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Abstract—Data analysis is an exploratory, interactive, and of-
ten collaborative process. Computational notebooks have become
a popular tool to support this process, among others because
of their ability to interleave code, narrative text, and results.
However, notebooks in practice are often criticized as hard to
maintain and being of low code quality, including problems
such as unused or duplicated code and out-of-order code exe-
cution. Data scientists can benefit from better tool support when
maintaining and evolving notebooks. We argue that central to
such tool support is identifying the structure of notebooks. We
present a lightweight and accurate approach to extract notebook
structure and outline several ways such structure can be used to
improve maintenance tooling for notebooks, including navigation
and finding alternatives.

I. INTRODUCTION

Data science is a field that extracts insights from data and
applies these insights across a broad range of applications.
Data science work is usually exploratory and iterative, and
often collaborative [1]–[3]. Computational notebooks enable
their users to interleave code, visualizations, and narrative
texts in a single document [2]. They have become the primary
coding environment for data scientists, with millions of data
science notebooks shared publicly each year [4].

While computational notebooks are very popular among
data scientists, many practitioners and researchers report prob-
lems [5], [6]. Previous work examining millions of notebooks
and dozens of interviews has shown that many notebooks
are “messy” and most contain minimal to no documentation
and structuring (in markdown cells) that could facilitate easy
understanding [5], [7]. Understanding is essential for collab-
oration, reuse, and maintenance though. Poor quality code
in public notebooks makes them unreliable for inexperienced
learners [8]. Common problems manifest in dead-ends, dupli-
cated code, and tangled or scattered code [9]. Our goal is to
make it easier to build tooling that helps notebook practitioners
understand, navigate, modularize, and maintain notebook code.

In this paper, we lay the foundation for maintenance tooling
with an efficient algorithm to identify and extract Jupyter note-
book structures as labeled dependency graphs, as summarized
in Figure 1. We automatically label each notebook cell with
machine learning (ML) stages (e.g., data collection, training,
evaluation) and extract data dependency relations among the
cells. Each labeled node in the output graph represents a code
cell, and every directed edge represents a def-use relation
between a pair of cells. In a preliminary evaluation, we
show that our approach is accurate and very lightweight,

Fig. 1. Summary of Our Workflow: a Jupyter notebook is passed to our
algorithm, which labels notebook cells with ML stages and generates a
data dependency graph. The labeled dependency graph can be useful for
applications such as navigation, annotation and documentation generation,
merging and splitting cells, and finding structural patterns in a notebook
dataset.

outperforming prior approaches in terms of lower complexity,
higher accuracy, and lower execution time. Finally, we discuss
potential tooling based on our labeled dependency graph by
sketching a navigation tool and reporting structural patterns
commonly found in notebooks.

We make all implementation code and manually la-
beled data available at github.com/cindyyuanjiang/Jupyter-
Notebook-Project.

II. BACKGROUND & RELATED WORK

A computational notebook is an interactive literate pro-
gramming document which is executed in the computational
environment; Python notebooks in the Jupyter environment are
the most popular of these [7]. Literate programming refers to
the concept of combining code and natural language which
allows programmers to express their thoughts behind the logic
of a program [3]. An interactive computational notebook
environment allows code parts, known as cells, to be executed
incrementally to produce immediate results and visualizations.
Because notebook users are free to execute any cell at any
time, the execution marks may not be in chronological order
from top down.

A. Previous Analysis or Tools to Improve Jupyter Notebooks

Coding practices in notebooks and the popular computa-
tional notebook environments like Jupyter themselves have
been studied extensively (e.g., [3], [5], [7], [9], [10]), revealing
many poor practices and pain points that hamper understand-
ing and maintenance. Many researchers have subsequently
tried to address various problems through improved tooling.



A common theme are attempts to improve documentation:
Wang et al. [9] implemented a deep-learning-based automated
documentation generation system, creating documentation for
source code, retrieving online API documentation for source
code, and nudging users to write documentation. Yang et
al. [11] used program synthesis techniques and dynamic pro-
gram analysis to generate documentation for data wrangling
code which summarizes data transformations on representative
examples from data. Rule et al. [12] designed a Jupyter
notebook extension for cell folding to aid navigation and
comprehension.

Other tooling focuses on managing variants and revisions:
For example, Kery et al. [13] designed and implemented a
lightweight local versioning plugin into Jupyter notebooks
for data scientists to better explore and understand their past
analysis choices, using algorithmic and visualization tech-
niques. Head et al. [6] introduced code gathering tools to help
data scientists clean and recover different versions of code in
cluttered notebooks using software slicing.

Finally, several papers focus on supporting data scientists
with structuring their code into ordered cells: Titov et al. [14]
proposed an algorithm for automatically resplitting cells into
more semantically cohesive units. Wenskovitch et al. [15]
designed a visualization approach to communication by dis-
playing the dependencies between the cells of a notebook,
using dynamic analysis.

Each of these tools developed custom infrastructure from
scratch. We aim to encourage more maintenance tooling
for notebooks by providing a common underlying analysis
infrastructure that can extract the structure in a notebook.

B. Labeling Notebook Cells
In addition to dependencies between cells, it is often useful

to understand what different parts of a notebook are doing.
Data science code is often structured according to a con-
ceptual data science pipeline, which starting from model re-
quirements, considers data collection, data cleaning, labeling,
feature engineering, model training, model evaluation, and
deployment [16]. In notebooks, particularly data cleaning and
feature engineering (collectively called data wrangling [11],
[17]), model training, and model evaluation are common.

Understanding which pipeline stages correspond to which
notebook cells can be helpful for various understanding
and maintenance tasks and is a core of our approach. Past
approaches to identify stages either relied on very simple
heuristics or relied heavily on expensive ML classification. On
one end, Venkatesh et al. [18] simply labeled cells by API calls
contained in them; on the other end, Zhang et al. [17] used
a weakly supervised transformer architecture to classify code
snippets which jointly models data science code and natural
language annotations. Our proposed work outperforms both of
these approaches, providing labels accurately and fast.

III. METHODS

To provide the foundation for more maintenance tooling
for notebooks, to address their common “messy” and undoc-
umented nature in an exploratory and iterative workflow, we

develop an algorithm to identify and extract structures from
Jupyter notebooks as directed, labeled dependency graphs
where every node represents a code block (usually a notebook
cell), every edge represents a data dependency relation, and
nodes are labeled corresponding to their stages in the ML
pipeline. In Figure 3, we illustrate the resulting output graph
for an excerpt of a notebook. By default, we use notebook cells
as the granularity for graph nodes because an ideal notebook
cell can be viewed as a proto-function and reused to do one
dedicated action [14]. To build the labeled dependency graph,
we proceed in two steps: identifying dependencies between
cells and mapping cells to ML stages.

A. Data Dependency

We used standard data flow analysis to identify def-use
chains in a notebook’s code. We then group these dependencies
by code blocks (cells), representing dependencies among cells
as directed edges in our graph.

We and others [7] found that most notebook code is
fairly simple, hence even fairly simple and fast data-flow
analysis provides accurate results (e.g., context sensitivity
and pointer analysis add little benefit). We largely reused the
static data-flow analysis from the python-program-analysis
package developed by Microsoft [9] and modified it as
follows: First, we did not track dependencies from import
statements because they obfuscate the dependency graph
without adding value for maintenance tasks. Second, we made
the tool conservative with regards to dependencies resulting
from function side effects, assuming that a function call
might modify its arguments, therefore treating the function
as a definition site of its arguments. We made the latter
change in preferring occasional false positive dependencies
between cells over missing edges or high analysis costs from
inter-procedural analysis of library code.

B. Identifying ML Stages

We label each node in our dependency graph with a corre-
sponding stage of the ML pipeline. Commonly, an ML pipeline
consists of data collection, data cleaning, labeling, feature
engineering, model training, and model evaluation [16]. As
in prior work [11], [17], we combine data cleaning, labeling,
and feature engineering collectively as data wrangling to avoid
potential overlapping of their meanings. We define the most
relevant stages – Data Collection, Data Wrangling, Training,
Evaluation, and Exploration – with corresponding examples
in Figure 2. Our labels are similar to prior classification by
Zhang et al. [17] because they are all based on standard stages,
but we do not include the Import stage because it is not very
important from a maintenance perspective.

Human developers can map most cells clearly to one or
multiple of these stages (as we will show in our evaluation).
While investigating notebooks, we found that some cells may
correspond to multiple stages, for example, both perform fea-
ture engineering and data exploration in the same cell. Usually
though one stage is clearly the dominant purpose of a cell. To
avoid the complexity of having multiple labels, we agreed on



Stage Name Definition/Description Example

Data Collection Data Collection cells load data
that will often be passed to other
stages in the notebook.

Data Wrangling Data wrangling cells clean,
transform, or filter data loaded
from the data collection stage.
These cells also perform feature
engineering on the collected
data.

Training Training cells define and fit
supervised-learning ML models
to the collected data to predict
on some feature of the data.

Evaluation Evaluation cells predict a feature
of some dataset using ML
model(s) or measure/compute
the accuracy or explanatory
power of the model(s).

Training+Evaluation Training+Evaluation cells
include both training and
evaluation stages, as described
above.

Exploration Exploration cells visualize, print
or plot data or data’s relevant
information (e.g. shape) and plot
or print results related to the
training or evaluation process.
Unsupervised learning is also
classified as exploration.

Fig. 2. ML Stage Definitions

a priority order, assigning always the stage with the highest
priority if multiple stages may apply. As sole exception, we
introduce a dedicated label for cells that perform both training
and evaluation, as they often co-occur and neither stage should
be considered as subsumed by the other. Our final priority
order is: Training+Evaluation > Training or Evaluation >
Data Collection > Data Wrangling > Exploration. If a cell
does not correspond to any stage, we label it as “N/A”.

While there are several different strategies to identify stages
for code fragment, we develop a simple but accurate heuristics-
based approach that does not rely on textual documentation in
the notebook and avoids computationally expensive and brittle
ML techniques.

As recognized in prior work [4], [15], data science code
often uses a small set of popular libraries for typical ML
activities. We use knowledge about such APIs as the seed for
our labels. We build an API-to-stage mapping for commonly
used ML libraries (currently scikit-learn, Keras, and pandas).
We map API calls to specific stages by inspecting their
functionalities in the respective official API references. To
correctly distinguish API calls with the same name (e.g., ‘fit’
used for Training in KNeighborsClassifier or used for Data
Wrangling in PCA in scikit-learn), we use a type inference
tool pyright [19] to identify which library class makes the
API call.

We use known APIs as seeds to identify stages for a
cell and propagate information from there along data-flow
edges. We found that identifying a cell’s stage solely by API
calls contained in the cell is insufficient, but that notebook
users often put logically related statements in the same cell
or structurally close to one another. We hence propagate

information as follows: Every time we analyze a statement,
we consider two scenarios based on the number of child
statements it has according to the data-flow analysis.

• One child statement: if the current statement and its
child statement are in the same code cell or the current
statement is the closest parent to the child statement with
regard to their location in the source code, we propagate
the current statement’s labels to the child statement.

• Multiple child statements: for every pair of the current
statement and one of its child statements, we follow the
same mechanism in the previous case.

After the algorithm traverses every data-flow edge between
statements in the source code for propagating information, it
labels each cell with the highest-priority label existing in that
cell.

IV. PRELIMINARY EVALUATION

To be useful in tooling for maintenance and evolution, our
labeled dependency graph needs to be accurate and fast to
compute. The latter is important both when analyzing many
notebooks (e.g., when indexing reusable structures for search)
and when computing analyses in the background (e.g., within
a notebook plugin).

First, we evaluate the accuracy of our algorithm, especially
cell labelings. Second, we measure the performance of each
step in our algorithm.

A. Dataset

We assemble a dataset of all public notebooks scraped from
GitHub repositories created on two specific days, January
1 (704 notebooks) and January 6 (1629 notebooks), 2021.
Both are weekdays, though January 1 is a holiday in many
countries. We expect that January 1 skews more toward hob-
byists whereas January 6 represents a more typical workday,
together covering a comprehensive representative of notebooks
on GitHub. We sample by release days rather than popularity
to get a full cross section of notebooks typically published
on GitHub; we evaluate on recent notebooks that represent
the state of practice now, rather than performing longitudinal
analysis of historic data.

B. Accuracy

To evaluate the correctness of the output data dependency
graphs, we need to measure the accuracy of the node labelings
and the dependencies between cells.

Accuracy of Node Labelings. To evaluate accuracy, we
need to establish ground truth of the correct label. We establish
ground truth manually.

To assure reliability of manual labeling, we first created ex-
plicit labeling instructions and evaluated inter-rater agreement
among three labelers. Specifically, two authors independently
labeled 102 and 153 cells from two different sets of 6 note-
books randomly selected from our dataset, and a third author
independently labeled all 255 cells of these 12 notebooks,
until each cell had two independent labels. We computed
agreement with Cohen’s kappa and discussed disagreements



between raters. We then refined the instructions and repeated
the process for 434 cells of another 11 notebooks. After
the second round, we reached a kappa score of 0.83, which
is generally interpreted as almost perfect agreement [20],
suggesting that manual labeling is indeed reliable.

After establishing reliability, we then manually label
1208 cells from 50 notebooks as ground truth, 25 fresh note-
books randomly selected each from the January 1 and January
6 datasets. We run our algorithm on these notebooks and
compare the results against experts’ manual labels. Automated
labels match our ground truth in 903 out of 1208 cells,
for 75% accuracy (compared to 38% accuracy for a simple
baseline predictor that always predicts the majority label Data
Wrangling).

To better understand the sources of inaccuracy, we explored
the confusion matrix (can be found on the project website).
Almost half of the errors (44%) come from mislabeling Ex-
ploration and Data Wrangling cells as “N/A”. Distinguishing
among Exploration, Data Wrangling, and “N/A” could be
difficult in some scenarios. For instance, some Data Wrangling
processes are unidentified because they do not call any Data
Wrangling APIs nor are they near them, thus require deeper
understanding of the code’s context to identify the stage.
Another problem is that some cells make Data Wrangling API
calls, but only intend to explore the data. We have not yet
found a way to better distinguish these cases heuristically.

We compare our accuracy result against two previously
discussed approaches on identifying ML stages for notebook
cells. Venkatesh et al. [18] labeled cells solely by API calls
contained in them, though they did not evaluate accuracy or
release their implementation. We approximate their approach
by running our implementation without type inference and
information propagation along data-flow edges. This results
in an accuracy of 69%, showing how our improvements
correspond to a 19% reduction in error over merely identifying
API calls within a cell. Zhang et al. [17] used ML techniques
to classify code snippets based on content and context. We
were unable to reproduce their results (we only achieved
12% accuracy replicating their methods on their dataset),
but the paper reports 70% accuracy for a very similar task.
This indicates that our much simpler approach can achieve a
reduction in error of 17% over their reported numbers.

Accuracy of Cell Dependencies. Establishing ground truth
for cell dependencies is tedious. We opted to not perform a
systematic evaluation, but instead rely on manual inspection
of analysis results in the sampled notebooks. We found oc-
casional spurious edges from conservative assumptions in our
analysis, but no substantial problems.

C. Performance

We measure execution times of our analysis using a com-
modity laptop (2.8 GHz Quad-Core Intel Core i7, Intel Iris
Plus Graphics 655 1536MB, 16GB memory) for all 2333
notebooks in our dataset and report times separately for the
three steps. The slowest component is Type Inference File
Generation using the off-the-shelf tool pyright [19], which is

TABLE I
AVERAGE RUNTIME PER NOTEBOOK FOR EACH STEP IN THE METHODS.

Step in Methods Avg. Runtime

Type Inference File Generation 3720 ms
Seed Function Identification & Data Flow Analysis 144 ms
Information Propagation & Labeled Graph Genera-
tion

187 ms

Identified Training Scikit-Learn API:
1. KNeighborsClassifier()
2. fit()

Note:
2:  Data Collection
3:  N/A
4:  Data Wrangling
5:  Training
6:  Evaluation

Data Dependency Graph

Fig. 3. Sketch of Navigation Tool Prototype

used to disambiguate API calls. All other components can be
executed in much under one second for almost all notebooks,
see Table I. Assuming type inference information can be
cached (or improved with a different tool), the entire analysis
for a full notebook can be performed in 331ms on average,
fast enough to run in the background during interactive use.

Previous work by Zhang et al. [17] used an ML architec-
ture to predict stages for notebook cells. The paper did not
report any performance numbers. While we were not able to
exactly replicate their approach and did not receive access to
pretrained models, we could train a smaller model using the
paper’s script (at significant one time training cost). Even with
the smaller model, label inference took 2007ms per notebook
in the provided test dataset. That is, our much simpler (and
more accurate) approach seems more feasible for interactive
settings.

V. EXAMPLES OF ANTICIPATED APPLICATIONS

We believe the labeled dependency graph is a useful founda-
tion for many tools by providing support for maintenance and
evolution for notebooks specifically and data-science pipelines
more generally. Here we outline examples of envisioned
tooling.

Navigation. Most obviously, we expect that visualizations
of the graph will be useful for navigating in a notebook along
dependency edges (e.g., jumping over deadends or cells that
perform exploration) or navigating directly to code of specific
stages. We sketch a simple visualization in Figure 3. A plugin
could link nodes in the graph with cells in the notebook in both
directions. It could further highlight through which variables or
cells are dependent or why cells are identified as belonging to
a specific stage. Highlighting the cells helps the users to track



where the cells are and how the dependencies are reflected in
the notebook.

Notebook Patterns. Extracting structures from a large set
of notebooks allows us to find patterns among them, useful
for a variety of tasks. Users can search over code structures
of public notebooks. A plugin may highlight alternative cells
to the one currently edited. Analysis tools might indicate when
a user’s notebook has an unusual structure. Researchers and
tool builders can learn about common or uncommon patterns
and use this information to develop tools that are useful for a
large number of notebook users. Our graph provides a good
abstraction for analyzing patterns.

As an example, we identify (1) when notebooks train
multiple models in parallel (models trained independently in
different cells on shared or separate input data), (2) when
they compare the results of multiple models, and (3) when
they contain deadends. We record the number of these pattern
occurrences over all 2333 notebooks from the January 1 and
January 6 datasets.

Parallel training processes happen when users explore mul-
tiple ML training models on a shared or separate datasets. In
such settings, developer tools could help to prune no longer
needed branches, merge branches, or even make manually
explored differences accessible to AutoML tools. Among all
2333 notebooks in our dataset, 169 notebooks contain parallel
training processes on a shared dataset and 575 notebooks
contain parallel training processes on separate datasets. In
total, 32% of the notebooks explore alternatives in training
processes.

In contrast, explicit comparison between different evaluation
processes is rare. We found only 83 notebooks among the ones
analyzed, which accounts for less than 4% of all notebooks.
It seems more common to simply print accuracy numbers and
to compare them manually than to compare them in code.

Finally, deadends – data wrangling or exploration cells
with no children in the data dependency graphs – occur in
almost every notebook analyzed (94%). Tooling could suggest
cleanup mechanisms, manual or automated.

VI. CONCLUSION

We implemented an efficient algorithm to identify and
extract Jupyter notebook structures as labeled data dependency
graphs, where nodes represent cells and directed edges repre-
sent data dependency relations among cells. The algorithm
involves generating data dependency information of cells and
labeling cells with ML stages. Our evaluation shows that our
methods achieve high accuracy for labeling cells and fast
runtime performance. We sketch a navigation tool prototype
using data dependency graphs generated from our methods and
discuss a number of patterns in our notebook dataset. Given
the efficient runtime, tool builders can run our analysis in the
browser background and use our data dependency graphs for
various purposes like navigation, documentation generation, or
learning about notebook structures in general.
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