
Collaboration Challenges in Building ML-Enabled Systems:
Communication, Documentation, Engineering, and Process

Nadia Nahar
nadian@andrew.cmu.edu
Carnegie Mellon University

Pittsburgh, PA, USA

Shurui Zhou
University of Toronto

Toronto, Ontario, Canada

Grace Lewis
Carnegie Mellon Software Engineering Institute

Pittsburgh, PA, USA

Christian Kästner
Carnegie Mellon University

Pittsburgh, PA, USA

ABSTRACT
The introduction of machine learning (ML) components in software
projects has created the need for software engineers to collabo-
rate with data scientists and other specialists. While collaboration
can always be challenging, ML introduces additional challenges
with its exploratory model development process, additional skills
and knowledge needed, difficulties testing ML systems, need for
continuous evolution and monitoring, and non-traditional quality
requirements such as fairness and explainability. Through inter-
views with 45 practitioners from 28 organizations, we identified
key collaboration challenges that teams face when building and
deploying ML systems into production. We report on common col-
laboration points in the development of production ML systems
for requirements, data, and integration, as well as corresponding
team patterns and challenges. We find that most of these challenges
center around communication, documentation, engineering, and
process, and collect recommendations to address these challenges.
ACM Reference Format:
Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kästner. 2022. Col-
laboration Challenges in Building ML-Enabled Systems: Communication,
Documentation, Engineering, and Process. In Proceedings of The 44th Inter-
national Conference on Software Engineering (ICSE 2022). ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Machine learning (ML) is receiving massive attention and funding
in research and practice; it is achieving incredible advances, surpass-
ing human-level cognition in many applications, but it is widely
acknowledged that moving from a prototyped machine-learned
model to a production system is very challenging. For example,
Venturebeat reported in 2019 that 87 percent of ML projects fail
[108] and Gartner claimed in 2020 that 53 percent do not make
it from prototype to production [70]. While traditional software
projects are already complex, failure prone, and require a broad

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Team

Inner groups

Responsibility

Data

Collab. point

Softw. Eng.

Data Scientist

End user

Integr. Product & Model TeamGovmt.
client

P3bP3c

P3a

product ML pipelineinference
model

monitor.

Model TeamProduct Team

P7b

P7a

infrastr.

1

2

3

1 Prod. requirements Integration (API & QA) Public data2 3

product

ML pipeline
inference

model

1

2

3

1 Model req. Training data Integr. (API)2 3

O
rg

an
iz

at
io

n
3

O
rg

an
iz

at
io

n
7

Figure 1: Structure of two interviewed organizations

range of expertise, the introduction of machine learning raises
further challenges, requires additional expertise, and introduces
additional collaboration points.

Technical aspects such as testing ML components [10, 20], mis-
use of ML libraries [43, 45], engineering challenges for developing
ML components [3, 5, 18, 27, 40, 44, 60, 90], and automating learning
and deployment processes for ML components [4, 13, 29, 34, 51],
have received significant attention in research recently. However,
human factors of collaboration during the development of software
products supported by ML components, ML-enabled systems for
short, have received less attention, including the need to separate
and coordinate data science and software engineering work, to ne-
gotiate and document interfaces and responsibilities, and to plan the
system’s operation and evolution. Yet, those human collaboration
challenges appear to be major hurdles in developing ML-enabled
systems. In addition, past work has mostly been model-centric,
focused on challenges of learning, testing, or serving models, but
rarely focuses on the entire system, i.e., the product with many
non-ML parts into which the model is embedded as a component,
which requires coordinating and integrating work from multiple
experts or teams.

To better understand collaboration challenges and avenues to-
ward better practices, we conducted interviews with 45 participants

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kästner

contributing to the development of ML-enabled systems for pro-
duction use (i.e., not pure data analytics/early prototypes). Our
research question is: What are the collaboration points and corre-
sponding challenges between data scientists and software engineers?
Participants come from 28 organizations, from small startups to
large big tech companies, and have diverse roles in these projects,
including data scientists, software engineers, and managers. Dur-
ing our interviews, we explored organizational structures (e.g., see
Figure 1), interactions of project members with different technical
backgrounds, and where conflicts arise between teams.

While some organizations have adopted better collaboration
practices than others, many struggle setting up structures, pro-
cesses, and tooling for effective collaboration among teammembers
with different backgrounds when developing ML-enabled systems.
To the best of our knowledge, and confirmed by the practitioners
we interviewed, there is little systematic or shared understanding
of common collaboration challenges and best practices for devel-
oping ML-enabled systems and coordinating developers with very
different backgrounds (e.g., data science vs. software engineering).
We find that smaller and new-to-ML organizations struggle more,
but have limited advice to draw from for improvement.

Three collaboration points surfaced as particularly challenging:
(1) Identifying and decomposing requirements, (2) negotiating train-
ing data quality and quantity, and (3) integrating data science and
software engineering work. We found that organizational struc-
ture, team composition, power dynamics, and responsibilities differ
substantially, but also found common organizational patterns at
specific collaboration points and challenges associated with them.

Overall, our observations suggest four themes that would benefit
from more attention when building ML-enabled systems:� Invest
in supporting interdisciplinary teams to work together (including
education and avoiding silos), Pay more attention to collabora-
tion points and clearly document responsibilities and interfaces,
3 Consider engineering work as a key contribution to the project,
and� Invest more into process and planning.

In summary, we make the following contributions: (1) We iden-
tify three core collaboration points and associated collaboration
challenges based on interviews with 45 practitioners, triangulated
with a literature review, (2) We highlight the different ways in
which teams organize, but also identify organizational patterns that
associate with certain collaboration challenges, and (3) We identify
recommendations to improve collaboration practices.

2 STATE OF THE ART
Researchers and practitioners have discussed whether and how
machine learning changes software engineering with the introduc-
tion of learned models as components in software systems [e.g.,
1, 5, 42, 69, 81, 83, 90, 103, 111]. To lay the foundation for our inter-
view study and inform the questions we ask, we first provide an
overview of the related work and existing theories on collabora-
tion in traditional software engineering and discuss how machine
learning may change this.
Collaboration in Software Engineering. Most software projects
exceed the capacity of a single developer, requiring multiple devel-
opers and teams to collaborate (“work together”) and coordinate
(“align goals”). Collaboration happens across teams, often in a more

formal and structured form, and within teams, where familiarity
with other team members and frequent co-location fosters informal
communication [63]. At a technical level, to allow multiple develop-
ers to work together, abstraction and a divide and conquer strategy
are essential. Dividing software into components (modules, func-
tions, subsystems) and hiding internals behind interfaces is a key
principle of modular software development that allows teams to
divide work, and work mostly independently until the final system
is integrated [62, 72].

Teams within an organization tend to align with the technical
structure of the system, with individuals or teams assigned to com-
ponents [30], hence the technical structure (interfaces and depen-
dencies between components) influences the points where teams
collaborate and coordinate. Coordination challenges are especially
observed when teams cannot easily and informally communicate,
often studied in the context of distributed teams of global corpora-
tions [38, 68] and open-source ecosystems [16, 95].

More broadly, interdisciplinary collaboration often poses chal-
lenges. It has been shown that when team members differ in their
academic and professional backgrounds and possess different expec-
tations on the same system, communication, cultural, and methodi-
cal challenges often emerge when working together [21, 73]. Key
insights are that successful interdisciplinary collaboration depends
on professional role, structural characteristics, personal character-
istics, and a history of collaboration; specifically, structural factors
such as unclear mission, insufficient time, excessive workload, and
lack of administrative support are barriers to collaboration [24].

The component interface plays a key role in collaboration as a
negotiation and collaboration point. It is where teams (re-)negotiate
how to divide work and assign responsibilities [19]. Team mem-
bers often seek information that may not be captured in interface
descriptions, as interfaces are rarely fully specified [32]. In an ide-
alized development process, interfaces are defined early based on
what is assumed to remain stable [72], because changes to inter-
faces later are expensive and require the involvement of multiple
teams. In addition, interfaces reflect key architectural decisions for
the system, aimed to achieve desired overall qualities [11].

In practice though, the idealized divide-and-conquer approach
following top-down planning does not alwaysworkwithout friction.
Not all changes can be anticipated, leading to later modifications
and renegotiation of interfaces [16, 31]. It may not be possible to
identify how to decompose work and design stable interfaces until
substantial experimentation has been performed [12]. To manage,
negotiate, and communicate changes of interfaces, developers have
adopted a wide range of strategies for communication [16, 33, 97],
often relying on informal broadcast mechanisms to share planned
or performed changes with other teams.

Software lifecycle models [22] also address this tension of when
and how to design stable interfaces: Traditional top-down mod-
els (e.g., waterfall) plan software design after careful requirements
analysis; the spiral model pursues a risk-first approach in which de-
velopers iterate to prototype risky parts, which then informs future
system design iterations; agile approaches de-emphasize upfront
architectural design for fast iteration on incremental prototypes.
The software architecture community has also grappled with the
question of how much upfront architectural design is feasible, prac-
tical, or desirable [11, 107], showing a tension between the desire

Collaboration Challenges in Building ML-Enabled Systems: Communication, Documentation, Engineering, and Process ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

for upfront planning on one side and technical risks and unsta-
ble requirements on the other. In this context, our research explores
how introducing machine learning into software projects challenges
collaboration.

Software Engineering withMLComponents. In a ML-enabled
system, machine learning contributes one or multiple components
to a larger system with traditional non-ML components. We refer to
the whole system that an end user would use as the product. In some
systems, the learned model may be a relatively small and isolated
addition to a large traditional software system (e.g., audit prediction
in tax software); in others it may provide the system’s essential core
with only minimal non-ML code around it (e.g., a sales prediction
system sending daily predictions by email). In addition to models,
an ML-enabled system typically also has components for training
and monitoring the model(s) [42, 51]. Much attention in practice
recently focuses on building robust ML pipelines for training and
deploying models in a scalable fashion, often under names such
as “AI engineering,” “SysML,” and “MLOps” [51, 59, 67, 90]. In this
work, we focus more broadly on the development of the entire
ML-enabled system, including both ML and non-ML components.

Compared to traditional software systems, ML-enabled systems
require additional expertise in data science to build the models and
may place additional emphasis on expertise such as data manage-
ment, safety, and ethics [5, 49]. In this paper, we primarily focus on
the roles of software engineers and data scientists, who typically have
different skills and educational backgrounds [48, 49, 84, 111]: Data
science education tends to focus more on statistics, ML algorithms,
and practical training of models from data (typically given a fixed
dataset, not deploying the model, not building a system), whereas
software engineering education focuses on engineering tradeoffs
with competing qualities, limited information, limited budget, and
the construction and deployment of systems. Research shows that
software engineers who engage in data science without further
education are often naive when building models [111] and that data
scientists prefer to focus narrowly on modeling tasks [84] but are
frequently faced with engineering work [106]. While there is plenty
of work on supporting collaboration among software engineers [26,
33, 85, 115] and more recently on supporting collaboration among
data scientists [105, 114], we are not aware of work exploring collab-
oration challenges between these roles, which we do in this work.

The software engineering community has recently started to
explore software engineering for ML-enabled systems as a research
field, with many contributions on bringing software-engineering
techniques to ML tasks, such as testing models and ML algorithms
[10, 20, 28, 110], deploying models [4, 13, 29, 34, 51], robustness and
fairness of models [81, 94, 101], life cycles for ML models [1, 5, 34,
61, 74], and engineering challenges or best practices for developing
ML components [3, 5, 18, 27, 40, 44, 60, 90]. A smaller body of
work focuses on the ML-enabled system beyond the model, such
as exploring system-level quality attributes [73, 93], requirements
engineering [103], architectural design [113], safety mechanisms
[17, 83], and user interaction design [7, 25, 112]. In this paper, we
adopt this system-wide scope and explore how data scientists and
software engineers work together to build the system with ML and
non-ML components.

3 RESEARCH DESIGN
Because there is limited research on collaboration in building ML-
enabled systems, we adopt a qualitative research strategy to explore
collaboration points and corresponding challenges, primarily with
stakeholder interviews.We proceeded in four steps: (1)We prepared
interviews based on an initial literature review, (2) we conducted
interviews, (3) we triangulated results with literature findings, and
(4) we validated our findings with the interview participants. We
base our research design on Straussian Grounded Theory [98, 99],
which derives research questions from literature, analyzes inter-
views with open and axial coding, and consults literature through-
out the process. In particular, we conduct interviews and literature
analysis in parallel, with immediate and continuous data analysis,
performing constant comparisons, and refining our codebook and
interview questions throughout the study.
Step 1: Scoping and interview guide. To scope our research and
prepare for interviews, we looked for collaboration problems men-
tioned in existing literature on software engineering forML-enabled
systems (Sec. 2). In this phase, we selected 15 papers opportunis-
tically through keyword search and our own knowledge of the
field. We marked all sections in those papers that potentially relate
to collaboration challenges between team members with differ-
ent skills or educational backgrounds, following a standard open
coding process [99]. Even though most papers did not talk about
problems in terms of collaboration, we marked discussions that
may plausibly relate to collaboration, such as data quality issues
between teams. We then analyzed and condensed these codes into
nine initial collaboration areas and developed an initial codebook
and interview guide (provided in Appendix of arXiv version [66]).
Step 2: Interviews. We conducted semi-structured interviews
with 45 participants from 28 organizations, each 30 to 60 minutes
long. All participants are involved in professional software projects
using machine learning that are either already or planned to be
deployed in production. In Table 1, we show the demographics of
the interview participants and their organizations. Details can be
found in the Appendix of our arXiv version [66].

We tried to sample participants purposefully (maximum varia-
tion sampling [36]) to cover participants in different roles, types of
companies, and countries. We intentionally recruited most partic-
ipants from organizations outside of big tech companies, as they
represent the vast majority of projects that have recently adopted
machine learning and often face substantially different challenges
[40]. Where possible, we tried to separately interview multiple
participants in different roles within the same organization to get
different perspectives. We identified potential participants through
personal networks, ML-related networking events, LinkedIn, and
recommendations from previous interviewees and local tech lead-
ers. We adapted our recruitment strategy throughout the research
based on our findings, at later stages focusing primarily on spe-
cific roles and organizations to fill gaps in our understanding, until
reaching saturation. For confidentiality, we refer to organizations
by number and to participants by PXy where X refers to the orga-
nization number and y distinguishes participants from the same
organization.

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kästner

Table 1: Participant and Company Demographics

Type Break-down

Participant Role (45) ML-focused (23), SE-focused (9), Manage-
ment (5), Operations (2), Domain Expert (2),
Other (4)

Participant Seniority (45) 5 years of experience or more (28), 2-5
years (9), under 2 years (8)

Company Type (28) Big tech (6), Non IT (4), Mid-size tech (11),
Startup (5), Consulting (2)

Company Location (28) North America (11), South America (1), Eu-
rope (5), Asia (10), Africa (1)

We transcribed and analyzed all interviews. Then, to map chal-
lenges to collaboration points, we created visualizations of orga-
nizational structure and responsibilities in each organization (we
show two examples in Figure 1) andmapped collaboration problems
mentioned in the interviews to collaboration points within these
visualizations. We used these visualizations to further organize our
data; in particular, we explored whether collaboration problems
associate with certain types of organizational structures.
Step 3: Triangulation with literature. As we gained insights
from interviews, we returned to the literature to identify related
discussions and possible solutions (even if not originally framed in
terms of collaboration) to triangulate our interview results. Relevant
literature spans multiple research communities and publication
venues, including machine learning, human-computer interaction,
software engineering, systems, and various application domains
(e.g., healthcare, finance), and does not always include obvious
keywords; simply searching for machine-learning research yields a
far too wide net. Hence, we decided against a systematic literature
review and pursued a best effort approach that relied on keyword
search for topics surfaced in the interviews, as well as backward
and forward snowballing. Out of over 300 papers read, we identified
61 as possibly relevant and coded them with the same evolving
codebook. The complete list can be found in our arXiv version [66].
Step 4: Validity check with interviewees. For checking fit and
applicability as defined by Corbin and Strauss [99] and validating
our findings, we went back to the interviewees after creating a full
draft of this paper. We presented the interviewees both a summary
and the full draft, including the supplementary material, along
with questions prompting them to look for correctness and areas
of agreement or disagreement (i.e., fit), and any insights gained
from reading about experiences of the other companies, roles, or
findings as a whole (i.e., applicability). Ten interviewees responded
with comments and all indicated general agreement, some explicitly
reaffirmed some findings. We incorporated two minor suggested
changes about details of two organizations.
Threats to validity and credibility. Our work exhibits the typ-
ical threats common and expected for this kind of qualitative re-
search. Generalizations beyond the sampled participant distribu-
tion should be made with care; for example, we interviewed few
managers, no dedicated data experts, and no clients. In several
organizations, we were only able to interview a single person, giv-
ing us a one-sided perspective. Observations may be different in

organizations in specific domains or geographic regions not well
represented in our data. Self-selection of participants may influ-
ence results; for example developers in government-related projects
more frequently declined interview requests. As described earlier,
we followed standard practices for coding and memoing, but, as
usual in qualitative research, we cannot entirely exclude biases
introduced by us researchers.

4 DIVERSITY OF ORG. STRUCTURES
Throughout our interviews, we found that the number and type
of teams that participate in ML-enabled system development dif-
fers widely, as do their composition and responsibilities, power
dynamics, and the formality of their collaborations, in line with
findings by Aho et al. [1]. To illustrate these differences, we provide
simplified descriptions of teams found in two organizations in Fig-
ure 1. We show teams and their members, as well as the artifacts for
which they are responsible, such as, who develops the model, who
builds a repeatable pipeline, who operates the model (inference),
who is responsible for or owns the data, and who is responsible
for the final product. A team often has multiple responsibilities and
interfaces with other teams at multiple collaboration points. Where
unambiguous, we refer to teams by their primary responsibility as
product team or model team.

Organization 3 (Figure 1, top) develops anML-enabled system for
a government client. The product (health domain), including an ML
model and multiple non-ML components, is developed by a single
8-person team. The team focuses on training a model first, before
building a product around it. Software engineering and data science
tasks are distributed within the team, where members cluster into
groups with different responsibilities and roughly equal negotiation
power. A single data scientist is part of this team, though they
feel somewhat isolated. Data is sourced from public sources. The
relationship between the client and development team is somewhat
distant and formal. The product is delivered as a service, but the
team only receives feedback when things go wrong.

Organization 7 (Figure 1, bottom) develops a product for in-house
use (quality control for a production process). A small team is devel-
oping and using the product, but model development is delegated
to an external team (different company) composed of four data sci-
entists, of which two have some software engineering background.
The product team interacts with the model team to define and revise
model requirements based on product requirements. The product
team provides confidential proprietary data for training. The model
team deploys the model and provides a ready-to-use inference API
to the product team. The relationship between the teams crosses
company boundaries and is rather distant and formal. The product
team clearly has the power in negotiations between the teams.

These two organizations differed alongmany dimensions, andwe
found no clear global patterns when looking across organizations.
Nonetheless patterns did emerge when focusing on three specific
collaboration aspects, as we will discuss in the next sections.

5 COLLABORATION POINT: REQUIREMENTS
AND PLANNING

In an idealized top-down process, one would first solicit product re-
quirements and then plan and design the product by dividing work

Collaboration Challenges in Building ML-Enabled Systems: Communication, Documentation, Engineering, and Process ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

into components (ML and non-ML), deriving each component’s re-
quirements/specifications from the product requirements. In this
process, collaboration is needed for: (1) product team needs to ne-
gotiate product requirements with clients and other stakeholders;
(2) product team needs to plan and design product decomposition,
negotiating with component teams the requirements for individ-
ual components; and (3) product project manager needs to plan
and manage the work across teams in terms of budgeting, effort
estimation, milestones, and work assignments.

5.1 Common Development Trajectories
Few organizations, if any, follow an idealized top-down process, and
it may not even be desirable, as we will discuss later. While we did
not find any global patterns for organizational structures (Sec. 4),
there are indeed distinct patterns relating to how organizations
elicit requirements and decompose their systems. Most importantly,
we see differences in terms of the order in which teams identify
product and model requirements:

Model-first trajectory: 13 of the 28 organizations (3, 10, 14–17,
19, 20, 22, 23, 25–27) focus on building the model first, and build
a product around the model later. In these organizations, product
requirements are usually shaped by model capabilities after the
(initial) model has been created, rather than being defined upfront.
In organizations with separate model and product teams, the model
team typically starts the project and the product team joins later
with low negotiating power to build a product around the model.

Product-first trajectory: In 13 organizations (1, 4, 5, 7–9, 11–
13, 18, 21, 24, 28), models are built later to support an existing
product. In these cases, a product often already exists and product
requirements are collected for how to extend the product with new
ML-supported functionality. Here, the model requirements are de-
rived from the product requirements and often include constraints
on model qualities, such as latency, memory and explainability.

Parallel trajectory: Two organizations (2, 6) follow no clear
temporal order; model and product teams work in parallel.

5.2 Product and Model Requirements
We found a constant tension between product and model require-
ments in our interviews. Functional and nonfunctional product
requirements set expectations for the entire product. Model re-
quirements set goals and constraints for the model team, such as
expected accuracy and latency, target domain, and available data.
Product requirements require input from the model team
(�,�). A common theme in the interviews is that it is difficult to
elicit product requirements without a good understanding of ML ca-
pabilities, which almost always requires involving the model team
and performing some initial modeling when eliciting product re-
quirements. Regardless of whether product requirements or model
requirements are elicited first, data scientists often mentioned being
faced with unrealistic expectations about model capabilities.

Participants that interact with clients to negotiate product re-
quirements (which may involve members of the model team) indi-
cate that they need to educate clients about capabilities of ML tech-
niques to set correct expectations (P3a, P6a, P6b, P7b, P9a, P10a, P15c,
P19b, P22b, P24a). This need to educate customers about ML capabil-
ities has also been raised in the literature [1, 17, 44, 49, 100, 103, 106].

For many organizations, especially in product-first trajectories,
the model team indicates similar challenges when interacting with
the product team. If the product team does not involve the model
team in negotiating product requirements, the product team may
not identify what data is needed for building the model, and may
commit to unrealistic requirements. For example, P26a shared “For
this project, [the project manager] wanted to claim that we have no
false positives and I was like, that’s not gonna work.” Members of
the model team often report lack of ML literacy in members of
the product team and project managers (P1b, P4a, P7a, P12a, P26a,
P27a) and a lack of involvement (e.g., P7b: “The [product team]
decided what type of data would make sense. I had no say on that.”).
Usually the product team cannot identify product requirements
alone, instead product and model teams need to interact to explore
what is achievable.

In organizations with a model-first trajectory, members of the
model team sometimes engage directly with clients (and also report
having to educate them about ML capabilities). However, when
requirements elicitation is left to the model team, members tend to
focus on requirements relevant for the model, but neglect require-
ments for the product, such as expectations for usability, e.g., P3c’s
customers “were kind of happy with the results, but weren’t happy
with the overall look and feel or how the system worked.” Several re-
search papers similarly identified how the goals of data scientists di-
verge from product goals if product requirements are not obvious at
modeling time, leading to inefficient development, worse products,
or constant renegotiation of requirements, especially [67, 73, 112].
Model developmentwithunclearmodel requirements is com-
mon (). Participants from model teams frequently explain how
they are expected to work independently, but are given sparse
model requirements. They try to infer intentions behind them, but
are constrained by having limited understanding of the product
that the model will eventually support (P3a, P3b, P16b, P17b, P19a).
Model teams often start with vague goals and model requirements
evolve over time as product teams or clients refine their expec-
tations in response to provided models (P3b, P7a, P9a, P5b, P19b,
P21a). Especially in organizations following the model-first trajec-
tory, model teams may receive some data and a goal to predict
something with high accuracy, but no further context, e.g., P3a
shared “there isn’t always an actual spec of exactly what data they
have, what data they think they’re going to have and what they want
the model to do.” Several papers similarly report projects starting
with vague model goals [50, 77, 83, 111].

Even in organizations following a product-first trajectory, product
requirements are often not translated into clear model requirements.
For example, participant P17b reports how the model team was
not clear about the model’s intended target domain, thus could
not decide what data was considered in scope. As a consequence,
model teams usually cannot focus just on their component, but have
to understand the entire product to identify model requirements
in the context of the product (P3a, P10a, P13a, P17a, P17b, P19b,
P20b, P23a), requiring interactions with the product team or even
bypassing the product team to talk directly to clients. The difficulty
of providing clear requirements for an ML model has also been
raised in the literature [49, 55, 80, 92, 104, 111], partially arguing
that uncertainty makes it difficult to specify model requirements

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kästner

upfront [1, 44, 50, 69, 106]. Ashemore et al. report mapping product
requirements to model requirements as an open challenge [10].
Providedmodel requirements rarely go beyond accuracy and
data security (3,). Requirements given to model teams pri-
marily relate to some notion of accuracy. Beyond accuracy, require-
ments for data security and privacy are common, typically imposed
by the data owner or by legal requirements (P5a, P7a, P9a, P13a,
P14a, P18a, P20a-b, P21a-b, P22a, P23a, P24a, P25a, P26a). Literature
also frequently discusses how privacy requirements impact and
restrict ML work [15, 41, 43, 55, 56, 78].

We rarely heard of any qualities other than accuracy. Some par-
ticipants report that ignoring qualities such as latency or scalability
has resulted in integration and operation problems (P3c, P11a). In a
few cases requirements for inference latency were provided (P1a,
P6a, P14a) and in one case hardware resources provided constraints
on memory usage (P14a), but no other qualities such as training
latency, model size, fairness, or explainability were required that
could be important for product integration and deployment.

When prompted, very few of our interviewees report consider-
ations for fairness either at the product or the model level. Only
two participants from model teams (P14a, P22a) reported receiving
fairness requirements, whereas many others explicitly mentioned
that fairness is not a concern for them yet (P4a, P5b, P6b, P11a, P15c,
P20a, P21b, P25a, P26a). The lack of fairness and explainability re-
quirements is in stark contrast to the emphasis that these qualities
receive in the literature [e.g., 7, 15, 25, 39, 40, 57, 89, 92, 109, 114].
Recommendations. Our observations suggest that involving data
scientists early when soliciting product requirements is important
(�) and that pursuing a model-first trajectory entirely without
considering product requirements is problematic (�). Conversely,
model requirements are rarely specific enough to allow data scien-
tists to work in isolation without knowing the broader context of
the system and interaction with the product team should ideally
be planned as part of the process. Requirements form a key col-
laboration point between product and model teams, which should
be emphasized even in more distant collaboration styles (e.g., out-
sourced model development). The few organizations that use the
parallel trajectory report fewer problems by involving data scien-
tists in negotiating product requirements to discard unrealistic ones
early on (P6b). Vogelsang and Borg also provide similar recommen-
dations to consult data scientists from the beginning to help elicit
requirements [103]. While many papers place emphasis on clearly
defining ML use cases and scope [49, 93, 100], several others men-
tion how collaboration of technical and non-technical stakeholders
such as domain experts helps [73, 89, 104, 106].

ML literacy for customers and product teams appears to be im-
portant (�). P22a and P19a suggested conducting technical ML
training sessions to educate clients; similar training is also useful
for members of product teams. Several papers argue for similar
training for non-technical users of ML products [44, 89, 103].

Most organizations elicit requirements only rather informally
and rarely have good documentation, especially when it comes
to model requirements. It seems beneficial to adopt more formal
requirements documentation for product and model (), as several
participants reported that it fosters shared understanding at this
collaboration point (P11a, P13a, P19b, P22a, P22c, P24a, P25a, P26a).

Checklists could help to cover a broader range of model quality
requirements, such as training latency, fairness, and explainability.
Formalisms such as model cards [64] and FactSheets [8] could be
used as a starting point for documenting model requirements.

5.3 Project Planning

ML uncertainty makes effort estimation difficult (�). Irre-
spective of trajectory, 19 participants (P3a, P4a, P7a-b, P8a, P14b,
P15b-c, P16a, P17a, P18a, P19a-b, P20a, P22a-c, P23a, P25a) men-
tioned that the uncertainty associated with ML components makes
it difficult to estimate the timeline for developing an ML compo-
nent and by extension the product. Model development is typically
seen as a science-like activity, where iterative experimentation and
exploration is needed to identify whether and how a problem can
be solved, rather than as an engineering activity that follows a
somewhat predictable process. This science-like nature makes it
difficult for the model team to set expectations or contracts with
clients or the product team regarding effort, cost, or accuracy. While
data scientists find effort estimation difficult, lack of ML literacy
in managers makes it worse (P15b, P16a, P19b, P20a, P22b). Teams
report deploying subpar models when running out of time (P3a,
P15b, P19a), or postponing or even canceling deployments (P25a).
These findings align with literature mentioning difficulties associ-
ated with effort estimation for ML tasks [1, 9, 61, 106] and planning
projects in a structured manner with diverse methodologies, with
diverse trajectories, and without practical guidance [1, 17, 61, 106].

Generally, participants frequently report that synchronization
between teams is challenging because of different team pace, differ-
ent development processes, and tangled responsibilities (P2a, P11a,
P12a, P14-b, P15b-c, P19a; see also Sec. 7.2).
Recommendations. Participants suggested several mitigation
strategies: keeping extra buffer times and adding additional time-
boxes for R&D in initial phases (P8a, P19a, P22b-c, P23a;�), contin-
uously involving clients in every phase so that they can understand
the progression of the project and be aware of potential missed
deadlines (P6b, P7a, P22a, P23a;�). From the interviews, we also
observe the benefits of managers who understand both software
engineering and machine learning and can align product and model
teams toward common goals (P2a, P6a, P8a, P28a;�).

6 COLLABORATION POINT: TRAINING DATA
Data is essential for machine learning, but disagreements and frus-
trations around training data were the most common collaboration
challenges mentioned in our interviews. In most organizations, the
team that is responsible for building the model is not the team that
collects, owns, and understands the data, making data a key collab-
oration point between teams in ML-enabled systems development.

6.1 Common Organizational Structures
We observed three patterns around data that influence collaboration
challenges from the perspective of the model team:

Provided data: The product team
has the responsibility of providing data
to the model team (org. 6–8, 13, 18, 21,
23). The product team is the initial point

Collaboration Challenges in Building ML-Enabled Systems: Communication, Documentation, Engineering, and Process ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

of contact for all data-related questions from the model team. The
product team may own the data or acquire it from a separate data
team (internal or external). Coordination regarding data tends to
be distant and formal, and the product team tends to hold more
negotiation power.

External data: The product team
does not have direct responsibility for
providing data, but instead, the model
team relies on external data providers.
Commonly, the model team (i) uses publicly available resources
(e.g., academic datasets, org. 2–4, 6, 19) or (ii) hires a third party for
collecting or labeling data (org. 9, 15–17, 22, 23). In the former case,
the model team has little to no negotiation power over data; in the
latter, it can set expectations.

In-house data: Product, model, and
data teams are all part of the same or-
ganization and the model team relies
on internal data from that organization
(org. 1, 5, 9–12, 14, 20, 24–28). In these cases, both product and
model teams often find it challenging to negotiate access to internal
data due to differing priorities, internal politics, permissions, and
security constraints.

6.2 Negotiating Data Quality and Quantity
Disagreements and frustrations around training data were the most
common collaboration challenges in our interviews. In almost ev-
ery project, data scientists were unsatisfied with the quality and
quantity of data they received at this collaboration point, in line
with a recent survey showing data availability and management to
be the top-ranked challenge in building ML-enabled systems [5].
Provided and public data is often inadequate (, �). In or-
ganizations where data is provided by the product team, the model
team commonly states that it is difficult to get sufficient data (P7a,
P8a, P13a, P22a, P22c). The data that they receive is often of low
quality, requiring significant investment in data cleaning. Similar to
the requirements challenges discussed earlier, they often state that
the product team has little knowledge or intuition for the amount
and quality of data needed. For example, participant P13a stated
that they were given a spreadsheet with only 50 rows to build a
model and P7a reported having to spend a lot of time convincing
the product team of the importance of data quality. This aligns with
past observations that software engineers often have little appreci-
ation for data quality concerns [49, 54, 65, 77, 84] and that training
data is often insufficient and incomplete [6, 43, 56, 77, 83, 93, 106].

When the model team uses public data sources, its members
also have little influence over data quality and quantity and report
significant effort for cleaning low quality and noisy data (P2a, P3a,
P4a, P3c, P6b, P19b, P23a). Papers have similarly questioned the
representativeness and trustworthiness of public training data [34,
103, 109] as “nobody gets paid to maintain such data” [104].

Training-serving skew is a common challenge when training data
is provided to the model team: models show promising results,
but do not generalize to production data because it differs from
provided training data (P4a, P8a, P13a, P15a, P15c, P21a, P22c, P23a)
[9, 23, 55, 56, 77–79, 84, 100, 109, 116]. Our interviews show that
this skew often originates from inadequate training data combined

with unclear information about production data, and therefore no
chance to evaluate whether the training data is representative of
production data.
Data understanding and access to domain experts is a bottle-
neck (,�). Existing data documentation (e.g, data item defini-
tions, semantics, schema) is almost never sufficient for model teams
to understand the data (also mentioned in a prior study [46]). In
the absence of clear documentation, team members often collect
information and keep track of unwritten details in their heads (P5a),
known as institutional or tribal knowledge [5, 40]. Data understand-
ing and debugging often involve members from different teams and
thus cause challenges at this collaboration point.

Model teams receiving data from the product team report strug-
gling with data understanding and having a difficult time getting
help from the product team (or the data team that the product team
works with) (P8a, P7b, P13a). As the model team does not have
direct communication with the data team, data understanding is-
sues often cannot be resolved effectively. For example, P13a reports
“Ideally, for us it would be so good to spend maybe a week or two with
one person continuously trying to understand the data. It’s one of
the biggest problems actually, because even if you have the person,
if you’re not in contact all the time, then you misinterpreted some
things and you build on it.” The low negotiation power of the model
team in these organizations hinders access to domain experts.

Model teams using public data similarly struggle with data un-
derstanding and getting help (P3a, P4a, P19a), relying on sparse
data documentation or trying to reach any experts on the data.

For in-house projects, in several organizations the model team
relies on data in shared databases (org. 5, 11, 26, 27, 28), collected by
instrumenting a production system, but shared by multiple teams.
Several teams shared problems with evolving and often poorly
documented data sources, as participant P5a illustrates “[data rows]
can have 4,000 features, 10,000 features. And no one really cares.
They just dump features there. [...] I just cannot track 10,000 features.”
Model teams face challenges in understanding data and identifying
a team that can help (P5a, P25a, P20b, P27a), a problem also reported
in a prior study about data scientists at Microsoft [49].

Challenges in understanding data and needing domain experts
are also frequently mentioned in the literature [13, 40, 41, 46, 49,
65, 77, 84], as is the danger of building models with insufficient
understanding of the data [34, 103]. Although we are not aware of
literature discussing the challenges of accessing domain experts,
papers have shown that even when data scientists have access,
effective knowledge transfer is challenging [71, 91].
Ambiguitywhen hiring a data team (). When the model team
hires an external data team for collecting or labelling data (org. 9,
15, 16, 17, 22, 23), the model team has much more negotiation
power over setting data quality and quantity expectations (though
Kim et al. report that model teams may have difficulty getting
buy-in from the product team for hiring a data team in the first
place [49]). Our interviews did not surface the same frustrations as
with provided data and public data, but instead participants from
these organizations reported communication vagueness and hidden
assumptions as key challenges at this collaboration point (P9a, P15a,
P15c, P16a, P17b, P22a, P22c, P23a). For example, P9a related how

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kästner

different labelling companies given the same specification widely
disagreed on labels, when the specification was not clear enough.

We found that expectations between model and data teams are
often communicated verbally without clear documentation. As
a result, the data team often does not have sufficient context to
understand what data is needed. For example, participant P17b
states “Data collectors can’t understand the data requirements all the
time. Because, when a questionnaire [for data collection] is designed,
the overview of the project is not always described to them. Even
if we describe it, they can’t always catch it.” Reports about low
quality data from hired data teams have been also discussed in the
literature [10, 43, 55, 84, 103, 106].
Need to handle evolving data (3, �). In most projects, mod-
els need to be regularly retrained with more data or adapted to
changes in the environment (e.g., data drift) [42, 55, 84], which is a
challenge for many model teams (P3a, P3c, P5a, P7a-b, P11a, P15c,
P18a, P19b, P22a). When product teams provide the data, they often
have a static view and provide only a single snapshot of data rather
than preparing for updates, and model teams with their limited
negotiation power have a difficult time fostering a more dynamic
mindset (P7a-b, P15c, P18a, P22a), as expressed by participant P15c:
“People don’t understand that for a machine learning project, data
has to be provided constantly.” It can be challenging for a model
team to convince the product team to invest in continuous model
maintenance and evolution (P7a, P15c) [46].

Conversely, if data is provided continuously (most commonly
with public data sources, in-house sources, and own data teams),
model teams struggle with ensuring consistency over time. Data
sources can suddenly change without announcement (e.g., changes
to schema, distributions, semantics), surprising model teams that
make but do not check assumptions about the data (P3a, P3c, P19b).
For example, participants P5a and P11a report similar challenges
with in-house data, where their low negotiation power does not
allow them to set quality expectations, but they face undesired and
unannounced changes in data sources made by other teams. Most
organizations do not have a monitoring infrastructure to detect
changes in data quality or quantity, as we will discuss in Sec. 7.3.
In-house priorities and security concerns often obstruct data
access (�). In in-house projects, we frequently heard about the
product or model team struggling to work with another teamwithin
the same organization that owns the data. Often, these in-house
projects are local initiatives (e.g., logistics optimization) with more
or less buy-in from management and without buy-in from other
teams that have their own priorities; sometimes other teams explic-
itly question the business value of the product. The interviewed
model teams usually have little negotiation power to request data
(especially if it involves collecting additional data) and almost never
get an agreement to continuously receive data in a certain format,
quality, or quantity (P5a, P10a, P11a, P20a-b, P27a) (also observed in
studies at Microsoft, ING and other organizations [34, 49, 65]). For
example, P10a shared “we wanted to ask the data warehouse team to
[provide data], and it was really hard to get resources. They wouldn’t
do that because it was hard to measure the impact [our in-house
project] had on the bottom line of the business.” Model teams in these
settings tend to work with whatever data they can get eventually.

Security and privacy concerns can also limit access to data (P7a,
P7b, P21a-b, P22a, P24a) [46, 55, 56, 65, 77], especially when data
is owned by a team in a different organization, causing frustra-
tion, lengthy negotiations, and sometimes expensive data-handling
restrictions (e.g., no use of cloud resources) for model teams.
Recommendations. Data quality and quantity is important to
model teams, yet they often find themselves in a position of low
negotiation power, leading to frustration and collaboration ineffi-
ciencies. Model teams that have the freedom to set expectations and
hire their own data teams are noticeably more satisfied. When plan-
ning the entire product, it seems important to pay special attention
to this collaboration point, and budget for data collection, access
to domain experts, or even a dedicated data team (�). Explicitly
planning to provide substantial access to domain experts early in
the project was suggested as important (P25a).

We found it surprising that despite the importance of this col-
laboration point there is little written agreement on expectations
and often limited documentation (), even when hiring a dedi-
cated data team—in stark contrast to more established contracts for
traditional software components. Not all organizations allow the
more agile, constant close collaboration between model and data
teams that some suggest [77, 79]. With a more formal or distant
relationship (e.g., across organizations, teams without buy-in), it
seems beneficial to adopt a more formal contract, specifying data
quantity and quality expectations, which are well researched in
the database literature [58] and have been repeatedly discussed
in the context of ML-enabled systems [43, 46, 49, 56, 91]. This has
also been framed as data requirements in the software engineering
literature [83, 100, 103]. When working with a dedicated data team,
participants suggested to invest in making expectations very clear,
for example, by providing precise specifications and guidelines (P9a,
P6b, P28a), running training sessions for the data collectors and
annotators (P17b, P22c), and measuring inter-rater agreement (P6b).

Automated checks are also important as data evolves (3). For
example, participant P13a mentioned proactively setting up data
monitoring to detect problems (e.g., schema violations, distribution
shifts) at this collaboration point; a practice suggested also in the
literature [53, 56, 77, 79, 84, 89, 100] and supported by recent tooling
[e.g., 47, 79, 86]. The risks regarding possible unnoticed changes to
data make it important to consider data validation and monitoring
infrastructure as a key feature of the product early on (3,�), as
also emphasized by several participants (P5a, P25a, P26a, P28a).

7 COLLABORATION POINT:
PRODUCT-MODEL INTEGRATION

As discussed earlier, to build an ML-enabled system both ML com-
ponents and traditional non-ML components need to be integrated
and deployed, requiring data scientists and software engineers to
work together, typically across multiple teams. We found many con-
flicts at this collaboration point, stemming from unclear processes
and responsibilities, as well as differing practices and expectations.

7.1 Common Organizational Structures
We saw large differences among organizations in how engineering
responsibilities were assigned, most visible in how responsibility
for model deployment and operation is assigned, which typically

Collaboration Challenges in Building ML-Enabled Systems: Communication, Documentation, Engineering, and Process ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

involves significant engineering effort for building reproducible
pipelines, API design, or cloud deployment, often with MLOps
technologies. We found the following patterns:

Shared model code: In
some organizations (2, 6, 23,
25), the model team is respon-
sible only for model develop-
ment and delivers training code (e.g., in a notebook) or model
files to the product team; the product team takes responsibility
for deployment and operation of the model, possibly rewriting the
training code as a pipeline. Here, the model team has little or no
engineering responsibilities.

Model as API: In most organi-
zations (18 out of 28), the model
team is responsible for developing
and deploying the model. Hence,
the model team requires substantial engineering skills in addition
to data science expertise. Here, some model teams are mostly com-
posed of data scientists with little engineering capabilities (org. 7,
13, 17, 22, 26), some consist mostly of software engineers who have
picked up some data science knowledge (org. 4, 15, 16, 18, 19, 21,
24), and others have mixed team members (org. 1, 9, 11, 12, 14, 28).
These model teams typically provide an API to the product team,
or release individual model predictions (e.g., shared files, email; org.
17, 19, 22) or install models directly on servers (org. 4, 9, 12).

All-in-one: If only few people
work on model and product, some-
times a single team (or even a sin-
gle person) shares all responsibilities
(org. 3, 5, 10, 20, 27). It can be a small team with only data scientists
(org. 10, 20, 27) or mixed teams with data scientists and software
engineers (org. 3, 5).

We also observed two outliers: One startup (org. 8) had a distinct
model deployment team, allowing the model team to focus on
data science without much engineering responsibility. In one large
organization (org. 28), an engineering-focused model team (model
as API) was supported by a dedicated research team focused on
data-science research with fewer engineering responsibilities.

7.2 Responsibility and Culture Clashes
Interdisciplinary collaboration is challenging (cf. Sec. 2). We ob-
served many conflicts between data science and software engineer-
ing culture, made worse by unclear responsibilities and boundaries.
Team responsibilities often do not match capabilities and
preferences (3). When the model team has responsibilities re-
quiring substantial engineering work, we observed some dissatis-
faction when its members were assigned undesired responsibilities.
Data scientists preferred engineering support rather than needing
to do everything themselves (P7a-b, 13a), but can find it hard to
convince management to hire engineers (P10a, P20a, P20b). For
example P10a describes “I was struggling to change the mindset of
the team lead, convincing him to hire an engineer...I just didn’t want
this to be my main responsibility.” Especially in small teams, data
scientists report struggling with the complexity of the typical ML
infrastructure (P7b, P9a, P14a, P26a, P28a).

In contrast, when deployment is the responsibility of software
engineers in the product team or of dedicated engineers in all-in-
one teams, some of those engineers report problems integrating
the models due to insufficient knowledge on model context or do-
main, and the model code not being packaged well for deployment
(P20b, P23a, P27a). In several organizations, we heard about soft-
ware engineers performing ML tasks without having enough ML
understanding (P5a, P15b-c, P16b, 18b, 19b, 20b). Mirroring obser-
vations from past research [111], P5a reports “there are people who
are ML engineers at [company] , but they don’t really understand
ML. They were actually software engineers... they don’t understand
[overfitting, underfitting, ...]. They just copy-paste code.”

Siloing data scientists fosters integration problems (�, �).
We observed data scientists often working in isolation—known as
siloing—in all types of organizational structures, even within single
small teams (see Sec. 4) and within engineering-focused teams.
In such settings, data scientists often work in isolation with weak
requirements (cf. Sec. 5.2) without understanding the larger context,
seriously engaging with others only during integration (P3a, P3c,
P6a, P7b, P11a, P13a, P15b, P25a) [41], where problems may surface.
For example, participant P11a reported a problem where product
and model teams had different assumptions about the expected
inputs and the issue could only be identified after a lot of back and
forth between teams at a late stage in the project.
Technical jargon challenges communication (�). Participants
frequently described communication issues arising from differing
terminology used by members from different backgrounds (P1a-b,
P2a, P3a, P5b, P8a, P12a, P14a-b, P16a, P17a-b, P18a-b, P20a, P22b,
P23a), leading to ambiguity, misunderstandings, and inconsistent
assumptions (on top of communication challenges with domain
experts) [1, 46, 76, 104]. P1b reports, “There are a lot of conversations
in which disambiguation becomes necessary. We often use different
kinds of words that might be ambiguous.” For example, data scien-
tists may refer to prediction accuracy as performance, a term many
software engineers associate with response time. These challenges
can be observed more frequently between teams, but they even
occur within a team with members from different backgrounds
(P3a-c, P20a).
Code quality, documentation, and versioning expectations
differ widely and cause conflicts (�, 3). Many participants
reported conflicts around development practices between data sci-
entists and software engineers during integration and deployment.
Participants report poor practices that may also be observed in
traditional software projects; but particularly software engineers
expressed frustration in interviews that data scientists do not follow
the same development practices or have the same quality standards
when it comes to writing code. Reported problems relate to poor
code quality (P1b, P2a, P3b, P5a, P6a-b, P10a, P11a, P14a, P15b-c,
P17a, P18a, P19a, P20a-b, P26a) [9, 27, 34, 37, 75, 87, 106], insufficient
documentation (P5a-b, P6a-b, P10a, P15c, P26a) [8, 46, 64, 114], and
not extending version control to data and models (P3c, P7a, P10a,
P14a, P20b). In two shared-model-code organizations, participants
report having to rewrite code from the data scientists (P2a, P6a-b).
Missing documentation for ML code and models is considered the
cause for different assumptions that lead to incompatibility between
ML and non-ML components (P10a) and for losing knowledge and

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kästner

even the model when faced with turnover (P6a-b). Recent papers
similarly hold poor documentation responsible for team decisions
becoming invisible and inadvertently causing hidden assumptions
[34, 40, 43, 46, 76, 114]. Hopkins and Booth called model and data
versioning in small companies as desired but “elusive” [40].
Recommendations. Many conflicts relate to boundaries of re-
sponsibility (especially for engineering responsibilities) and to dif-
ferent expectations by team members with different backgrounds.
Better teams tend to define processes, responsibilities, and bound-
aries more carefully (�), document APIs at collaboration points
between teams (), and recruit dedicated engineering support for
model deployment (3), but also establish a team culture with mu-
tual understanding and exchange (�). Big tech companies usually
have more established processes and clearer responsibility assign-
ments than smaller organizations and startups that often follow
ad-hoc processes or figure out responsibilities as they go.

The need for engineering skills for ML projects has frequently
been discussed [5, 67, 87, 90, 96, 112, 116], but our interviewees
differ widely in whether all data scientists should have substantial
engineering responsibilities or whether engineers should support
data scientists so that they can focus on their core expertise (3).
Especially interviewees from big tech emphasized that they expect
engineering skills from all data science hires (P28a). Others empha-
sized that recruiting software engineers and operations staff with
basic data-science knowledge can help at many communication
and integration tasks, such as converting experimental ML code
for deployment (P2a, P3b), fostering communication (P3c, P25a),
and monitoring models in production (P5b). Generally, siloing data
scientists is widely recognized as problematic and many intervie-
wees suggest practices for improving communication (�), such as
training sessions for establishing common terminology (P11a, P17a,
P22a, P22c, P23a), weekly all-hands meetings to present all tasks
and synchronize (P2a, P3c, P6b, P11a), and proactive communica-
tion to broadcast upcoming changes in data or infrastructure (P11a,
P14a, P14b). This mirrors suggestions to invest in interdisciplinary
training [5, 48, 49, 69, 76, 112] and proactive communication [54].

7.3 Quality Assurance for Model and Product
During development and integration, questions of responsibility
for quality assurance frequently arise, often requiring coordination
and collaboration between multiple teams. This includes evaluating
components individually (including the model) as well as their
integration and the whole system, often including evaluating and
monitoring the system online (in production).
Model adequacy goals are difficult to establish (, �). Off-
line accuracy evaluation of models is almost always performed by
the model team responsible for building the model, though often
they have difficulty deciding locally when the model is good enough
(P1a, P3a, P5a, P6a, P7a, P15b, P16b, P23a) [34, 44]. As discussed
in Sec. 5 and Sec. 6, model team members often receive little guid-
ance on model adequacy criteria and are unsure about the actual
distribution of production data. They also voice concerns about
establishing ground truth, for example, needing to support data
for different clients, and hence not being able to establish (offline)
measures for model quality (P1b, P16b, P18a, P28a). As quality re-
quirements beyond accuracy are rarely provided for models, model

teams usually do not feel responsible for testing latency, memory
consumption, or fairness (P2a, P3c, P4a, P5a, P6b, P7a, P14a, P15b,
P20b). Whereas literature discussed challenges in measuring busi-
ness impact of a model [10, 14, 43, 49] and balancing business goals
with model goals [73], interviewed data scientists were concerned
about this only with regards to convincing clients, managers or
product teams to provide resources (P7a-b, P10a, P26a, P27a).
Limited confidence without transparent model evaluation
(). Participants in several organizations report that model teams
do not prioritize model evaluation and have no systematic evalua-
tion strategy (especially if they do not have established adequacy
criteria they try to meet), performing occasional “ad-hoc inspec-
tions” instead (P2a, P15b, P16b, P18b, P19b, P20b, P21b, P22a, P22b).
Without transparency about their test processes and test results,
other teams voiced reduced confidence in the model, leading to
skepticism to adopt the model (P7a, P10a, P21b, P22a).
Unclear responsibilities for system testing (�). Teams often
struggle with testing the entire product after integrating ML and
non-ML components. Model teams frequently explicitly mentioned
that they assume no responsibility for product quality (including
integration testing and testing in production) and have not been
involved in planning for system testing, but that their responsibili-
ties end with delivering a model evaluated for accuracy (P3a, P14a,
P15b, P25a, P26a). However, in several organizations, product teams
also did not plan for testing the entire system with the model(s)
and, at most, conducted system testing in an ad-hoc way (P2a, P6a,
P16a, P18a, P22a). Recent literature has reported a similar lack of
focus on system testing in product teams [13, 114], mirroring also
a focus in academic research on testing models rather than testing
the entire system [10, 20]. Interestingly, some established software
development organizations delegated testing to an existing separate
quality assurance team with no process or experience testing ML
products (P2a, P8a, P16a, P18b, P19a).
Planning for online testing and monitoring is rare (�, 3,
�). Due to possible training-serving skew and data drift, literature
emphasizes the need for online evaluation [4, 10, 13, 14, 23, 42, 44,
47, 51, 65, 87, 88, 90, 103]. With collected telemetry, one can usually
approximate both product and model quality, monitor updates,
and experiment in production [14]. Online testing usually requires
coordination among multiple teams responsible for product, model,
and operation. We observed that most organizations do not perform
monitoring or online testing, as it is considered difficult, in addition
to lack of standard process, automation, or even test awareness
(P2a, P3a, P3b, P4a, P6b, P7a, P10a, P15b, P16b, P18b, P19b, 25a,
P27a). Only 11 out of 28 organizations collected any telemetry; it is
most established in big tech organizations. When to retrain models
is often decided based on intuition or manual inspection, though
many aspire to more automation (P1a, P3a, P3c, P5a, P10a, P22a,
P25a, P27a). Responsibilities around online evaluation are often
neither planned nor assigned upfront as part of the project.

Most model teams are aware of possible data drift, but many do
not have any monitoring infrastructure for detecting and managing
drift in production. If telemetry is collected, it is the responsibility
of the product or operations team and it is not always accessible to
the model team. Four participants report that they rely on manual
feedback about problems from the product team (P1a, P3a, P4a,

Collaboration Challenges in Building ML-Enabled Systems: Communication, Documentation, Engineering, and Process ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

P10a). At the same time, others report that product and operation
teams do not necessarily have sufficient data science knowledge to
provide meaningful feedback (P3a, P3b, P5b, P18b, P22a) [82].
Recommendations. Quality assurance involves multiple teams
and benefits from explicit planning and making it a high priority
(�). While the product team should likely take responsibility for
product quality and system testing, such testing often involves build-
ing monitoring and experimentation infrastructure (3), which re-
quires planning and coordination with teams responsible for model
development, deployment, and operation (if separate) to identify
the right measures. Model teams benefit from receiving feedback
on their model from production systems, but such support needs
to be planned explicitly, with corresponding engineering effort as-
signed and budgeted, even in organizations following a model-first
trajectory. We suspect that education about benefits of testing in
production and common infrastructure (often under the label Dev-
Ops/MLOps [59]) can increase buy-in from all involved teams (�).
Organizations that have established monitoring and experimenta-
tion infrastructure strongly endorse it (P5a, P25a, P26a, P28a).

Defining clear quality requirements for model and product can
help all teams to focus their quality assurance activities (cf. Sec. 5;
). Even when it is challenging to define adequacy criteria upfront,
teams can together develop a quality assurance plan for model and
product. Participants and literature emphasized the importance of
human feedback to evaluate model predictions (P11a, P14a) [88],
which requires planning to collect such feedback (�). System and
usability testing may similarly require planning for user studies
with prototypes and shadow deployment [89, 100, 109].

8 DISCUSSION AND CONCLUSIONS
Through our interviews we identified three central collaboration
points where organizations building ML-enabled systems face sub-
stantial challenges: (1) requirements and project planning, (2) train-
ing data, and (3) product-model integration. Other collaboration
points surfaced, but were mentioned far less frequently (e.g., inter-
action with legal experts and operators), did not relate to problems
between multiple disciplines (e.g., data scientists documenting their
work for other data scientists), or mirrored conventional collabora-
tion in software projects (e.g., many interviewees wanted to talk
about unstable ML libraries and challenges interacting with teams
building and maintaining such libraries, though the challenges
largely mirrored those of library evolution generally [16, 31]).

Data scientists and software engineers are certainly not the first
to realize that interdisciplinary collaborations are challenging and
fraught with communication and cultural problems [21], yet it
seems that many organizations building ML-enabled systems pay
little attention to fostering better interdisciplinary collaboration.

Organizations differ widely in their structures and practices, and
some organizations have found strategies that work for them (see
recommendation sections). Yet, we find that most organizations do
not deliberately plan their structures and practices and have little
insight into available choices and their tradeoffs. We hope that this
work can (1) encourage more deliberation about organization and
process at key collaboration points, and (2) serve as a starting point
for cataloging and promoting best practices.

Beyond the specific challenges discussed throughout this paper,
we see four broad themes that benefit from more attention both in
engineering practice and in research:

�Communication:Many issues are rooted in miscommunica-
tion between participants with different backgrounds. To facilitate
interdisciplinary collaboration, education is key, including ML liter-
acy for software engineers and managers (and even customers) but
also training data scientists to understand software engineering
concerns. The idea of T-shaped professionals [102] (deep expertise
in one area, broad knowledge of others) can provide guidance for
hiring and training.

Documentation:Clearly documenting expectations between
teams is important. Traditional interface documentation familiar
to software engineers may be a starting point, but practices for
documenting model requirements (Sec. 5.2), data expectations (Sec.
6.2), and assured model qualities (Sec. 7.3) are not well established.
Recent suggestions like model cards [64], and FactSheets [8] are
a good starting point for encouraging better, more standardized
documentation of ML components. Given the interdisciplinary na-
ture at these collaboration points, such documentation must be
understood by all involved – theories of boundary objects [2] may
help to develop better interface description mechanisms.

3 Engineering: With attention focused on ML innovations,
many organizations seem to underestimate the engineering ef-
fort required to turn a model into a product to be operated and
maintained reliably. Arguably adopting machine learning increases
software complexity [48, 69, 87] and makes engineering practices
such as data quality checks, deployment automation, and testing in
production even more important. Project managers should ensure
that the ML and the non-ML parts of the project have sufficient
engineering capabilities and foster product and operations thinking
from the start.

� Process: Finally, machine learning with its more science-like
process challenges traditional software process life cycles. It seems
clear that product requirements cannot be established without in-
volving data scientists for model prototyping, and often it may
be advisable to adopt a model-first trajectory to reduce risk. But
while a focus on the product and overall process may cause delays,
neglecting it entirely invites the kind of problems reported by our
participants. Whether it may look more like the spiral model or
agile [22], more research into integrated process life cycles for ML-
enabled systems (covering software engineering and data science)
is needed.
Acknowledgements. Kästner’s and Nahar’s work was supported
in part by NSF grants NSF award 1813598 and 2131477. Zhou’s
work was supported in part by Natural Sciences and Engineering
Research Council of Canada (NSERC), RGPIN2021-03538. Lewis’
work was funded and supported by the Department of Defense
under Contract No. FA8702-15-D-0002 with Carnegie Mellon Uni-
versity (CMU) for the operation of the Software Engineering Insti-
tute (SEI), a federally funded research and development center. We
would thank all our interview participants (K M Jawadur Rahman,
Miguel Jette, and anonymous others) and the people who helped
us connect with them.

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kästner

REFERENCES
[1] Aho, T., Sievi-Korte, O., Kilamo, T., Yaman, S. and Mikkonen, T., 2020. Demysti-

fying data science projects: A look on the people and process of data science
today. In Proc. Int’l Conf. Product-Focused Software Process Improvement, 153-167.

[2] Akkerman, S.F. and Bakker, A. 2011. Boundary Crossing and Boundary Objects.
Review of educational research. 81, 2, 132–169.

[3] Akkiraju, R., Sinha, V., Xu, A., Mahmud, J., Gundecha, P., Liu, Z., Liu, X. and
Schumacher, J. 2020. Characterizing Machine Learning Processes: A Maturity
Framework. Business Process Management, 17–31.

[4] Ameisen, E. 2020. Building Machine Learning Powered Applications: Going from
Idea to Product. O’Reilly Media, Inc.

[5] Amershi, S. et al. 2019. Software Engineering for Machine Learning: A Case
Study. In Proc. of 41st Int’l Conf. on Software Engineering: Software Engineering
in Practice (ICSE-SEIP), 291–300.

[6] Amershi, S., Chickering, M., Drucker, S.M., Lee, B., Simard, P. and Suh, J. 2015.
ModelTracker: Redesigning Performance Analysis Tools for Machine Learning.
In Proc. of 33rd Conf. on Human Factors in Computing Systems, 337–346.

[7] Amershi, S. et al. 2019. Guidelines for Human-AI Interaction. In Proc. of CHI
Conf. on Human Factors in Computing Systems, 1–13.

[8] Arnold, M. et al. 2019. FactSheets: Increasing trust in AI services through sup-
plier’s declarations of conformity. IBM Journal of Research and Development,
63.

[9] Arpteg, A., Brinne, B., Crnkovic-Friis, L. and Bosch, J. 2018. Software Engineering
Challenges of Deep Learning. In Proc. Euromicro Conf. Software Engineering and
Advanced Applications (SEAA), 50–59.

[10] Ashmore, R., Calinescu, R. and Paterson, C. 2021. Assuring theMachine Learning
Lifecycle: Desiderata, Methods, and Challenges.ACMComputing Surveys (CSUR),
54 (5): 1-39.

[11] Bass, L., Clements, P. and Kazman, R. 1998. Software Architecture in Practice.
Addison-Wesley Longman Publishing Co., Inc.

[12] Bass, M., Herbsleb, J.D. and Lescher, C. 2009. A Coordination Risk Analysis
Method for Multi-site Projects: Experience Report. In Proc. Int’l Conf. Global
Software Engineering, 31–40.

[13] Baylor, D., Breck, E., Cheng, H.T., Fiedel, N., Foo, C.Y. et al. 2017. TFX: A
TensorFlow-Based Production-Scale Machine Learning Platform. In Proc. Int’l
Conf. Knowledge Discovery and Data Mining, 1387-1395.

[14] Bernardi, L., Mavridis, T. and Estevez, P. 2019. 150 successful machine learning
models. In Proc. Int’l Conf. Knowledge Discovery & Data Mining, 1743-1751.

[15] Bhatt, U., Xiang, A., Sharma, S., Weller, A., Taly, A., Jia, Y., Ghosh, J., Puri, R.,
Moura, J.M.F. and Eckersley, P. 2020. Explainable machine learning in deploy-
ment. In Proc. of Conf. on Fairness, Accountability, and Transparency, 648–657.

[16] Bogart, C., Kästner, C., Herbsleb, J. and Thung, F. 2021. When and how to make
breaking changes: Policies and practices in 18 open source software ecosystems.
ACM Transactions on Software Engineering and Methodology. 30, 4, 1–56.

[17] Borg, M. et al. 2019. Safely Entering the Deep: A Review of Verification and
Validation for Machine Learning and a Challenge Elicitation in the Automotive
Industry. Journal of Automotive Software Engineering. 1, 1, 1–9.

[18] Bosch, J., Olsson, H.H. and Crnkovic, I. 2021. EngineeringAI Systems: A Research
Agenda. Artificial Intelligence Paradigms for Smart Cyber-Physical Systems. IGI
Global. 1–19.

[19] Boujut, J.-F. and Blanco, E. 2003. Intermediary Objects as a Means to Foster
Co-operation in Engineering Design. Computer Supported Cooperative Work
(CSCW). 12, 2, 205–219.

[20] Braiek, H.B. and Khomh, F. 2020. On testing machine learning programs. Journal
of Systems and Software. 164, 110542.

[21] Brandstädter, S. and Sonntag, K. 2016. Interdisciplinary Collaboration. Advances
in Ergonomic Design of Systems, Products and Processes, 395–409.

[22] Braude, Eric J and Bernstein, Michael E. 2011. Software Engineering: Modern
Approaches 2nd Edition. Wiley. ISBN-13: 978-0471692089.

[23] Breck, E., Cai, S., Nielsen, E., Salib, M. and Sculley, D. 2017. The ML test score:
A rubric for ML production readiness and technical debt reduction. In Proc. of
Int’l Conf. on Big Data (Big Data), 1123–1132.

[24] Brown, G.F.C. 1995. Factors that facilitate or inhibit interdisciplinary collaboration
within a professional bureaucracy. University of Arkansas.

[25] Cai, C.J., Winter, S., Steiner, D., Wilcox, L. and Terry, M. 2019. “hello AI”: Uncov-
ering the onboarding needs of medical practitioners for human-AI collaborative
decision-making. In Proc. Human-Computer Interaction. 3, CSCW, 1–24.

[26] Cataldo,M. et al. 2006. Identification of Coordination Requirements: Implications
for the Design of Collaboration and Awareness Tools. In Proc. Conf. Computer
Supported Cooperative Work (CSCW), 353–362.

[27] Chattopadhyay, S., Prasad, I., Henley, A.Z., Sarma, A. and Barik, T. 2020. What’s
Wrong with Computational Notebooks? Pain Points, Needs, and Design Oppor-
tunities. In Proc. Conf. Human Factors in Computing Systems (CHI), 1–12.

[28] Cheng, D., Cao, C., Xu, C. and Ma, X. 2018. Manifesting Bugs in Machine
Learning Code: An Explorative Study with Mutation Testing. In Proc. Int’l Conf.
Software Quality, Reliability and Security (QRS), 313–324.

[29] Chen, Z., Cao, Y., Liu, Y., Wang, H., Xie, T. and Liu, X. 2020. Understanding
Challenges in Deploying Deep Learning Based Software: An Empirical Study.
arXiv 2005.00760.

[30] Conway, M.E. 1968. How Do Committees Invent? Datamation. 14, 4, 28–31.
[31] Cossette, B.E. and Walker, R.J. 2012. Seeking the Ground Truth: A Retroac-

tive Study on the Evolution and Migration of Software Libraries. In Proc. Int’l
Symposium Foundations of Software Engineering (FSE), 1–11.

[32] Curtis, B., Krasner, H. and Iscoe, N. 1988. A field study of the software design
process for large systems. Communications of the ACM. 31, 11, 1268–1287.

[33] Dabbish, L., Stuart, C., Tsay, J. and Herbsleb, J. 2012. Social Coding in GitHub:
Transparency and Collaboration in an Open Software Repository. In Proc. Conf.
Computer Supported Cooperative Work (CSCW), 1277–1286.

[34] Haakman, M., Cruz, L., Huijgens, H. and van Deursen, A. 2021. AI Lifecycle
Models Need To Be Revised. An exploratory study in Fintech. Empirical Software
Engineering. 26, 5, 1–29.

[35] Haakman, M., Cruz, L., Huijgens, H. and van Deursen, A. 2020. AI Lifecycle
Models Need To Be Revised. An Exploratory Study in Fintech. arXiv 2010.02716.

[36] Harsh, S. 2011. Purposeful Sampling in Qualitative Research Synthesis. Qualita-
tive Research Journal. 11, 2, 63–75.

[37] Head, A., Hohman, F., Barik, T., Drucker, S.M. and DeLine, R. 2019. Managing
messes in computational notebooks. In Proc. Conf. Human Factors in Computing
Systems (CHI), 1-12.

[38] Herbsleb, J.D. and Grinter, R.E. 1999. Splitting the Organization and Integrating
the Code: Conway’s Law Revisited. In Proc. Int’l Conf. Software Engineering
(ICSE), 85–95.

[39] Holstein, K. et al.. 2019. Improving Fairness in Machine Learning Systems: What
Do Industry Practitioners Need? In Proc. Conf. Human Factors in Computing
(CHI) Systems, 1–16.

[40] Hopkins, A. and Booth, S. 2021. Machine learning practices outside big tech:
How resource constraints challenge responsible development. In Proc. Conf. on
AI, Ethics, and Society, 134-145.

[41] Hukkelberg, I. and Rolland, K. 2020. Exploring Machine Learning in a Large Gov-
ernmental Organization: An Information Infrastructure Perspective. European
Conf. on Information Systems, 92.

[42] Hulten, G. 2019. Building Intelligent Systems: A Guide to Machine Learning
Engineering. Apress.

[43] Humbatova, N. et al. 2020. Taxonomy of real faults in deep learning systems. In
Proc. Int’l Conf. on Software Engineering (ICSE), 1110-1121.

[44] Ishikawa, F. and Yoshioka, N. 2019. How do engineers perceive difficulties
in engineering of machine-learning systems? - Questionnaire survey. In Proc.
Int’l Workshop on Conducting Empirical Studies in Industry (CESI) and Software
Engineering Research and Industrial Practice (SER&IP), 2-9.

[45] Islam, M.J., Nguyen, H.A., Pan, R. and Rajan, H. 2019. What Do Developers
Ask About ML Libraries? A Large-scale Study Using Stack Overflow. arXiv
1906.11940.

[46] Kandel, S., Paepcke, A., Hellerstein, J.M. and Heer, J. 2012. Enterprise data
analysis and visualization: An interview study. IEEE Transactions on Visualization
and Computer Graphics. 18, 12, 2917–2926.

[47] Kang, D., Raghavan, D., Bailis, P. and Zaharia, M. 2020. Model Assertions for
Monitoring and Improving MLModels. In Proc. of Machine Learning and Systems,
2, 481-496.

[48] Kästner, C. and Kang, E. 2020. Teaching Software Engineering for Al-Enabled
Systems. In Proc. Int’l Conf. Software Engineering: Software Engineering Education
and Training (ICSE-SEET), 45–48.

[49] Kim, M., Zimmermann, T., DeLine, R. and Begel, A. 2018. Data Scientists in
Software Teams: State of the Art and Challenges. IEEE Transactions on Software
Engineering. 44, 11, 1024–1038.

[50] Kuwajima, H., Yasuoka, H. and Nakae, T. 2020. Engineering problems in machine
learning systems. Machine Learning, 109, no 5, 1103-1126.

[51] Lakshmanan, V., Robinson, S. and Munn, M. 2020. Machine Learning Design
Patterns. O’Reilly Media, Inc.

[52] Lewis, G.A., Bellomo, S. and Ozkaya, I. 2021. Characterizing and Detecting
Mismatch in Machine-Learning-Enabled Systems. In Proc. Workshop on AI
Engineering-Software Engineering for AI (WAIN), 133-140.

[53] Lewis, G. A., Ozkaya, I. and Xu X. 2021. Software Architecture Challenges for
ML Systems. In Proc. Int’l Conf. on Software Maintenance and Evolution, 634-638.

[54] Li, P.L., Ko, A.J. and Begel, A. 2017. Cross-Disciplinary Perspectives on Collab-
orations with Software Engineers. In Proc. Int’l Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE), 2–8.

[55] Lwakatare, L.E., Raj, A., Bosch, J., Olsson, H.H. and Crnkovic, I. 2019. A taxonomy
of software engineering challenges for machine learning systems: An empirical
investigation. In Proc. Int’l Conf. Agile Software Development, 227–243.

[56] Lwakatare, L.E., Raj, A., Crnkovic, I., Bosch, J. and Olsson, H.H. 2020. Large-
scale machine learning systems in real-world industrial settings: A review of
challenges and solutions. Information and software technology. 127, 106368.

[57] Madaio, M.A. et al. 2020. Co-Designing Checklists to Understand Organizational
Challenges and Opportunities around Fairness in AI. In Proc. Conf. Human
Factors in Computing Systems (CHI), 1–14.

Collaboration Challenges in Building ML-Enabled Systems: Communication, Documentation, Engineering, and Process ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

[58] Mahanti, R. 2019. Data Quality: Dimensions, Measurement, Strategy, Management,
and Governance. Quality Press.

[59] Mäkinen, S., Skogström, H., Laaksonen, E. and Mikkonen, T. 2021. Who Needs
MLOps:What Data Scientists Seek to Accomplish and HowCanMLOps Help? In
Proc. Workshop on AI Engineering-Software Engineering for AI (WAIN), 109-112.

[60] Martínez-Fernández, S., Bogner, J., Franch, X., Oriol, M., Siebert, J., Trendowicz,
A., Vollmer, A.M. and Wagner, S. 2021. Software Engineering for AI-Based
Systems: A Survey. arXiv 2105.01984.

[61] Martinez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernandez Orallo, J.,
Kull, M., Lachiche, N., Ramirez Quintana, M.J. and Flach, P.A. 2021. CRISP-DM
twenty years later: From data mining processes to data science trajectories. IEEE
Transactions on Knowledge and Data Engineering. 33, 8, 3048–3061.

[62] Meyer, B. 1997. Object-Oriented Software Construction. Prentice-Hall.
[63] Mistrík, I., Grundy, J., van der Hoek, A. and Whitehead, J. 2010. Collaborative

Software Engineering. Springer.
[64] Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B.,

Spitzer, E., Raji, I.D. and Gebru, T. 2019. Model Cards for Model Reporting. In
Proc. Conf. Fairness, Accountability, and Transparency, 220–229.

[65] Muiruri, D., Lwakatare, L. E., K Nurminen, J. and Mikkonen, T. 2021. Practices
and Infrastructures for ML Systems–An Interview Study. TechRxiv 16939192.v1.

[66] Nahar, N., Zhou, S., Lewis, G. and Kästner, C. 2021. Collaboration Challenges in
Building ML-Enabled Systems: Communication, Documentation, Engineering,
and Process. arXiv 2110.10234.

[67] O’Leary, K. and Uchida, M. 2020. Common problems with creating machine
learning pipelines from existing code. In Proc. Conf. Machine Learning and
Systems (MLSys).

[68] Ovaska, P., Rossi, M. and Marttiin, P. 2003. Architecture as a coordination tool
in multi-site software development. Software Process Improvement and Practice.
8, 4, 233–247.

[69] Ozkaya, I. 2020. What Is Really Different in Engineering AI-Enabled Systems?
IEEE Software. 37, 4, 3–6.

[70] Panetta, K. 2020. Gartner Identifies the Top Strategic Technology Trends for
2021. URL: https://www.gartner.com/smarterwithgartner/gartner-top-strategic-
technology-trends-for-2021.

[71] Park, S., Wang, A., Kawas, B., Vera Liao, Q., Piorkowski, D. and Danilevsky, M.
2021. Facilitating Knowledge Sharing from Domain Experts to Data Scientists
for Building NLP Models. In Proc. 26th Int’l Conf. on Intelligent User Interfaces,
585-596.

[72] Parnas, D.L. 1972. On the Criteria to be used in Decomposing Systems into
Modules. Communications of the ACM. 15, 12, 1053–1058.

[73] Passi, S., and Phoebe S. 2020. Making Data Science Systems Work. Big Data &
Society 7 (2): 1-13.

[74] Patel, K., Fogarty, J., Landay, J.A. and Harrison, B. 2008. Investigating statistical
machine learning as a tool for software development. In Proc. Conf. Human
Factors in Computing Systems (CHI), 667–676.

[75] Pimentel, J.F., Murta, L., Braganholo, V. and Freire, J. 2019. A large-scale study
about quality and reproducibility of Jupyter notebooks. In Proc. 16th Int’l Conf.
on Mining Software Repositories (MSR), 507-517.

[76] Piorkowski, D. et al. 2021. How AI Developers Overcome Communication Chal-
lenges in a Multidisciplinary Team: A Case Study. In Proc. ACM on Human-
Computer Interaction, 5, (CSCW1), 1-25.

[77] Polyzotis, N., Roy, S., Whang, S.E. and Zinkevich, M. 2018. Data Lifecycle Chal-
lenges in Production Machine Learning: A Survey. SIGMOD Rec. 47, 2, 17–28.

[78] Polyzotis, N., Roy, S., Whang, S.E. and Zinkevich, M. 2017. Data Management
Challenges in Production Machine Learning. In Proc. Int’l Conf. on Management
of Data, 1723–1726.

[79] Polyzotis, N., Zinkevich, M., Roy, S., Breck, E. and Whang, S. 2019. Data valida-
tion for machine learning. In Proc. Machine Learning and Systems, 334–347.

[80] Rahimi, M., Guo, J.L.C., Kokaly, S. and Chechik, M. 2019. Toward Requirements
Specification for Machine-Learned Components. In Proc. Int’l Requirements
Engineering Conf. Workshops (REW), 241–244.

[81] Rakova, B., Yang, J., Cramer, H. and Chowdhury, R. 2021. Where Responsible AI
meets Reality: Practitioner Perspectives on Enablers for Shifting Organizational
Practices. Proc. ACM Hum.-Comput. Interact. 5, CSCW1, 1–23.

[82] Ré, C., Niu, F., Gudipati, P. and Srisuwananukorn, C. 2019. Overton: A data sys-
tem for monitoring and improving machine-learned products. arXiv 1909.05372.

[83] Salay, R., Queiroz, R. and Czarnecki, K. 2017. An Analysis of ISO 26262: Using
Machine Learning Safely in Automotive Software. arXiv 1709.02435.

[84] Sambasivan, N. et al. 2021. “Everyone wants to do the model work, not the data
work”: Data Cascades in High-Stakes AI. In Proc. Conf. on Human Factors in
Computing Systems (CHI). 1–15.

[85] Sarma, A., Redmiles, D.F. and van der Hoek, A. 2012. Palantir: Early Detection of
Development Conflicts Arising from Parallel Code Changes. IEEE Transactions
on Software Engineering. 38, 4, 889–908.

[86] Schelter, S et al. 2018. Automating Large-scale Data Quality Verification. Proc.
VLDB Endowment Int’l Conf. Very Large Data Bases. 11, 12, 1781–1794.

[87] Sculley, D. et al. 2015. Hidden Technical Debt in Machine Learning Systems.
Advances in Neural Information Processing Systems 28. 2503–2511.

[88] Sculley, D., Otey, M.E., Pohl, M., Spitznagel, B., Hainsworth, J. and Zhou, Y. 2011.
Detecting adversarial advertisements in the wild. In Proc. Int’l Conf. Knowledge
Discovery and Data Mining, 274–282.

[89] Sendak, M.P. et al. 2020. Real-World Integration of a Sepsis Deep Learning
Technology Into Routine Clinical Care: Implementation Study. JMIR medical
informatics. 8, 7, e15182.

[90] Serban, A., van der Blom, K., Hoos, H. and Visser, J. 2020. Adoption and Ef-
fects of Software Engineering Best Practices in Machine Learning. In Proc. Int’l
Symposium on Empirical Software Engineering and Measurement, 1–12.

[91] Seymoens, T., Ongenae, F. and Jacobs, A. 2018. Amethodology to involve domain
experts and machine learning techniques in the design of human-centered
algorithms. In Proc. IFIP Working Conf. Human Work Interaction Design, 200-214.

[92] Shneiderman, B. 2020. Bridging the gap between ethics and practice. ACM
Transactions on Interactive Intelligent Systems. 10, 4, 1–31.

[93] Siebert, J., Joeckel, L., Heidrich, J., Nakamichi, K., Ohashi, K., Namba, I., Ya-
mamoto, R. and Aoyama, M. 2020. Towards Guidelines for Assessing Qualities
of Machine Learning Systems. In Proc. Int’l Conf. on the Quality of Information
and Communications Technology, 17–31.

[94] Singh, G., Gehr, T., Püschel, M. and Vechev, M. 2019. An abstract domain for
certifying neural networks. Proc. ACM Program. Lang. 3, POPL, 1–30.

[95] Smith, D., Alshaikh, A., Bojan, R., Kak, A. andManesh, M.M.G. 2014. Overcoming
barriers to collaboration in an open source ecosystem. Technology Innovation
Management Review. 4, 1.

[96] d. S. Nascimento, E. et al. 2019. Understanding Development Process of Ma-
chine Learning Systems: Challenges and Solutions. In Proc. Int’l Symposium on
Empirical Software Engineering and Measurement (ESEM), 1–6.

[97] de Souza, C.R.B. and Redmiles, D.F. 2008. An Empirical Study of Software
Developers’ Management of Dependencies and Changes. In Proc. Int’l Conf.
Software Engineering (ICSE), 241–250.

[98] Strauss, A. and Corbin, J. 1994. Grounded theory methodology: An overview.
Handbook of qualitative research. N.K. Denzin, ed. 273–285.

[99] Strauss, A. and Corbin, J.M. Basics of Qualitative Research: Grounded Theory
Procedures and Techniques. SAGE Publications.

[100] Studer, S. et al. 2021. Towards CRISP-ML(Q): A Machine Learning Process
Model with Quality Assurance Methodology. Machine Learning and Knowledge
Extraction, 3(2), 392-413.

[101] Tramèr, F. et al. 2017. FairTest: Discovering Unwarranted Associations in Data-
Driven Applications. In Proc. European Symposium on Security and Privacy (EuroS
P), 401–416.

[102] Tranquillo, J. 2017. The T-Shaped Engineer. Journal of Engineering Education
Transformations. 30, 4, 12–24.

[103] Vogelsang, A. and Borg, M. 2019. Requirements Engineering for Machine Learn-
ing: Perspectives from Data Scientists. In Proc. Int’l Requirements Engineering
Conf. Workshops (REW), 245–251.

[104] Wagstaff, K. 2012. Machine Learning that Matters. arXiv 1206.4656.
[105] Wang, A.Y., Mittal, A., Brooks, C. and Oney, S. 2019. How Data Scientists Use

Computational Notebooks for Real-Time Collaboration. Proc. Human-Computer
Interaction. 3, CSCW, 39.

[106] Wan, Z., Xia, X., Lo, D. and Murphy, G.C. 2019. How does Machine Learn-
ing Change Software Development Practices? IEEE Transactions on Software
Engineering, 47(9), 1857-1871.

[107] Waterman, M., Noble, J. and Allan, G. 2015. How Much Up-Front? A Grounded
theory of Agile Architecture. In Proc. Int’l Conf. Software Engineering, 347–357.

[108] Staff, V. B. 2019. Why do 87% of data science projects never make it into pro-
duction? URL: https://venturebeat.com/2019/07/19/why-do-87-of-data-science-
projects-never-make-it-into-production/ .

[109] Wiens, J., et al. 2019. Do no harm: A roadmap for responsible machine learning
for health care. Nature medicine. 25, 9, 1337–1340.

[110] Xie, X., Ho, J.W.K., Murphy, C., Kaiser, G., Xu, B. and Chen, T.Y. 2011. Testing
and Validating Machine Learning Classifiers by Metamorphic Testing. Journal
of Systems and Software. 84, 4, 544–558.

[111] Yang, Q., Suh, J., Chen, N.-C. and Ramos, G. 2018. Grounding InteractiveMachine
Learning Tool Design in How Non-Experts Actually Build Models. In Proc. Conf.
Designing Interactive Systems, 573–584.

[112] Yang, Q. The role of design in creating machine-learning-enhanced user experi-
ence. In Proc. AAAI Spring Symposium Series, 406-411.

[113] Yokoyama, H. 2019. Machine Learning System Architectural Pattern for Improv-
ing Operational Stability. In Proc. Int’l Conf. on Software Architecture Companion
(ICSA-C), 267–274.

[114] Zhang, A.X., Muller, M. and Wang, D. 2020. How do data science workers
collaborate? Roles, workflows, and tools. Proc. Human-Computer Interaction. 4,
CSCW1, 1–23.

[115] Zhou, S., Vasilescu, B. and Kästner, C. 2020. How Has Forking Changed in the
Last 20 Years? A Study of Hard Forks on GitHub. In Proc. Int’l Conf. Software
Engineering (ICSE), 445–456.

[116] Zinkevich,M. 2017. Rules of machine learning: Best practices forML engineering.
URL: https://developers.google.com/machine-learning/guides/ rules-of-ml.

https://www.gartner.com/smarterwithgartner/gartner-top-strategic-technology-trends-for-2021
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-technology-trends-for-2021
https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://developers.google.com/machine-learning/guides/rules-of-ml

	Abstract
	1 Introduction
	2 State of the Art
	3 Research Design
	4 Diversity of Org. Structures
	5 Collaboration Point: Requirements and Planning
	5.1 Common Development Trajectories
	5.2 Product and Model Requirements
	5.3 Project Planning

	6 Collaboration Point: Training Data
	6.1 Common Organizational Structures
	6.2 Negotiating Data Quality and Quantity

	7 Collaboration Point: Product-Model Integration
	7.1 Common Organizational Structures
	7.2 Responsibility and Culture Clashes
	7.3 Quality Assurance for Model and Product

	8 Discussion and Conclusions
	References

