Can We Do Better with What We Have Done? **Unveiling the Potential of ML Pipeline in Notebooks**

Bill (Yuangan) Zou MASc student

Xinpeng Shan CS Undergrad

Shiqi Tan MEng Student

Shurui Zhou Assistant Professor

TORONTO FORCOLAB

Exploratory Programming in Notebooks

To derive insights from a large amount of data by building high-performance ML model.

Exploratory Programming in Notebooks

- Linear structure
- Flexible
- Incremental

IN [1]:	<pre>import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn import datasets</pre>
In [2]:	<pre>data = datasets.load_iris().data[:,2:4] petal_length, petal_width = data[:,0], data[:,1]</pre>
In [3]:	<pre>print("Average petal length: %.3f" % (sum(petal_length) / len(petal_length),)</pre>
	Average petal length: 3.758
In [4]:	<pre>clusters = KMeans(n_clusters=3).fit(data).labels_</pre>
In [5]:	<pre>plt.scatter(petal_length, petal_width, c=clusters)</pre>
Out[5]:	<matplotlib.collections.pathcollection 0x124e294e0="" at=""></matplotlib.collections.pathcollection>
	25
	20 -
	15 -
	10 -
	0.5 -
	2000 ·

-

Evolution of ML Pipelines

=	kaggle	Q Search Sign In Register
+	Create	Segmentation in PyTorch using convenient tools
Ø	Home	Python - Understanding Clouds from Satellite Images
₽	Competitions	Notebook Input Output Logs Comments (275)
	Datasets	
*	Models	Competition Notebook Run Private Score
$\langle \rangle$	Code	Understanding Clouds from Satellite Ima 30432.15 - GPO PIOU 0.05500
	Discussions	Data Visualization Exploratory Data Analysis Deep Learning Computer Vision
ଚ	Learn	
~	More	General information Table of Contents
		In this kernel I work with the data from Understanding Clouds from Satellite General information
		Images competition. Importing libraries
		Shallow clouds play a huge role in determining the Earth's cl Helper functions and classes
		imate. They're also difficult to understand and to represent Data overview
		The calling the models. By Classifying difference (ypes of Cloud of Preparing data for modelling

Version 37		Version 36			Select version to compare		
1 2	## General information		## General information		Version 37 Save & Run All • Diff: +1 -1 Ran in 8 hours and 27 minutes	5y ago	
3	In this kernel I work with the data from Understanding Clouds from Satellite Images competition.	3	In this kernel I work with the data from Understanding Clouds from Satellite Images competition.	~	Version 36 Save & Run All • Diff: +1 -1 Failed after 9 hours	5y ago	
426	Expand all 422 unchanged lines (Expand 20 lines) "valid": valid_loader }	 426 427	"valid": valid_loader		Version 35 Save & Run All • Diff: +53 -28 Ran in 8 hours and 12 minutes	5y ago	
428		428			Version 34 Save & Run All • Diff: +1 -1 Ran in 8 hours and 5 minutes	5y ago	
429 430	<pre>num_epochs = 19 logdir = "./logs/segmentation"</pre>	429 430	<pre>num_epochs = 21 logdir = "./logs/segmentation"</pre>		Version 33 Save & Run All • Diff: +1 -1 Cancelled after 7 minutes and 8 seconds	5y ago	
431 432	<pre># model, criterion, optimizer</pre>	431 432	# model, criterion, optimizer		Version 32 Save & Run All • Diff: +1 -1 Ran in 7 hours and 56 minutes	5y ago	
 584	Expand all 151 unchanged lines (Expand 20 lines)	 584			Version 31 Save & Run All • Diff: +2 -2 Ran in 8 hours and 17 minutes	5y ago	
585	<pre>sub['EncodedPixels'] = encoded_pixels sub to csv('submission_csv'_columns=['Image_Label'_'EncodedPixels']</pre>	585	<pre>sub['EncodedPixels'] = encoded_pixels sub_to_csv('submission_csv'_columns=['Image_Label'_'EncodedPixels']</pre>		Version 30 Save & Run All • Diff: +3 -3 Ran in 8 hours and 25 minutes	5y ago	
260	index=False)	360	index=False)		Version 29 Save & Run All + Diff: +2 -2	5y ago	

Observation

1x3x2x3 = 18 possible ML pipelines

Search space can be huge

It might not be feasible to MANUALLY explore all the potential combinations

Prior Work on Supporting Exploration and Versioning in Notebooks

 Integrate a branching mechanism into the notebook [Weinman et al. 2021]

• Track the provenance of cells, enabling the comparison of successive cell versions [Samuel et al. 2018]

HOWEVER

While previous research focused on comparing alternatives for each cell, there is still a need to manually merge alternatives from various ML stages into a new pipeline, and then execute, document, and compare the outcomes.

Long-term Goal

To facilitate the automatic management and exploration of alternatives throughout the exploratory programming process, while preserving the inherent advantages of notebooks.

There remains a lack of systematic understanding of...

- How analysts explore the combination of alternatives across different ML stages?
- If these alternatives are comprehensively analyzed during the ML lifecycle?
- How to further support the exploration after extracting the diffs between versions of notebooks?

Research Questions

Current practices

Potential of unexplored ML pipelines

Research Questions

Current practices

RQ1: What are the alternatives? RQ2: How are alternatives explored?

Potential of unexplored ML pipelines

Method - RQ1&2 (Current Practices)

MSR + Qualitative analysis

kaggle

52 High-quality Python notebooks, 6 domains, minimum of 5 versions each, 930 versions of ML pipelines, 23385 LOC

Method - RQ1&2 (Current Practices)

kaggle

Qualitative analysis

51

#stem the to	ext							
text = text	apply(lambda x: " ".j	oin([stemmer.stem(i)						
for i in re opwords]).lo	.sub("[*a-zA-Z]", " ", ower())	x).split() if i not in						
#lemnatize	the text							
text = text	apply(lambda x: " ".j	oin([lemmatizer.lemmatize(i)						
for i in re	.sub("[*a-zA-Z]", " ", x).split() if i not in							
opwords]).1	Version	intention of the code chang						
	1	initial version						
	2	add comment, finalize code						
	3	failed						
	4	failed						
	5	fix bug						
	6	create alternative, fix bug						
	7	no change						
	8	create alternative						
	9	failed						
	10	create alternative						

76	#stem the text
77	<pre>#text = text.apply(lambda x: " ".join([stemmer.stem(i)</pre>
78	<pre>#for i in re.sub("[^a-zA-Z]", " ", x).split() if i not in stopwords]).lower())</pre>
79	
80	#lemmatize the text
81	<pre>#text = text.apply(lambda x: " ".join([lemmatizer.lemmatize(i)</pre>
82	<pre>#for i in re.sub("[*a-zA-Z]", " ", x).split() if i not in stopwords]).lower())</pre>

Results - RQ1 (Types of Alternatives)

Data Preparation (DP)

data cleaning, preprocessing, and wrangling

Feature Engineering (FE)

transforming raw data into relevant features

Model Configuration (MC) adjusting the parameters related to the architecture or individual components of the model

Hyperparam Optimization (HO) adjusting various parameters that control the learning process

Results - RQ2 (How are alternatives explored?)

An iterative fashion

The median of our selected notebooks only represents 1.8% of all possible combinations.

Research Questions

Current practices

RQ1: What are the alternatives? RQ2: How are alternatives explored?

Potential of unexplored ML pipelines

RQ3: Evaluating unexplored ML pipeline RQ4: RQ5:

RQ4: Potential and capability of AutoML

25

Research Questions

Current practices

RQ1: What are the alternatives? RQ2: How are alternatives explored?

Potential of unexplored ML pipelines

RQ3: Evaluating unexplored ML pipeline RQ4: Potential and capability of AutoML

RQ5: Feasibility of Combining Alternatives from Different Analysts

RQ5: Will a combination of alternatives from different data scientists outperform the original notebook result? If yes, to what extent?

Research Questions

Current practices

RQ1: What are the alternatives RQ2: How are alternatives explored?

Potential of unexplored ML pipelines RQ3: Evaluating unexplored ML pipeline RQ4: Potential and capability of AutoML RQ5: Crowdsourcing alternatives

Method to RQ3-5 (Unexplored ML Pipelines)

Quantitative analysis

20 notebooks

11787 ML pipelines in total

Method - RQ3-5

• If the search space is too big, we conduct experiments by randomly sampling a subset of pipelines.

NB5 has a total of 44,236,800 pipelines with a total approximated running time of 70,707,610 hrs

Results - RQ3 Potential of Unexplored Pipelines

• 19/20 NBs contain unexplored pipelines

Results - RQ3 Potential of Unexplored Pipelines

- 19/20 NBs contain unexplored pipelines
- 16 NBs has performance increase (Avg 13.57%)
 - •3 NBs have no performance increase

Results - RQ3 Potential of Unexplored Pipelines

19/20 NBs contain unexplored pipelines

Research Questions

Current practices

RQ1: What are the alternatives RQ2: How are alternatives explored?

Potential of unexplored ML pipelines RQ3: Evaluating unexplored ML pipeline RQ4: Potential and capability of AutoML RQ5: Crowdsourcing alternatives

Results – RQ4 Evaluating AutoML in Exploratory Programming

Results – RQ4 Original pipeline VS Original pipeline + AutoML

• 3/20 NBs show an average performance increase of 8.72%.

%

%

17/20 NBs show an average performance decrease of 16.59%.

Results of RQ4 (Cont.): Merged pipeline VS Merged pipeline + AutoML

%

%

- 1/20 NBs have 8.14% performance increase due to a better set of hyperparameters
- 19/20 NBs have avg 17.41% performance decrease

Research Questions

Current practices

RQ1: What are the alternatives RQ2: How are alternatives explored?

Potential of unexplored ML pipelines RQ3: Evaluating the unexplored ML pipeline RQ4: Potential and capability of AutoML RQ5: Crowdsourcing alternatives

RQ5: Crowdsourcing Alternatives

Result - RQ5: Crowdsourcing Alternatives

3/10 NBs show operational errors

Finding: Despite the potential for improvement demonstrated in some notebooks, a **large amount of manual effort** is usually required to remove these inconsistencies for a successful integration.

Research Questions

Current practices RQ1: What are the alternatives RQ2: How are alternatives explored?

Potential of unexplored ML pipelines RQ3: Evaluating the unexplored ML pipeline RQ4: Potential and capability of AutoML RQ5: Crowdsourcing alternatives

Tooling Opportunities & Research Directions

 More efficient ways to extracting and managing alternatives from large number of notebooks

78	#ste	m the text	76	#stem the text				
79 80	B for Version		intention of the code change	<pre>#text = text.apply(lambda x: " ".join([stemmer.stem(i) #for i in re.sub("[^a-zA-Z]", " ", x).split() if i not in</pre>				
81	stopwi	1	initial version	stopwords]).lower())				
82	#ler	2	add comment, finalize code	#lemmatize the text				
83 84	for	3	failed	<pre>#text = text.apply(lambda x: " ".join([lemmatizer.lemmatize(i) #for i in re.sub("[*a-zA-Z]", " ", x).split() if i not in stopwords]).lower())</pre>				
	stopwi	4	failed					
		5	fix bug					
		6	create alternative, fix bug					
		7	no change					
		8	create alternative	5 7 4				
		9	failed	5				
		10	create alternative					

43

Tooling Opportunities & Research Directions

- More efficient ways to extracting and managing alternatives from large number of notebooks
- More automated ways combine and execute merged pipelines is needed Method RQ3-5

• If the search space is extensive, we conduct experiments by randomly sampling a subset of pipelines.

NB5 has a total of 44,236,800 pipelines with a total approximated running time of 70,707,610 <u>hrs</u>

SPL?

29

Tooling Opportunities & Research Directions

- More efficient ways to extracting and managing alternatives from large number of notebooks
- More efficient ways combine and execute merged pipelines is needed
- Better usability of AutoML tools during exploratory data analysis [Alamin et al. 2022]

Can We Do Better with What We Have Done? Unveiling the Potential of ML Pipeline in Notebooks

Research Questions

Current practices	RQ1: What are the alternatives RQ2: How are alternatives explored?
Potential of	RQ3: Evaluating the unexplored ML pipe

Potential of
unexploredRQ3ML pipelinesRQ5

RQ3: Evaluating the unexplored ML pipeline RQ4: Potential and capability of AutoML RQ5: Crowdsourcing alternatives

-	Ments	Kango	0	м	Os.A	Ma.A	M 44 0 (%)	0.06	No.L ro Gelt. (%)	Mail, 10 M (%)	Apartic, Tanka
8	Accessor	.m. m.	6.67	6.82.1	8.68 T	ALTE .	41108	8.15	2.96	-2146	TPOT
1	Access	49, 15	8.39	6.89	0.64	844.	10.00	-25.84	3.20	-23.60	TPOT
٨.	Accuracy	18,10	0.94	8.40 T	1.54 -+-	124-4	49.75	1000	1.00	-9.06	TPOT
4.	Assess	0.10	4.73	8.86 1	643.2	6.74.2	89.30	-12.8	10.01	-27.08	auto-skilowe
۰.	Accessos	10.11	8.62	8.96 7	8.70	8.76 .	1100	16.67	0.04	-27.08	min-skipen, TPC
۰.	Lophum Ld.	(-m.8)	-4.97	4,77 1	-176 1	-1514	2:45	-12.56	2.96	-11.62	TPOT
1	Assessed	28,12	8.71	8.72 1	846.2	6.76 2	1.46	4.29	2.94	2.78	Application
٠	WMR.87	(0, inc)	1.44	8.40 1	0.85	1.44.1	2.74	127.00	12.75	-0.44	auto-dalaram, TPI
٠	BMSE-	(A) and (4.25	4.251	B28	8.25 -	4.36	6.00	0.00	-4.95	800
÷.	Annialistics	48.10	8.40	8.49 1	8.83 -=	6.82 -=	1.08	1.00	10.000	1.00	min dilogra, TPU
er.	CV Scout	16, 12	1.96	8.90 -+	4.96 -+	4.90	1000	1.00	4.40	0.00	TPOT
ct.	ALC:	ah 15	4.03	8.55	0.02 1	6.52 1	10.00	13.80	0.00	-1.64	TRUE
o.	Relational Long Low"	16.15	8.23	8.18 1	0.05	6.08 1	25.08	-25.58	35.53	10.00	auto-dillowin, TPC
14	log lim?	48.10	0.24	8.00	8.32	6.29	96.00	-28.00	DL 494	-96.78	THOF
10	RMIE"	45. mil	0.26	8.29 7	8.29	6.26.2	25.08	-10.58	19-425	-40.00	TPOT
*	Address	18.0	0.54	4.48 1	6.74	6422	4.76	-5.95	5.465	4.40	TPOT
at.	Loplace LL	(rm.8)	4.90	4.82 1	TAT	1742 6	1.18	- 10.40	0.049	105.78	TPOT
ix.	R ¹ Configure	18.10	8.87	8.87 -+	4.39 1	0.00	10.00	dia 20	37.04	-04.83	TPOT
	ALC	10.15	0.63	0.001	6.00 -	8.85 -	6.68	9.41	0.00	4.14	TPOT
30	Mean White-	49.15	12.64	4.18	4.04 1	0.081	1212	10.41	0.66	4.72	TROT

Tooling Opportunities & Research Directions

- More efficient ways to extracting and managing alternatives from large number of notebooks
- More efficient ways combine and execute merged pipelines is needed
- Better usability of AutoML tools during exploratory data analysis [Alamin et al. 2022]

Bill Zou (<u>bill.zou@mail.utoronto.ca</u>) Shurui Zhou (<u>Shurui.zhou@utoronto.ca</u>)