership from surveys
of research-driven OSS communities.

Moreover, within the context of scientific OSS, software
engineering (SE) research communities have begun to explore
scientific OSS from various angles, including collaboration
practices among various roles based on contributors’ academic
seniority [54], and technical debt present in the documentation
of scientific OSS [55].

Complementing the body of research published across
various communities, our study investigates deeper into the
sustainability challenges faced by scientific OSS communities,
specifically through an examination of the experiences of
disengaged contributors to identify challenges that existing
community sustainability strategies have yet to address. We
explore community sustainability from both contributor and
ecosystem perspectives, offering a more comprehensive un-
derstanding of these challenges.

B. Sustaining OSS Communities in General

1) Motivation for contributing to OSS.
Because of the voluntary nature of contributions, OSS

projects have been facing sustainability challenges regarding
retaining existing contributors and attracting newcomers [56].
Prior studies investigated the motivation of different types
of contributors, including long-term core contributors and
peripheral contributors who make casual contributions [57].
Various types of motivations have been observed, including (1)
intrinsic motivations, such as altruism, kinship, fun, and ideol-
ogy; (2) internalized extrinsic motivations such as reputations,
reciprocity, learning, and own-use (e.g., “scratch one’s own
itch”) [58]–[60]; and (3) extrinsic motivations, such as career
and pay [61]. In 2021, Gerosa et al. revisited the motivations
for contributions previously identified in research on OSS
projects to examine how motivation has evolved in light of
the emergence of platforms like GitHub [62]. They found
a growing emphasis on social motivations (e.g., altruism to
help others and community, or reputation to seek recognition
for contribution) over the years, shifting from the own-use to
address personal needs.

2) Reasons for disengaging the OSS community
Still, when contributing to OSS projects, the disengagement

of existing contributors due to reasons like heavy work-
loads [63] or hostile community culture [64] poses another
challenge to the sustainability of OSS projects. To investigate
why established OSS contributors disengage, Miller et al. [63]
surveyed contributors who had ceased activity on GitHub,
finding that the most common reasons of disengagement were
occupational, such as job changes or increased workload, but
social and technical reasons were also cited, including loss of
interest or platform issues.

3) Suggestions for sustaining OSS community.
Moreover, newcomers face both social barriers (e.g., lack

of social interaction with maintainers) and technical barriers
(e.g., lack of necessary previous knowledge, difficulty finding
tasks to work on) [65] when it comes to contributing to
OSS projects. To lower the entry barrier for contribution, best



practices such as good first issues [66], mentoring [67], and
the Google Summer of Code programs [68] have been adopted
by OSS projects to help onboard newcomers. At the same
time, many projects have leveraged donations and funding
from organizations to better support the maintenance process
and retain existing contributors [31], [69]. Other practices such
as the Code of Conduct are also widely adopted to facilitate
welcoming and healthy community cultures [70].

To assess whether this observation holds within scientific
OSS communities, our replication study compares the moti-
vations identified by Gerosa et al. [62] with the reasons for
disengagement observed by Miller et al. [63]. We highlight
the unique characteristics of scientific OSS communities and
explore strategies for improving community sustainability.

C. Differences between Scientific OSS and OSS in general

As a subset of the OSS communities in general, scientific OSS
face the commonly mentioned sustainability challenges, such
as attracting newcomers [71], [72], retaining contributors [73],
scaling up the communities [74]. Nevertheless, it is unknown
whether the concerns in sustaining communities are common
to both scientific OSS and general OSS. Additionally, it is
unclear whether the solutions proposed in previous work are
still applicable, considering the distinct characteristics between
scientific OSS and general OSS, such as:

• Various motivations drive contributions. Academic credit
is assigned to scientific contributions, while open-source
contributions are gauged by the effort put into software-
related activities [75].

• It is more challenging to onboard and retain contributors
to scientific projects than general OSS as explored in
academic research and grey literature studies [51], [76].

• Different funding models, such as research institute af-
filiations and grant funding, differ significantly from the
predominantly voluntary approach commonly observed in
general OSS projects [24], [26]

• Distinct stakeholder compositions, exemplified by a small
community affiliated with a specific research domain
versus a diverse contributor background, contribute to the
differentiation between the two [24], [26]

Our study can be considered as a conceptual replication [32],
[33] of prior work, which concentrates on the sustainability
challenges of general OSS communities [62], focusing on
the motivation of contribution and the reasons for disengage-
ment [63]. Specifically, our RQ1 replicates Gerosa et al.’s
work [62] on OSS contribution motivation, but with a focus
on scientific OSS communities. While Gerosa et al. surveyed
contributors from diverse OSS backgrounds using both Likert-
scale and open-ended questions to analyze motivation shifts,
our study targets scientific OSS contributors and relies on
open-ended questions for richer qualitative insights. For RQ2,
we replicate Miller et al.’s study [63] on reasons for disen-
gagement from OSS, adapting it to the scientific OSS context.
While Miller et al. examined disengagement from all public
GitHub activities using open-ended survey questions, our study
focuses specifically on contributors who disengaged from cer-

tain scientific OSS communities, allowing for a more targeted
analysis of disengagement factors in this domain. Our objec-
tive is to identify the pain points in the context of scientific
OSS that may not be adequately tackled by current solutions.

III. RESEARCH METHODS

Given the diverse scientific domains within scientific OSS
communities, we focus our study on a single scientific do-
main—astronomy, using the Astropy project—to minimize
domain-specific biases and ensure a more consistent analy-
sis. To achieve broader demographic coverage, we employ
a survey-based approach targeting disengaged contributors
with open-ended questions, enabling us to reach a large and
representative sample to address our research questions while
also capturing the nuanced perspectives of participants. In this
section, we first justify our choice of study subject, followed
by the introduction to the survey design and analysis method.

A. Study Subject – the Astropy Project

We selected the Astropy project [77], a well-established OSS
ecosystem comprising 51 software packages in astronomy, as
our study subject. Over the past decade, Astropy community-
published papers have received over 18,000 citations [50]–
[52], and the core repository, astropy/astropy, has over 1,800
forks on GitHub. Widely used in both astronomy research and
scientific missions [78], [79], the Astropy ecosystem offers
publicly accessible code repositories and artifacts, providing
a rich context to examine tangible issues in community sus-
tainability. With over 10 years of commits history and over
1,000 commit contributors among the software packages in
the ecosystem, it provides sufficient data to investigate the
sustainability issues within the scientific OSS communities.

B. Survey with Disengaged Contributors

Recruitment. We mined and analyzed the commits history (til
Aug. 2022) across repositories within the Astropy ecosystem
to identify contributors who have disengaged. Our analysis
focuses on “contributors,” defined as individuals who made
codebase commits. We distinguish them from “non-code con-
tributors,” such as those engaging in issue tracking or online
discussions, which are challenging to detect accurately at scale
and track over time. Disengaged contributors are defined as
those who meet all of the following criteria (C1-3):

• C1: The contributor has merged at least one commit to
any of the 51 packages before Aug. 2022, and

• C2: The contributor has not made any contributions to
the code base within the last 100 days or more, and

• C3: The contributor is still active in other OSS projects
outside of the Astropy project ecosystem.

This activity pattern serves as an indicator of having recently
ceased or departed from participation in the Astropy commu-
nity. Note that related work has explored different thresholds
(e.g., 30, 90, 180 days) [54], [80] and showed similar results.

The detailed procedure can be divided into three steps as
Figure 1 demonstrates:



Step 1: Collect Commit 
History

Extract commit history 
from all 51 repos to 

identify commit authors

Step 2: Apply C1-3
- For each author, collect 

latest PRs, commits, issues 
activity

- Filter the authors based 
on C1-3 and remove 

bots/deleted accounts

Step 3: Collect Public 
Contact Info

Filter out the ones 
without public contact 

info

469 authors1116 authors 292 survey invitees

Fig. 1. Steps to select survey participants.
• Step 1: We analyzed the commit history of all 51

packages to identify commit authors, resulting in 1,116
GitHub accounts.

• Step 2: For each account, we collected their latest de-
velopment activity (i.e., commits, PRs, and issues) via
GitHub API and identified the potential disengaged con-
tributors using the criteria C1-3 described above. We
further removed bot accounts and deleted accounts. This
results in 469 GitHub accounts.

• Step 3: We further filtered out the ones without public
contact information [81], resulting in 292 potential par-
ticipants to whom we sent out survey invitations.

Survey Design and Analysis. We ask the following three open-
ended questions [82] in our survey:

1) Motivations for contributing to the software project
in Astropy ecosystem: What were your motivations for
contributing to [package name in Astropy ecosystem]?

2) Reason for disengaging from the community: Why did
you stop contributing after [contribution date]?

3) Suggestions for retaining the contributors and sus-
taining the Astropy community and the scientific OSS
community in general: Is there anything the scientific
open-source software community can do to keep contrib-
utors stay longer in the community?

In total, we received 80 responses (response rate 23%). To
identify the salient themes related to community sustainability
challenges from the perspective of disengaged contributors,
We used a combination of deductive and inductive coding [83]
to analyze survey responses. For deductive coding, we focused
on motivations for contribution and reasons for disengagement,
applying codebooks from prior work by Gerosa et al. [62]
and Miller et al. [63]. Two authors independently coded
16 responses (20%) out of 80 using these codebooks. For
inductive coding, we examined the text responses to identify
new themes, specifically extracting suggestions from contrib-
utors on sustaining community engagement. To ensure coding
consistency, we applied the constant comparison method [84],
systematically comparing new codes with existing ones to
refine and validate our categories. In cases of disagreement,
we iteratively compared and discussed interpretations until
reaching consensus. Through this process, we established a
final set of agreed-upon codes. One author then applied this
refined coding scheme to the remaining data, allowing us to
capture both predefined and new themes effectively. All data
were anonymized in our reporting by indexing each response
as Survey Participant id (SP[id]). This study received approval
from the Research Ethics Board at the authors’ institutions. For

Learning

Pay

GSoC

Altruism

Own
use

Invitation
Lack scientific bg.
One- time opportunity

Lack SE bg.

Focus
shifted

Preference for alt.

Stable project

Conflict

Fig. 2. Mapping between motivations and reasons of disengagement.

coded results and survey questions, please refer to [85].

IV. RESULT: (RQ1&2) MOTIVATION & DISENGAGEMENT

A. Motivation for Contributing to Communities in Astropy

From analyzing the survey responses with established codes
from Gerosa et al. [62], we identified six types of motivations,
fewer than the 10 motivations found in the original study. This
difference may be due to the smaller sample size in our survey.
As no new themes emerged, we adopted the terminology used
by [62] to describe the motivations identified for contribution
in the scientific OSS context (see Table I).

In contrast to Gerosa et al’s findings [62] which showed
a recent decrease in own-use as motivation for OSS develop-
ment, our results reveal that it remains the dominant motivation
for contributing to Astropy. Among all the 80 participants, 51
contributed to Astropy during their research/education/hobby-
related work in the science domain. Their contributions in-
clude fixing bugs or enhancing existing features for Astropy
as needed for their own research projects. These code changes
in turn benefit the community at large. Most of the cases
are self-motivated contributions with some exceptions; SP19’s
contribution was by invitation – “I had found an issue in the
software and was asked to contribute a solution to it (if I was
able to) by the project maintainers.”

Finding 1: To compare our replication study with prior research,
for motivations to contribute, the primary reason in general OSS
communities has shifted from own-use to altruism and learning
over the past decade [62]. However, our survey results reveal that
own-use remains the primary motivation in scientific OSS, likely
due to its predominant role in research settings.

B. Reasons for Contributor Disengagement

We identified three primary factors–lack of motivations, high
entry barriers, and conflicts (see Table II)–that align with the
findings from Miller et al.’s work [63].

A significant portion of survey participants cease their
contributions due to lack of motivations. Specifically, 52 out
of 80 survey participants stopped contributing because their
work focus had shifted, such as career changes, graduation,
or moving away from academia. Participants recognized this



Themes Description Example response #

Own-use During research/education/hobby usage “...those functions were essential for my research, I developed&committed onto Astropy.” (SP63) 52

Altrusim Benefit others via OSS “Sharing my work so others can benefit thereby.” (SP61) 8

Learning Gain experience via OSS “Learn how to structure my programming better.” (SP66) 8

Invitation Via OSS Meet-up, or research workshop “It was part of a Hacktoberfest event and I knew someone involved in the project.” (SP11) 6

Pay As SDE or researcher “I was employed as a programmer in a lab.” (SP4) 5

GSoC Google Summer of Code “I was looking for a summer intern, so I started contributing to Astropy for GSoC.” (SP55) 8

Table I: Motivation for contributing to Astropy ecosystem. Note that the listed motivations are not mutually exclusive. One survey respondent can mention
multiple motivations for contribution and would be counted for each category.

disengagement as inevitable, given that their primary motiva-
tion was research-focused own-use. SP15 noted, “I have since
moved on to another area of physics. The question of how to
keep contributors engaged in coding for [this software] (or
similar scientific software) is essentially tied to how to retain
researchers within their fields.” Similarly, contributors whose
involvement was driven by a specific research need felt no on-
going motivation to remain engaged. SP16 explained, “I did a
pretty minor one-off bug fix that I noticed. I wasn’t planning on
working on a longer-term development project.” Furthermore,
15 of the 80 participants reported that they are still open to
contributing, but the current project is stable and already meets
their needs. Additionally, eight survey participants contributed
to Astropy via Google Summer of Code (GSoC), which is
an annual program that pays university students stipends to
develop features for various OSS projects [6], [86]. Two survey
participants only contributed one PR each in order to apply
for GSoC internship (as part of the application requirement),
and they did not continue contributing since their applications
were rejected. While the other six interns discontinued their
participation after the internship, mainly due to shifts in their
focus. This observation aligns with the observation made
by [6] who studied community engagement via GSoC and
found that it is not a reliable source.

A further notable reason for disengagement is the high entry
barrier for both scientific and software engineering knowl-
edge. three participants explained that without enough SE
knowledge, it is difficult to use GitHub and make contributions
that meet the requirements defined by the maintenance team.
Additionally, three participants cited the steep learning curve

Reasons Description #

Lack of motivations
Focus shifted 53

One-time opportunity 9
Project is stable 15

High entry barrier
For science outsider 3
For scientists who lack SE background 3

Preference for alternative
Found alternative project with similar
functionalities that better aligns with
contributors’ requirements

2

Conflicts Conflicts with team members on project plan 1

Table II: Reasons for disengagement in Astropy ecosystem.

associated with the domain-specific knowledge underlying the
complex codebase of the packages.

Beyond lack of motivation and high entry barriers, two
contributors disengaged after discovering preferable alterna-
tive projects with similar functionalities: SP3 preferred an
alternative project due to its superior performance from being
implemented in C/C++. Likewise, SP26 opted for a more
flexible but complex alternative project that was better suited
for integrating new features and had more active maintenance.
These cases indicate that contributors may disengage from
a project due to preferences for performance or flexibility
considerations when alternative options are available.

In some instances, contributors disengaged due to conflicts
regarding project plans and visions. For example, SP34, an
initial co-founder, withdrew after realizing that their vision
for a “numerical relativity-based Python package” did not
align with those of the other core team members: “I wanted
to focus on real big problems like simulating a binary black
hole system, and others were interested in smaller things like
symbolic calculations.” Such cases suggest that community
fragmentation can occur when differing visions or priorities
arise among contributors.

Comparing our findings with Miller et al.’s study, where oc-
cupational reasons, social reasons, and technical reasons were
cited as common disengagement factors [63], we find both
similarities and unique aspects within the scientific OSS con-
text. Occupational reasons, such as shifts in research focus or
career changes, were also prominent in our study, with contrib-
utors often leaving due to academic transitions or changes in
scientific interests. However, the high entry barriers in scien-
tific OSS—requiring both specialized domain knowledge and
software engineering skills—introduce challenges that may be
less pronounced in general OSS. We also identified additional
reasons, such as discovering preferable alternative projects
and conflicts over project vision, which add nuance to disen-
gagement reasons beyond those identified by Miller et al. [63].

Mapping between motivations and reason for disengage-
ment. Lastly, we connect each survey participant’s motivations
and reasons for disengaging. As shown in Fig. 2, a large
portion of the contributors with the motivation of own-use
stopped after their research focus shifted or the project became
good enough for their usage. Also, people who made several



commits during a short period of time (e.g., GSoC, during
research, or OSS summit) stopped contributing right after the
end of the event.

Finding 2: With own-use as the primary motivation, the main
reasons for disengagement in scientific OSS align with findings
from prior research: contributors frequently leave due to shifts in
work focus or high entry barriers, especially if they lack domain
expertise or SE skills. In scientific OSS, this typically involves a
shift in research focus or departure from academia. Unlike general
OSS, these inherent turnover factors make it challenging to retain
contributors through community efforts alone, highlighting the
need for alternative sustainability strategies.

V. RESULT: (RQ3) SUGGESTIONS TO IMPROVE
SUSTAINABILITY

When sharing thoughts on how to improve sustainability of
the community, participants often talk about a challenge and
corresponding solution. Overall, as demonstrated in Table III,
we identified four key areas of challenge within the scien-
tific OSS community: onboarding newcomers and retaining
contributors, engineering work being undervalued, obstacles
to inclusivity and engagement in community building, and
redundant development and fragmented communities within
the ecosystem. While some of these challenges are common in
broader OSS communities, others are unique to scientific OSS,
posing distinct risks to the sustainability of both the software
and its community.

A. Challenge 1: Difficulty in Onboarding Newcomers and
Retaining Contributors

1) Better support for contribution workflow
16 survey respondents noted that the existing contribution

process can be enhanced, such as with improved mentorship
support, making it more welcoming for new contributors,
simplifying the setup for the development environment, and
faster responses during code reviews.

Challenges Suggestions #
Onboarding
newcomers
& retaining
contributors

Better support for contribution workflow 16

Train scientists on SE best practices 3
Offer more fellowship/internship opportunities 3
Lower entry barrier in science 2
Smooth transition of contributor turnover 1

Undervalued
engineering

work

Provide financial incentives 12
Gain recognition through the academic reward
system

8

Acknowledge the impact of contribution 7

Publish papers for the scientific OSS 1

Building
inclusive

&engaging
communities

Foster a welcoming community culture 7
Organize gatherings to keep community engaged 4

Accept contribution at all levels inclusively 2

Fragmented
communities

Call for collaboration to reduce duplicated efforts 1

Table III: Identified challenges and corresponding suggestions of improving
the sustainability of Astropy community

For existing contributors, several contributors highlighted
the need for improved contribution workflows, especially in
areas outside their expertise, like UI/UX design. SP4 noted,
“What would have helped me the most is as much plug-and-
play UI/UX infrastructure for creating public-facing features.
I didn’t have much experience in UI/UX and was figuring
it out as I went. That’s super time-consuming and may be
one of the reasons why the project didn’t go farther than it
did. If I only focused on the medical imaging-specific tasks,
things would have likely gone a bit faster.” This illustrates
how support for workflow in regarding SE practices could
allow contributors with domain knowledge to focus more
on scientific tasks. Additionally, contributors pointed out that
certain procedural hurdles during PR reviews, such as strict
code style or specific unit testing requirements, could deter
engagement. SP56 explained, “Listening to others’ experi-
ences with open-source projects, sometimes the PR review
procedure can present hurdles which the contributor sees as
unnecessary...This can create long drawn-out review processes
which the contributor feels are a waste of their time and that
their contribution is not of high quality or wanted by the
community”. This feedback suggests that regularly reviewing
and clarifying PR requirements and procedures from a new
contributor’s perspective, possibly using past PRs as case
studies, could help reduce barriers and make the contribution
process more welcoming and efficient. Others also emphasize
timely response to issues and PRs can be important for
encouraging contribution (SP37, 38).

For onboarding newcomers, participants emphasized the
need for clear contribution guidelines and a well-organized
“to-do” list (SP36, 44, 56). More importantly, participants
mentioned the complexity of setting up the development
environment can discourage contributions (SP21, 44). For
example, SP44 noted “I had to setup my local dev environment
and it was a bit cumbersome because project had a lot of
dependencies with c/c++ so it was difficult to setup (as I was
using Windows at that time). In the end, I discard the idea of
the contribution” (SP44), suggesting that tools like Docker or
Kubernetes could simplify dependency management and make
contributing easier.

2) Training scientists for SE best practices

SP10 and SP21 highlight the need for training in SE best
practices for scientists with limited formal SE backgrounds.
SP21 mentioned the “my software development and GitHub
skills are very poor! I never received any formal training in
software development, I find GitHub very non-intuitive, and
so I just stayed in my comfort zone as far as coding goes,”
and suggesting “hand-holding is needed for people like me,
but that’s not fair to ask of others.” Participants brought up
the need for training in good software development practices,
improved software design, and the use of testing to facilitate
effective collaboration within the scientific community. This
finding is similar to that in prior work on scientific software
development [75].



3) Offering research fellowship/internship opportunities
to attract more newcomers

Participants emphasized the value of initiatives like GSoC,
research meetups, and OSS summits for drawing new contrib-
utors. SP24 praised the 2018 Outreachy Summer Fellowship,
which supported multiple scientific OSS projects, recom-
mending the continuation of similar programs to strengthen
newcomer engagement. However, some participants noted the
limitations of initiatives like Google Summer of Code and
Hacktoberfest, emphasizing the need for targeted outreach
to attract domain experts for sustained contributions. SP78
explained that while these events boost exposure, “only those
who need the project will continue to contribute.”

4) Lowering the entry barrier in science
Participants reported that contributing to projects in the

Astropy ecosystem is challenging due to the required domain-
specific knowledge. To address this problem, SP41 suggested
that “offering BootCamp sessions explaining the theoretical
knowledge behind functions or features to cultivate participant
interest in the science domain” could potentially attract more
newcomers joining and retain existing contributors.

5) Smoothing transition between contributors turnover
One can argue that a community should not rely too much

on graduate students to contribute to the project. However,
survey participant, SP20, who is the founder of one package
but left the community due to work shift, said that “the best
solution is to find a way to pair almost abandoned projects
with graduate students that can contribute or even take over
the project.” Given that the shift of research focus is common,
a smooth transition can be beneficial for scientific software
projects to survive in face of inevitable turnover due to scien-
tific software contributors leaving academia or career change.

B. Challenge 2: Engineering Work is Undervalued

As “lack of motivation” is highlighted as the main reason for
disengagement, survey participants have offered their view-
points on the ways to motivate contribution.

1) Providing financial incentives
The most straightforward way is to provide financial in-

centives to people who spend time on engineering-related
tasks, especially for working on something not directly related
to their research, as mentioned by 12 of our participants.
SP57 noted that “career paths for such people need to be
created and funding opportunities that maintain the most
important/used/popular packages need to be created.” This
highlights the need for dedicated financial resources and career
support to sustain critical scientific OSS projects and retain
contributors who may otherwise be limited by traditional
academic funding structures.

2) Gaining recognition through academic reward system
A recurring theme among survey participants, particularly

those in academia (professors and graduate students), was the
need for the academic reward system to better acknowledge
contributions to scientific OSS. Eight participants expressed
that the current system undervalues such contributions, with
SP27 noting that the development of scientific OSS has

“a negative impact on the scientific career.” Another SP57
observed that– “the prevailing opinion in the field is that this
is engineering with no direct measurable impact on science
and that because of that, contributing to developing and
maintaining open source packages does not constitute a valid
scientific contribution and is therefore out of scope of the
expected work that I do. Contributors to these packages would
be willing to contribute more often if it actually counted for
something, or somehow made their life easier.”

This suggests that the lack of formal recognition for OSS
contributions within academic evaluations discourages partic-
ipation, particularly for those needing to demonstrate measur-
able scientific impact, SP62 stated, “Basically it is seen as a
cost to your career to contribute to open source software.” To
address this, institutions and universities could implement poli-
cies that acknowledge OSS contributions as valuable academic
work, such as offering course credits for student contributors
or fellowship opportunities for faculty involved in significant
OSS projects. Integrating OSS contributions into academic
rewards could foster sustained engagement, aligning the needs
of the OSS community with academic incentives. Another
solution is to raise the awareness of OSS in the scientific
communities. According to our study participants, the rate of
publishing source code in scientific fields is still low. As SP14
mentioned, “...if there is more awareness about open source,
it gives more credibility to open source and then it can be an
incentive as their efforts are better accounted for.”

3) Acknowledging the impact of contribution
One intriguing suggestion from seven survey participants is

to receive recognition for their contributions and to receive
feedback regarding the impact of their work. For example,
SP13 said that “If I had more of a sense for the impact of
the bug I discovered, how many people use that function or
finding code snippets in other open-source projects which use
it, that would help make the intangible benefits more tangible.”
In future research, emphasis could be placed on developing
methods and metrics to recognize both types of contributions
(engineering or scientific) and creating a dashboard to ac-
knowledge contributions of any kind. For instance, the extent
to which a fixed bug affects downstream software relying on
the package could serve as a meaningful metric for assessing
the impact of bug fixes.

4) Publishing papers on scientific OSS projects
As SP61 suggests that, a publication is “..the only real

currency in the current academic paradigm.” The communities
could have co-authored publications on the scientific software
to give credits to contributors to encourage more contribution,
which aligns with the suggestion of gaining recognition from
the academic reward system. In the Astropy ecosystem, the
project team of contributors co-authored three publications,
which introduce both the technical and open-source aspects.
Currently, a similar practice has been adopted for software
packages such as NumPy [87] and the SciPy [88]) to acknowl-
edge the contribution of engineering work.

It is important to note that the official Astropy Team has
already taken critical steps in implementing best practices to



enhance sustainability [51]. While the effort has been well-
received within the community, feedback from disengaged
contributors from the communities in the ecosystem suggests
that there is room for further improvement. Future research
could compare a larger number of OSS communities who
have adopted similar practices and assess the effectiveness and
determine whether they have been utilized as intended.

C. Challenge 3: Overcoming Obstacles to Inclusivity and
Engagement in Community Building

1) Fostering a welcoming community culture
This is the solution brought up by seven participants, which

is a common strategy that can be applied to all types of
OSS communities [89]. Two survey respondents (SP24,67)
mentioned that an inclusive and welcoming community is
important to encourage people to contribute. Such a suggestion
is not specific to the scientific domain. As SP67 pointed out,
some OSS communities can be unwelcoming and gatekeeping
in terms of expertise so one is not able to contribute mean-
ingfully to a project. Such gatekeeping culture could make
it difficult to attract long-term contributors. Contributors may
have different backgrounds and contributing priorities, and
some may eventually get more involved in the project than
others, “..but the only way to find out which are which is to
not drive them away in the first place.”

2) Organizing gatherings to keep community engaged
Four survey participants (SP53, 75, 76, 78) emphasized the

value of community gatherings in fostering a positive culture
and stronger connections among contributors, which can help
sustain engagement. As SP75 shared, “I personally would
have felt more attached to the org if I got to meet other
members (virtually, if not in person) for informal talks or even
knowledge sharing which would have motivated me to keep up
and check back every now and then even if I was finding it
hard to find time.” This suggestion aligns with existing best
practices for building a vibrant open-source community and
can be applied to OSS communities in general.

3) Accepting contribution inclusively
While we primarily define community disengagement

through a lack of code contributions, two contributors who
have stopped making code commits continue to engage in
other meaningful ways (SP10, 51). For example, contributors
may support projects indirectly by addressing cross-project is-
sues or maintaining connections within the community through
non-coding roles. SP51 noted, “I would like to think that I
am still in the community, given that I still pay attention
to the development of [project x in Astropy ecosystem] and
recommend [project x] to my students. I also know the main
developer of [project x] very well,” indicating their ongoing
involvement despite reduced direct contributions.

Additionally, participants suggested that contributions
should not be limited to code commits or code reviews.
SP10 commented, “the idea of keeping contributors for longer
inside the community is based solely on thinking contributions
only possible through commits and reviews. This may not be

showing the full picture. I continued contributing to other
open-source projects, and I also provided feedback as a user.”

This perspective aligns with findings from other OSS com-
munities, where non-code contributions are recognized as
essential for sustaining the community but are often under-
appreciated due to the difficulty in tracking and quantifying
these activities [90], [91]. Feng [92] highlights the importance
of acknowledging “glue work”—critical yet often overlooked
non-code contributions—and proposes a dashboard solution
for OSS maintainers to improve visibility and tracking of these
contributions, thereby supporting contributor retention. Imple-
menting similar tracking and recognition efforts can benefit
scientific OSS communities by attracting contributors who,
while less focused on coding, bring valuable domain expertise
and broaden the scope of engagement in these projects.

D. Challenge 4: Redundant Development and Fragmented
Communities within the Ecosystem

Our findings from RQ2 reveal that some contributors disen-
gage after identifying alternative software that better aligns
with their requirements (SP3,26). For example, SP26 shifted
from using sncosmo [93] to an alternative project with similar
functionalities, finding the alternative’s active development and
flexibility more attractive to contribute, especially as activity
in sncosmo declined following the departure of its lead con-
tributor. Nevertheless, both projects remain maintained but at
different levels of frequency, suggesting potential opportunities
for further collaboration to combine the strengths of both
communities.

Participating in broader ecosystems rather than operating
within isolated, individual projects can enhance the sustain-
ability of small scientific software communities, particularly in
fields with high contributor turnover due to shifting research
priorities. For instance, the PyVo [94] project, originally de-
veloped as part of the Virtual Observatory (VO) to standardize
data access across multiple astronomical archives, enabled
scientists to use a unified tool to access various datasets.
Later, the original contributor of PyVo (SP29) transitioned
their focus away from the project but advocated for integration
with the larger Astropy ecosystem. This integration extended
PyVo’s utility and ensured its long-term viability by facili-
tating a transfer of stewardship to the Astropy community.
Reflecting on this experience, SP29 noted, “...my new job
responsibilities did not afford me time to continue work on
PyVo. Fortunately, the PyVo community was growing, and
stewardship of the code was transferred into very capable
hands within the Astropy community.” While similar to the
story of PyVo, SP64 developed a package for their Ph.D
research, later, they mentioned that “...since I was moving to
a different team, there was no one left behind to maintain
it. I donated it to the sncosmo GitHub organization in the
hopes that someone would pick it up and maintain it in the
future.” These examples indicate that fostering connections
with broader communities can be a strategic approach to
sustaining scientific OSS by drawing on shared resources,
collective expertise, and ongoing involvement across related



projects, this strategy can reduce the project’s reliance on
individual contributors, thereby enhancing long-term stability.
It is not a universal solution, as successful implementation
also depends on factors like encouraging user engagement
and attracting sufficient attention to ensure that maintenance
responsibilities can be transitioned smoothly.

While the increasing trend of researchers open-sourcing
their software and libraries is beneficial for the broader
community, it has also led to intensified competition for
contributor attention. This proliferation of projects can create
confusion among users and potential contributors regarding
which projects to adopt or support, and conflicting objectives
can dilute the focus and resources within the community. As
SP33 observed, “The open-source community is constantly
fighting against itself to keep interest in projects. Everyone
creates their own shiny new project and then tries to get
others to adopt it so that it gains enough support that they
can get funding and stick around. Every year at the various
software conferences I attend, there’s always a new language
or data analyzer/visualizer or framework or container
management paradigm that people want to make popular,
and it splits the community’s focus. So what’s needed is some
way to set the focus of the open-source community.” SP33
suggested that scientific OSS projects could benefit from
more coordinated, collaborative efforts, similar to those used
for scientific data collection. For instance, the astronomy
community’s decadal survey [95] has successfully unified
focus around shared research goals; a similar approach could
help facilitate collaborative development within the scientific
OSS ecosystem. However, implementing such coordinated
efforts could increase the management and coordination
workload for maintainers who already have limited resources.
Future work could explore effective governance structures
and automation tools to alleviate this burden, while fostering
unified focus and collaboration across projects within the
ecosystem. Mechanisms such as shared roadmaps, community-
wide surveys, and ecosystem-level governance could
enhance cohesion, reduce redundancy, and support sustained
contributor engagement in the scientific OSS community.

Finding 3: Contributors highlighted the need for recognition
aligned with academic rewards to sustain the community. Quantita-
tive impact measurement could help to validate their work’s impor-
tance to academic stakeholders. They also called for improved SE
infrastructure to support contribution workflows, allowing them to
focus on domain-specific contributions and maximize resource use.

VI. DISCUSSION AND IMPLICATIONS

Our study reveals that although Astropy serves as a successful
example of a scientific OSS ecosystem, it can still face chal-
lenges that hinder the long-term engagement of contributors
and community sustainability. Here, we discuss actionable
insights and recommendations for different stakeholders to
effectively address these challenges.

A. Implication for Scientific OSS Practitioners and Commu-
nity Maintainers

While scientific OSS faces sustainability challenges similar
to generic OSS communities, our investigation revealed that
the entry barrier is elevated. This is attributed to the domain-
specific knowledge needed during development, necessitating
both software engineering expertise and a scientific back-
ground for meaningful contributions to the project. Addressing
this requires a multi-pronged approach. First, we recom-
mend developing comprehensive documentation that explains
software-related information such as code design rationales
and workflow best practices can enhance the understanding
of relevant concepts and facilitate informed contributions. Ad-
ditionally, targeted mentorship programs, such as onboarding
sessions and domain-specific boot camps, prepared tutorials,
workshops, could accelerate the learning for new contribu-
tors, making the community more accessible and attractive.
Moreover, listing the required expertise (both scientific and
software-related aspects), into the “Good First Issues” can help
potential contributors better select and succeed in the tasks.

Surveyees highlighted the importance of non-code contribu-
tions, such as providing user support, which is often significant
yet underrecognized on coding platforms where metrics pri-
marily emphasize commit activity. To address this, established
communities like Astropy’s core package have implemented
mechanisms to formally acknowledge non-code contributions
(e.g., creating tutorials and educational programs) on their
official website [96]. Such approaches can serve as a model
for other scientific OSS communities, helping them leverage
domain expertise and foster collaboration more effectively.

Furthermore, within scientific OSS communities, contribu-
tions related to engineering are often undervalued, primarily
due to the academic evaluation system. To encourage sustained
contributions, especially from researchers who may prioritize
scientific over engineering contributions, it is vital to create
recognition mechanisms that align with both scientific and
engineering outputs. For example, fostering a culture of pub-
licly acknowledging high-impact code contributions—through
dashboards or contributor recognition initiatives—can help
increase visibility and appreciation for such efforts. Future re-
search could also explore developing metrics to quantitatively
assess the impact of code contributions, further reinforcing
their value within academic and OSS ecosystems.

B. Implication for SE Researchers and Tool Builders

How to substantially reduce the workload for both scientists
and software engineers remains a central concern for designing
tools serving the scientific OSS community. This includes de-
signing workflows that streamline issue tracking, code review,
and contributions, allowing scientists to spend more time on
domain-specific tasks rather than learning software engineer-
ing intricacies. Future studies could explore automated tooling
that categorizes issues and offers guidance that includes the es-
sential scientific theory behind the issue and the necessary pro-
gramming knowledge. Tools to break down the sub-tasks nec-



essary to resolve the related issues would also be beneficial in
emulating a step-by-step onboarding process for newcomers.

Furthermore, we suggest that SE researchers investigate
quantitative metrics to appropriately acknowledge contributor
impact beyond traditional measures, such as download counts
and citations of scientific open-source software. To encourage
long-term commitment, as highlighted by our survey partici-
pants, it is also essential to demonstrate the impact of their
contributions qualitatively. By capturing broader dimensions
of OSS impact, these metrics can provide deeper insights into
the value of engineering contributions in a way that resonates
with the academic and scientific communities.

Additionally, SE infrastructure enhancements—such as sim-
plified workflows, improved documentation, and automated
testing—could help contributors navigate technical barriers,
freeing them to focus on high-value, domain-specific tasks.
By addressing these challenges, SE research could contribute
significantly to sustaining scientific OSS communities and
fostering long-term contributor retention.

With advances in large language models (LLMs), more
LLM-based tools have emerged to support SE tasks [97]
and scientific research [98], [99]. These tools hold promise
for assisting developers and scientists with labor-intensive
tasks and helping them acquire new skills. For example,
Jimenez et al. [100] introduced a benchmark applying LLMs
to resolve real-world GitHub issues, extending beyond simple
code generation. While results showed that LLMs struggled
with complex issues, they demonstrated potential for simpler
ones. Notably, the Astropy package showed a lower issue
resolution rate than other projects, suggesting that future
research could focus on optimizing LLMs for scientific
software development. LLM-based tools have the potential to
assist scientists with time-consuming development tasks such
as code review, documentation, and tutorial generation by
integrating both scientific domain knowledge and SE-specific
knowledge of the codebase.

C. Implication for Funding & Research Institutions

Scientists hold different mindsets when it comes to task
prioritization during software development. It is not surprising
that scientists lack the motivation to invest effort into code
quality, given that academic reputation is mainly based on
scientific contribution [75]. This could lead to rejection and
abandoned PRs during the code review process, discouraging
scientists from making continuous contributions. To bridge the
gap between scientific and engineering motivations, funding
agencies and research institutions might consider creating
grant mechanisms that reward contributions to community-
maintained codebases, particularly those essential to scientific
research. Additionally, it is important to provide institutional
support to acknowledge the contribution to engineering work
alongside the scientific ones, such as creating career paths for
scientists in research SE and providing incentives for them to
invest more effort in improving software quality. Meanwhile,
allocating long-term financial support for maintaining the
necessary infrastructure for scientific OSS is also vital.

VII. THREATS TO VALIDITY

Here, we discuss potential threats to validity that may influence
our results and interpretations. First, for construct validity, as
we define the disengagement based on the code contribution
activities, it might not fully capture disengagement, as the con-
tributors could stay involved in the community through non-
code contributions or intend to resume contributions later. Fur-
ther, regarding internal validity, we use survey to learn from
the experience of disengaged contributors. Survey respondents
may be more likely to have strong opinions on disengagement
and retention, potentially underrepresenting those with more
neutral or indifferent experiences in this study. Future work
could broaden the scope by surveying active contributors
and conducting interviews to gain deeper and more diverse
perspectives on the retention of scientific OSS community.
For external validity, we choose study subject to be Astropy
ecosystem, which is a specific scientific OSS ecosystem in
astronomy domain, the finding may not generalize to other
scientific OSS communities with different structures, scales
or domains. Although scientific OSS can share common chal-
lenges, the unique community structure scientific domain of
the Astropy project could limit the applicability of the findings
to general OSS communities or scientific OSS communities
in other domains. Future work can look into comparing the
findings of this study on Astropy ecosystem to other scientific
OSS ecosystems. Finally, as we employed coding methods
to analyze survey responses, which may have introduced
unintended bias due to interpretation. To minimize this, mul-
tiple coders independently reviewed the data and reached a
consensus on final codes. However, subjective interpretations
of survey responses may still impact consistency.

VIII. CONCLUSION

In this replication study, we study the sustainability challenges
of scientific OSS communities. Specifically, we investigate the
motivations for contribution, and reasons for disengagement
as well as the improvement suggestions from the practitioners’
perspectives. Our results show that there are many unique
properties in the scientific domain that differ from general
OSS in terms of sustaining community contributions.
Specifically, while motivations in general OSS have shifted
toward social motivations such as altruism, scientific OSS
contributors remain primarily motivated by own-use, which
aligns with the research-oriented nature of these projects.
This reliance on own-use also explains why contributors
often disengage due to shifts in research focus or high entry
barriers, indicating that community-driven retention efforts
alone may be insufficient. Lastly, we propose future research
and tooling directions to address these challenges.

IX. ACKNOWLEDGMENTS

We express our gratitude to the Astropy community for sharing
their valuable insights and to the anonymous reviewers for
their constructive feedback, which helped enhance this paper.
This work was partially supported by the Alfred P. Sloan
Foundation (G-2022-19472).



REFERENCES

[1] M. Gruenpeter et al., “Defining Research Software: A controversial
discussion,” Zenodo, Tech. Rep., Sep. 2021.

[2] “Imagej: open source software for processing and analyzing scientific
images,” 2024. [Online]. Available: https://imagej.net/

[3] P. J. Cock et al., “Biopython: freely available python tools for compu-
tational molecular biology and bioinformatics,” Bioinformatics, vol. 25,
no. 11, p. 1422, 2009.

[4] “Software for gravitational wave data,” 2024. [Online]. Available:
https://gwosc.org/software/

[5] R. E. Amaro and A. J. Mulholland, “Biomolecular simulations in the
time of covid-19, and after,” Computing in science & engineering,
vol. 22, no. 6, pp. 30–36, 2020.

[6] E. H. Trainer et al., “Community code engagements: summer of
code & hackathons for community building in scientific software,” in
Proceedings of the 18th International Conference on Supporting Group
Work, 2014, pp. 111–121.

[7] A.-L. Lamprecht et al., “Towards fair principles for research software,”
Data Science, vol. 3, no. 1, pp. 37–59, 2020.

[8] D. S. Katz, “Towards sustainable research software,” Dec. 2021.
[Online]. Available: https://doi.org/10.5281/zenodo.5748175

[9] Q. Zhang et al., “Research software current state assessment,”
Sep. 2021. [Online]. Available: https://alliancecan.ca/sites/default/files/
2022-03/RS Current State Report.pdf

[10] “Digital research alliance of canada: Research software,” 2024. [On-
line]. Available: https://alliancecan.ca/en/services/research-software

[11] “Canarie: Research software,” 2024. [Online]. Available: https:
//www.canarie.ca/software/

[12] “Software sustainability institute,” 2024. [Online]. Available: https:
//www.software.ac.uk/about

[13] “European commission: Horizon europe,” 2024. [Online].
Available: https://research-and-innovation.ec.europa.eu/funding/
funding-opportunities/funding-programmes-and-open-calls/
horizon-europe en

[14] “Everse: European virtual institute for research software excellence,”
2024. [Online]. Available: https://everse.software/

[15] “Horizon europe framework programme: Horizon-infra-2023-
eosc-01-02, development of community-based approaches
for ensuring and improving the quality of sci-
entific software and code,” 2024. [Online]. Avail-
able: https://ec.europa.eu/info/funding-tenders/opportunities/portal/
screen/opportunities/topic-details/horizon-infra-2023-eosc-01-02

[16] Z. Merali, “Computational science:... error.” Nature, vol. 467, no. 7317,
pp. 775–777, 2010.

[17] “The low quality of scientific code,” 2014. [Online]. Available: https:
//techblog.bozho.net/the-astonishingly-low-quality-of-scientific-code/

[18] V. Stodden and S. Miguez, “Best practices for computational science:
Software infrastructure and environments for reproducible and exten-
sible research,” Journal of Open Research Software, 2013.

[19] J. Segal, “Software development cultures and cooperation problems: A
field study of the early stages of development of software for a scientific
community,” Computer Supported Cooperative Work (CSCW), vol. 18,
no. 5, pp. 581–606, 2009.

[20] ——, “Scientists and software engineers: a tale of two cultures,” p. 8,
2008.

[21] C. Morris and J. Segal, “Some challenges facing scientific software
developers: The case of molecular biology,” in 2009 Fifth IEEE
International Conference on e-Science. IEEE, 2009, pp. 216–222.

[22] J. C. Carver et al., “Software Development Environments for Scientific
and Engineering Software: A Series of Case Studies,” in 29th Interna-
tional Conference on Software Engineering (ICSE’07). Minneapolis,
MN: IEEE, May 2007, pp. 550–559.

[23] T. Storer, “Bridging the Chasm: A Survey of Software Engineering
Practice in Scientific Programming,” ACM Computing Surveys, vol. 50,
no. 4, pp. 1–32, Jul. 2018.

[24] D. Paine and C. P. Lee, “”Who Has Plots?”: Contextualizing Scientific
Software, Practice, and Visualizations,” Proceedings of the ACM on
Human-Computer Interaction, vol. 1, no. CSCW, pp. 1–21, Dec. 2017.

[25] M. A. Heroux et al., “An overview of the Trilinos project,” ACM
Transactions on Mathematical Software, vol. 31, no. 3, pp. 397–423,
Sep. 2005.

[26] D. Kelly, “Scientific software development viewed as knowledge acqui-
sition: Towards understanding the development of risk-averse scientific
software,” Journal of Systems and Software, vol. 109, pp. 50–61, Nov.
2015.

[27] C. Hine, “Databases as Scientific Instruments and Their Role
in the Ordering of Scientific Work,” Social Studies of Science,
vol. 36, no. 2, pp. 269–298, Apr. 2006. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0306312706054047

[28] D. Ribes and T. A. Finholt, “Planning infrastructure for the long-term:
Learning from cases in the natural sciences,” in Proceedings of the
Third International Conference on e-Social Science. Citeseer, 2007.

[29] K. A. Lawrence, “Walking the Tightrope: The Balancing Acts of a
Large e-Research Project,” Computer Supported Cooperative Work
(CSCW), vol. 15, no. 4, pp. 385–411, Aug. 2006.

[30] J. Gamalielsson and B. Lundell, “Sustainability of open source software
communities beyond a fork: How and why has the libreoffice project
evolved?” Journal of Systems and Software, vol. 89, pp. 128–145, 2014.

[31] N. Shimada et al., “Github sponsors: exploring a new way to contribute
to open source,” in Proceedings of the 44th International Conference
on Software Engineering, 2022, pp. 1058–1069.

[32] N. Juristo and O. S. Gómez, “Replication of software engineering
experiments,” in LASER Summer School on Software Engineering,
LASER Summer School on Software Engineering, LASER Summer
School on Software Engineering. Springer, 2012, pp. 60–88.

[33] S. Schmidt, “Shall we really do it again? the powerful concept of
replication is neglected in the social sciences.” 2016.

[34] “The astropy project,” 2024. [Online]. Available: https://www.astropy.
org/about.html#about-the-astropy-project

[35] F. Queiroz et al., “Science as a game: conceptual model and appli-
cation in scientific software design,” International Journal of Design
Creativity and Innovation, pp. 1–25, 2022.

[36] U. Kanewala and J. M. Bieman, “Testing scientific software: A system-
atic literature review,” Information and Software Technology, vol. 56,
no. 10, pp. 1219–1232, Oct. 2014.

[37] X. Lin et al., “Releasing Scientific Software in GitHub: A Case Study
on SWMM2PEST,” in 2019 IEEE/ACM 14th International Workshop
on Software Engineering for Science (SE4Science). Montreal, QC,
Canada: IEEE, May 2019, pp. 47–50.

[38] H. Hata et al., “Science-software linkage: the challenges of traceability
between scientific knowledge and software artifacts,” arXiv preprint
arXiv:2104.05891, 2021.

[39] S. Wattanakriengkrai et al., “Github repositories with links to academic
papers: Public access, traceability, and evolution,” Journal of Systems
and Software, vol. 183, p. 111117, 2022.

[40] D. G. Widder et al., “Barriers to Reproducible Scientific Programming,”
in 2019 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). Memphis, TN, USA: IEEE, Oct. 2019, pp.
217–221.

[41] M. Krafczyk et al., “Scientific tests and continuous integration strate-
gies to enhance reproducibility in the scientific software context,” in
Proceedings of the 2nd International Workshop on Practical Repro-
ducible Evaluation of Computer Systems, 2019, pp. 23–28.

[42] R. R. Downs et al., “Community recommendations for sustainable
scientific software,” Journal of Open Research Software, vol. 3, no. 1,
2015.

[43] D. S. Katz et al., “Report on the second workshop on sustainable soft-
ware for science: Practice and experiences (wssspe2),” arXiv preprint
arXiv:1507.01715, 2015.

[44] “Better scientific software (bssw),” 2024, https://bssw.io/.
[45] N. S. Foundation., “The cyberinfrastructure for sustained scientific in-

novation (cssi).” 2022. [Online]. Available: https://beta.nsf.gov/funding/
opportunities/cyberinfrastructure-sustained-scientific-innovation-cssi

[46] “Better software for science.” 2022, https://sloan.org/programs/digital-
technology/better-software-for-science.

[47] P. Ivie and D. Thain, “Reproducibility in scientific computing,” ACM
Computing Surveys (CSUR), vol. 51, no. 3, pp. 1–36, 2018.

[48] “ropensci: R packages for the sciences,” 2024. [Online]. Available:
https://ropensci.org/

[49] C. Boettiger et al., “Building software, building community: lessons
from the ropensci project,” Journal of open research software, vol. 3,
no. 1, 2015.

[50] A. M. Price-Whelan et al., “Astropy: A Community Python Package
for Astronomy,” Astronomy & Astrophysics, vol. 558, p. A33, Oct.
2013.



[51] ——, “The astropy project: Sustaining and growing a community-
oriented open-source project and the latest major release (v5. 0) of
the core package,” The Astrophysical Journal, vol. 935, no. 2, p. 167,
2022.

[52] ——, “The astropy project: building an open-science project and status
of the v2. 0 core package,” The Astronomical Journal, vol. 156, no. 3,
p. 123, 2018.

[53] D. Robinson and J. Hand, “Sustainability in research-driven open
source software,” 2019.

[54] R. Milewicz et al., “Characterizing the Roles of Contributors in Open-
Source Scientific Software Projects,” in Proc. Working Conf. Mining
Software Repositories (MSR). Montreal, QC, Canada: IEEE, May
2019, pp. 421–432.

[55] Z. Codabux et al., “Technical debt in the peer-review documentation
of r packages: A ropensci case study,” in 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR).
IEEE, 2021, pp. 195–206.

[56] I. Chengalur-Smith et al., “Sustainability of free/libre open source
projects: A longitudinal study,” Journal of the Association for Infor-
mation Systems, vol. 11, no. 11, p. 5, 2010.

[57] R. Krishnamurthy et al., “Peripheral developer participation in open
source projects: An empirical analysis,” ACM Transactions on Man-
agement Information Systems (TMIS), vol. 6, no. 4, pp. 1–31, 2016.

[58] S. O. Alexander Hars, “Working for free? motivations for participating
in open-source projects,” International journal of electronic commerce,
vol. 6, no. 3, pp. 25–39, 2002.

[59] K. R. Lakhani and R. G. Wolf, “Why hackers do what they do:
Understanding motivation and effort in free/open source software
projects,” Open Source Software Projects (September 2003), 2003.

[60] R. A. Ghosh et al., “Free/libre and open source software: Survey and
study,” 2002.

[61] G. Von Krogh et al., “Carrots and rainbows: Motivation and social
practice in open source software development,” MIS quarterly, pp. 649–
676, 2012.

[62] M. Gerosa et al., “The Shifting Sands of Motivation: Revisiting
What Drives Contributors in Open Source,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). Madrid,
ES: IEEE, May 2021, pp. 1046–1058.

[63] C. Miller et al., “Why do people give up flossing? a study of contributor
disengagement in open source,” in IFIP International Conference on
Open Source Systems. Springer, 2019, pp. 116–129.

[64] P. Gray, “To disengage or not to disengage: a look at contributor disen-
gagement in open source software,” in Proceedings of the ACM/IEEE
44th International Conference on Software Engineering: Companion
Proceedings, 2022, pp. 328–330.

[65] C. Bird, “Sociotechnical coordination and collaboration in open source
software,” in 2011 27th IEEE International Conference on Software
Maintenance (ICSM). IEEE, 2011, pp. 568–573.

[66] X. Tan et al., “A first look at good first issues on github,” in Proc.
Int’l Symposium Foundations of Software Engineering (FSE), 2020,
pp. 398–409.

[67] F. Fagerholm et al., “The role of mentoring and project characteristics
for onboarding in open source software projects,” in Proceedings of
the 8th ACM/IEEE international symposium on empirical software
engineering and measurement, 2014, pp. 1–10.

[68] J. Silva et al., “A theory of the engagement in open source projects
via summer of code programs,” in Proc. Int’l Symposium Foundations
of Software Engineering (FSE), 2020, pp. 421–431.

[69] C. Overney et al., “How to not get rich: An empirical study of donations
in open source,” in Proceedings of the ACM/IEEE 42nd international
conference on software engineering, 2020, pp. 1209–1221.

[70] V. Singh et al., “Codes of conduct in open source software—for
warm and fuzzy feelings or equality in community?” Software Quality
Journal, pp. 1–40, 2021.

[71] R. E. Kraut and P. Resnick, Building successful online communities:
Evidence-based social design. Mit Press, 2012.

[72] J. Dominic et al., “Conversational bot for newcomers onboarding
to open source projects,” in Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops, 2020,
pp. 46–50.

[73] C. Stanik et al., “A simple nlp-based approach to support onboarding
and retention in open source communities,” in Proc. Int’l Conf.
Software Maintenance and Evolution (ICSME). IEEE, 2018, pp. 172–
182.

[74] X. Tan et al., “Scaling open source communities: An empirical study
of the linux kernel,” in Proc. Int’l Conf. Software Engineering (ICSE).
IEEE, 2020, pp. 1222–1234.

[75] J. Howison and J. D. Herbsleb, “Incentives and integration in scientific
software production,” in Proceedings of the 2013 conference on Com-
puter supported cooperative work - CSCW ’13. San Antonio, Texas,
USA: ACM Press, 2013, p. 459.

[76] M. Germonprez et al., “Scientific open source software: Opportunities
to accelerate scientific progress,” 2020.

[77] “The Astropy Project,” 2024. [Online]. Available: https://www.astropy.
org/

[78] “James webb space telescope: Goddard space flight center,” 2024.
[Online]. Available: https://webb.nasa.gov/

[79] “Case study: First image of a black holecase study: First image of a
black hole,” 2024. [Online]. Available: https://numpy.org/case-studies/
blackhole-image/

[80] B. Lin et al., “Developer turnover in global, industrial open source
projects: Insights from applying survival analysis,” in 2017 IEEE 12th
International Conference on Global Software Engineering (ICGSE).
IEEE, 2017, pp. 66–75.

[81] “Github user profile,” 2024. [Online]. Available: https://docs.github.
com/en/rest/users/users?apiVersion=2022-11-28#get-a-user

[82] K.-J. Stol and B. Fitzgerald, “The abc of software engineering re-
search,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 27, no. 3, pp. 1–51, 2018.

[83] J. Saldaña, “The coding manual for qualitative researchers,” The coding
manual for qualitative researchers, pp. 1–440, 2021.

[84] A. Strauss and J. Corbin, “Basics of qualitative research techniques,”
1998.

[85] “Replication package,” 2024. [Online]. Available: https://zenodo.org/
uploads/14088082

[86] “Gsoc,” 2024, https://summerofcode.withgoogle.com/.
[87] C. R. Harris et al., “Array programming with numpy,” Nature, vol. 585,

no. 7825, pp. 357–362, 2020.
[88] P. Virtanen et al., “Scipy 1.0: fundamental algorithms for scientific

computing in python,” Nature methods, vol. 17, no. 3, pp. 261–272,
2020.

[89] H. S. Qiu et al., “The signals that potential contributors look for when
choosing open-source projects,” in Proc. Conf. Computer Supported
Cooperative Work (CSCW), vol. 3. Association for Computing
Machinery, 2019, place: New York, NY, USA.

[90] ——, “Gender representation among contributors to open-source in-
frastructure: an analysis of 20 package manager ecosystems,” in 2023
IEEE/ACM 45th International Conference on Software Engineering:
Software Engineering in Society (ICSE-SEIS). IEEE, 2023, pp. 180–
187.

[91] B. Trinkenreich et al., “Hidden figures: Roles and pathways of suc-
cessful oss contributors,” Proceedings of the ACM on human-computer
interaction, vol. 4, no. CSCW2, pp. 1–22, 2020.

[92] Z. Feng, “Oss unsung heroes: Crafting productive communities invis-
ibly,” in 2023 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 2023, pp. 302–303.

[93] “sncosmo,” 2024. [Online]. Available: https://github.com/sncosmo/
sncosmo

[94] “Pyvo,” 2024. [Online]. Available: https://github.com/astropy/pyvo
[95] “Nasa: Decadal survey,” 2024. [Online]. Available: https://science.

nasa.gov/earth-science/decadal-surveys/
[96] “Astropy learn team,” 2024. [Online]. Available: https://www.astropy.

org/team.html#Learn team
[97] X. Hou et al., “Large language models for software engineering: A sys-

tematic literature review,” ACM Transactions on Software Engineering
and Methodology, 2023.

[98] A. Birhane et al., “Science in the age of large language models,” Nature
Reviews Physics, vol. 5, no. 5, pp. 277–280, 2023.

[99] I. Beltagy et al., “Scibert: A pretrained language model for scientific
text,” arXiv preprint arXiv:1903.10676, 2019.

[100] C. E. Jimenez et al., “Swe-bench: Can language models resolve real-
world github issues?” arXiv preprint arXiv:2310.06770, 2023.


