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Abstract
Theweb experience in developing regions remains subpar, primarily
due to the growing complexity of modern webpages and insufficient
optimization by content providers. Users in these regions typically
rely on low-end devices and limited bandwidth, which results in a
poor user experience as they download and parse webpages bloated
with excessive third-party CSS and JavaScript (JS). To address these
challenges, we introduce the Mobile Application Markup Language
(MAML), a flat layout-basedweb specification language that reduces
computational and data transmission demands, while replacing the
excessive bloat from JS with a new scripting language centered
on essential (and popular) web functionalities. Last but not least,
MAML is backward compatible as it can be transpiled to minimal
HTML/JavaScript/CSS and thus work with legacy browsers. We
benchmark MAML in terms of page load times and sizes, using a
translator which can automatically port any webpage to MAML.
When compared to the popular Google AMP, across 100 testing
webpages, MAML offers webpage speedups by tens of seconds
under challenging network conditions thanks to its significant size
reductions. Next, we run a competition involving 25 university
students porting 50 of the above webpages to MAML using a web-
based editor we developed. This experiment verifies that, with little
developer effort, MAML is quite effective in maintaining the visual
and functional correctness of the originating webpages.

CCS Concepts
• Information systems→WorldWideWeb;Web data descrip-
tion languages.
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1 Introduction
Themodern web has undergone a profound transformation over the
past decade, largely driven by the proliferation of client-side inter-
actions and the widespread adoption of development frameworks
such as React [56] and Angular [36]. While these frameworks were
originally intended to handle large-scale, feature-rich applications,
they have increasingly become default choices even for smaller, less
complex projects. As a result, the very nature of web complexity
has shifted, as what used to be a basic interface element is now
part of a large library, importing excessive stylesheets and scripts.
This web “bloat” has been further exacerbated by the widespread
use of third-party scripts from content delivery networks (CDNs),
analytics services, and other external resources. Singanamalla et
al. [52] showed that, on the median, modern web pages initiate
81 HTTP subrequests to load additional resources, contributing to
medians of 14 additional DNS queries and 16 TLS handshakes.

In addition to heavier resource demands, modern web applica-
tions often present intricate Document Object Model (DOM) trees,
which require browsers to perform intensive computations to find
and update individual elements—a process collectively known as
“reflows and repaints”. Although best practices to avoid these com-
plex computations are proposed [22, 51, 55], the fundamental issue
of web complexity persists. This growing complexity is not merely
a technical concern—it poses a direct challenge to users in devel-
oping regions, where low-end smartphones and limited internet
infrastructure dominate. With the need for efficient bandwidth use
and resource optimization, these users are often excluded from fully
benefiting from modern web experiences, which tend to cater to
high-end devices and fast, stable internet connections.

Recognizing these challenges, developers and organizations are
increasingly advocating for more streamlined web development
strategies. Notable initiatives such as Google AMP [3], Facebook
Instant Articles [4], and SpeedReader [29] change a webpage’s
layout to optimize the display and functionality of its components.
Additionally, research works [12, 47, 58] focus on optimizing the
DOM tree to reduce its depth and complexity, thereby enhancing
overall page performance. However, these methods still heavily
depend on resource management and JavaScript (JS) execution,
which can adversely affect performance, especially on devices with
limited processing power.
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This paper proposes MAML (Mobile Application Markup Lan-
guage), a new mobile web specification language designed to speed
up webpages in developing regions. MAML is based on three core
founding principles. First, it adopts a “flat” DOM structure, using
absolute positioning to place elements relative to the viewport,
thereby reducing computational complexity and eliminating depen-
dencies on surrounding elements. Second, it introduces a new script-
ing language to eliminate excessive bloat from JS, focusing only on
essential functionalities to reduce complexity and avoid unneces-
sary code. Third, it supports transpilation to minimal HTML/JS/CSS,
thus making it backward compatible with today’s web ecosystem.

We developed a web-based MAML editor to assist developers
in creating webpages that conform to MAML specifications. Addi-
tionally, we developed a translator that automates roughly 65% –
empirically estimated in our study – of the manual tasks required to
convert existing webpages into MAML. The remaining 35% mostly
relates to page interactions triggered via human inputs, which
can be easily implemented via our visual editor. MAML trans-
lator further supports transpiling MAML code back to minimal
HTML/JS/CSS, so that it can be served and rendered by today’s
browsers. MAML translator can thus be adopted by CDN providers
or acceleration proxies like [31] and [5] to improve their users
experience by serving MAMLed webpages.

We use the MAML translator to convert existing pages to MAML
and benchmark MAML on user QoE and bandwidth savings com-
pared to Google AMP, and visual similarity of MAML webpages
compared to the original webpages. We find that MAML pages load
significantly faster across all timing metrics and generates a median
data saving of 1 MB compared to AMP and 2.4 MB compared to
the original. In addition, MAML outperforms AMP by up to 30% in
terms of visual similarity. Next, we conduct a competition among
computer science students to customize MAML pages using our edi-
tor verifying that webpages converted to MAML format outperform
on all timing metrics and consume less data, which is particularly
beneficial in bandwidth-constrained regions.

2 Background and Related Work
Challenging Network Conditions. In 2024, approximately 25%
of the rural population in Africa was connected via 2G or lower [39].
Globally, 39% of the population in low-income regions only have
access to 3G, while 17% still remain on 2G [40]. Mobile internet
speeds in many developing regions of Africa are significantly below
the global average, with Guinea averaging 2.89 Mbps [27] and Su-
dan only 2.24 Mbps [49]. Network-induced delays further degrade
web performance in these regions. Lyu et al. [44] showed that TLS
handshakes increase DNS resolution latency by approximately 30%
in high-RTT environments when using DNS-over-TLS (DoT) or
DNS-over-HTTPS (DoH). Similarly, Chen et al. [19] reported that
bandwidth-constrained environments cause TCP flows to experi-
ence severe unfairness, high loss rates, and prolonged silences due
to repetitive timeouts. Additional studies have identified traffic en-
gineering challenges and inadequate infrastructure as significant
contributors to these delays [16, 26, 30, 35].
Web Complexity. The complexity of webpages is another issue
behind the high page load times in developing regions. Indeed, mod-
ern webpages consist of a large number of web elements hosted

across several domains. Singanamalla et al. [52] have shown that,
on the median, modern web pages initiate 81 HTTP subrequests to
load additional resources, contributing to medians of 14 additional
DNS queries and 16 TLS handshakes and verifications. Furthermore,
a modern browser must fetch and render several objects, includ-
ing HTML, JS, CSS, and images, forming a complex object depen-
dency graph [12, 47, 57]. Every modification to the DOM—whether
through adding or removing elements, changing attributes, altering
classes, or executing animations—triggers the browser to recalcu-
late styles and adjust part or all of the layout, collectively referred
to as "reflows and repaints." This requires the browser to match
selectors against the elements in the DOM to determine which
CSS rules apply. This resource-intensive operation can significantly
slow down a webpage load, especially on low-end devices which
are common in developing regions.
Absolute Position-Based Web Development. An approach that
avoids the constraints of the DOM structure is “absolute position-
ing” [45]. Absolute position-based web development is generally
viewed with caution and used by developers only when required. It
leverages CSS’s absolute positioning to place elements with precise
control, allowing designers to position elements relative to the view-
port. This approach can create complex layouts more easily, but
it also introduces challenges related to responsiveness. Elements
positioned absolutely are removed from the normal document flow,
meaning they do not adapt to changes in the surrounding compo-
nents or viewport size. As a result, reliance on absolute positioning
can complicate the standardization of layout processes. Neverthe-
less, absolute positioning enables the creation of a “flat” DOM
layout, modularizing the components and enabling a more efficient
means of searching and updating elements on the viewport.
Optimizations. Several techniques have been proposed to optimize
web browsing over challenging networks, including network-level
optimizations, caching techniques, and content distribution mecha-
nisms [17, 18, 20, 21, 38, 53]. Works such as [12, 47, 58] have focused
on the complexity of webpages and suggested different approaches
to address them. Many solutions have been proposed to optimize
the usage of JS in modern webpages [14, 15, 43], especially focusing
on identifying and blocking unused and non-essential JS code.

From a product perspective, Google AMP [3] rewrites web-
pages with new HTML tags and elements; Facebook Instant Arti-
cles [4] enables publishers to create fast and interactive articles; and
Opera mobile browser [5] compresses pages by about 90% on Opera
servers before they are transferred to the client’s device, rendering
them faster by 2-3 times. Google Web Light [31], though discontin-
ued, served a similar goal by transforming heavy web pages into
lightweight versions to enhance performance on slower networks.
SpeedReader [29], unlike traditional reader modes, integrates di-
rectly into the rendering pipeline to improve both performance and
privacy by stripping unnecessary elements before rendering.

MAML fundamentally differs from the above approaches in that
it pre-compiles pages to simplify their HTML representation, elimi-
nating recursive handling of objects and simplifying the DOM to a
flatter layout with absolute positioning while maintaining the orig-
inal functional equivalence. We believe that reliance on HTML, JS,
and CSS is the underlying problem, and none of the above solutions
tackles this fundamental issue.



MAML: Towards a Faster Web in Developing Regions WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

    Max.
    DOM

      Depth

         No. of DOM
         Elements

JS           
Size           
(KB)            

CSS     
Size     
(KB)     

No.         
of Script          
Requests          

No.
   of Stylesheet

  Requests

    Max.
    DOM

      Depth
13

259
164

30

7 3

15

593
494

72

16 7

17

870910

144

26 11
Speed Index

0-3.4 sec
3.4-5.8 sec
> 5.8 sec

Figure 1: SI versus median complexity metrics as measured
via Lighthouse for 100k developing regions websites.

3 Motivation and Challenges
It is known that webpage complexity has significantly increased
in the past few years [50]. However, the impact of this on users in
developing regions with low-end mobile devices and limited net-
work connectivity has not been given sufficient attention. To assess
today’s webpage complexity issues, we identified 100,000 websites
of developing regions from the Chrome User Experience Report
(CrUX) dataset [24]. We then followed the same methodology of
Bhuiyan et al. [11] by gathering data for ten developing countries
(10,000 webpages per country) classified as the ten most populous
“developed” nations by the IMF [37]. To classify websites by coun-
try, we used the domain’s Whois information, and the country’s
top-level domain (e.g., .pk for Pakistan).

We measured these websites using Google Lighthouse [1], an
open-source tool for audits across multiple dimensions like web-
page performance and composition. Specifically, we gathered the
following metrics: speed index, number of DOM elements, maxi-
mum number of DOM depth between all children inside the <html>
tag, number of stylesheet requests, number of script requests, total
CSS size, and total JS size. A low-end mobile device (Xiaomi Redmi
Go with a Quad-core 1.4 GHz CPU and 1GB RAM) was emulated to
access the sites using Lighthouse [1], with network conditions set
to 3G Fast (1.6 Mbps downlink/768 Kbps uplink with 150ms RTT).
This network condition is the “average” network configuration that
we used in our benchmark evaluation (see Section 6).

Figure 1 shows a radar-plot of the aforementioned metrics, cate-
gorizing each metric according to Lighthouse’s color coding scheme
of speed indexes [33], a metric measuring how quickly a webpage
is visually complete above-the-fold. A value in the range of 0 to
3.4 sec is classified as green, indicating optimal performance. A
value between 3.4 and 5.8 sec is classified as orange, suggesting
moderate performance with potential areas for improvement. A
value greater than 5.8 sec is categorized as red, indicating poor
performance that requires immediate attention and optimization.

Our evaluation shows that 47.3% of webpages fell in the red
region (i.e., speed index > 5.8 sec), 28% in the orange, and 24.6%
in the green region. The median number of DOM elements in the
red region is 910, with a median of 26 script requests. The median
maximum DOM depth is 17 and is consistent across other speed
index categories. Additionally, the median size of JavaScript is 6.3
times larger than that of CSS.

These findings underscore the critical nature of web performance
issues: as the webpage complexity and heavy reliance on JS frame-
works increases, greater memory allocation and computational
resources are required for DOM manipulations and CSS recalcula-
tions, thereby elongating the rendering cycle and degrading user-
perceived performance. In turn, the speed index deteriorates, lead-
ing to a slower loading time and a detrimental user experience. On
low-end mobile devices with limited resources, which are domi-
nant in developing regions, the impact of this becomes even more
pronounced. These devices, constrained by slower processors and
less RAM, struggle with the increased computational load, leading
to longer page load times and more frequent browser crashes or
unresponsive webpages. In essence, this correlation indicates that
work is rather necessary to fundamentally redefine how webpages
are created, ensuring efficiency across all device types in all regions.

4 The MAML Language
4.1 Design Principles
MAML follows several design principles rooted in the desire to
reduce complexity and optimize performance. At its core, MAML
seeks to create a more intuitive and straightforward way to build
web applications, achieving two key objectives: 1) less development
overhead, and 2) faster load times in areas with slow internet, where
saving bandwidth is crucial for lowering costs. We plan to achieve
this through the following principles:
Flat DOM: Hierarchical DOM trees, as present in today’s web, in-
volve complex layout recalculations that can strain low-powered
devices. To solve this problem, MAML adopts a flat DOM approach,
which minimizes the depth of the DOM tree and reduces com-
putational complexity. Elements are placed in absolute positions
(see Section 2) relative to the viewport, and their layout and style
configurations do not depend on surrounding elements. This simpli-
fication is particularly beneficial for devices with limited processing
power as it eliminates the need for complex layout recalculations.
To solve the challenge of responsiveness to dynamic screen sizes,
we use a proportional scaling technique to reposition and rescale
elements appropriately across different viewports.
Bloat Avoidance: Modern webpages often include large amounts
of unnecessary code, such as unused CSS or complex JS libraries.
MAML avoids this by limiting the range of supported attributes
and completely cutting off JS, thereby avoiding useless page bloat
and complexities by only focusing on essential functionalities.
Backward Compatibility: MAML aims to be backward compati-
ble with today’s Web and thus run on legacy browsers. Accordingly,
we require that MAML can be transpiled—the process of convert-
ing source code from one high-level programming language to
another—to regular, but minimal, HTML/JavaScript/CSS, and can
thus be easily adopted by developers integrating it directly into
their development workflows.

4.2 Flat DOM

Data Structure: MAML introduces a new format for writing web-
pages based on a flat DOM, where each element retains necessary
information and attributes related to itself in a self-contained dic-
tionary representation. Each element is a hash map containing
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Property Description
type type of element

x x-position of element in pixels
y y-position of element in pixels
z z-position of element as integer
w width of element in pixels
h height of element in pixels

display whether to make the item visible or not
Table 1: Mandatory properties of MAML elements.

Element Available Properties
text id, text, fontFamily, textAlign, fontSize, color, fontStyle,

fontWeight
shape id, backgroundColor, borderRadius

text-field id, placeholder, backgroundColor
button id, text

dropdown id, options
image id, src, alt, fit

carousel id, srcs
script code
Table 2: Additional properties of MAML elements.

key-value pairs, where the key is the element’s property and the
value is the property’s assigned value. The use of a hash map data
structure ensures that accessing the value of a property has a time
complexity of O(1). The resulting MAML file (or the MAML version
of a webpage) is a collection of MAML data structures separated
by a newline character (\n) and has an extension of .maml.

In the example below, the MAML page has a single element of
type “image”, with attributes related to the position of where that
image should be displayed on the webpage viewport (i.e., the x
and y coordinates of the upper left corner pixel of the image). In
addition, MAML also specifies the z coordinate to establish element
order in terms of depth, whereas the size of the displayed element
is represented by the width (w) and height (h). Finally, the image
element also specifies the URL to the source and the alt-text.
{"type":"image","w":268,"h":31,"x":336,"y":15,"z":1,
"src":"https://example.com/img/abc.webp",
"alt":"Alternate Text","fit":"fill"}

Supported Elements. MAML supports a wide variety of webpage
components, including Text, Shape, Text Field, Button, Dropdown,
Image, Carousel, Video, and Script. These elements cover every-
thing from basic textual content and geometric shapes to interactive
components like buttons and text fields, as well as media content
such as images, carousels, and videos. Each element has several
mandatory properties, as shown in Table 1, along with their descrip-
tions. Based on the type of element, each MAML element includes
its own specific set of additional properties, which are detailed in
Table 2. MAML also incorporates MAMLScript (see Section 4.3), a
scripting language tailored for dynamic content manipulation.
Dynamic Positioning. The web today is inherently dynamic, with
users accessing content on a wide range of screen sizes and resolu-
tions. Designing for this variability requires adaptable layouts that
maintain visual consistency across all devices.

MAML employs a proportional scaling approach to position and
scale elements properly across different viewports. Each MAML
file includes a viewport_width property at the top, which spec-
ifies the width of the original viewport on which the page was

designed. Height is not required because scaling based on width
alone maintains the aspect ratio, ensuring that elements do not
become distorted. Additionally, responsive design principles pri-
oritize width for layout adjustments, while height can vary based
on the content within elements. If an element has original coordi-
nates (𝑥,𝑦) and dimensions (𝑤,ℎ) on the original screen, they are
scaled according to the new scaling factor, maintaining the relative
proportions. The scaling factor (𝑆) is calculated as:

𝑆 = Woriginal / Wnew

where Woriginal is the width of the original viewport, and Wnew is
the width of the new viewport. The width and the 𝑥 position are
updated as follows:

𝑥 ′ = 𝑥 × 𝑆 𝑤 ′ = 𝑤 × 𝑆

We do not need to update the y position and the height, as browsers
support scrolling until the end of the page.

The value of viewport_width is retrieved via a simple JS prop-
erty window.innerWidth injected into the HTML transpiled from
MAML (see section 5.2). After the page fully loads, the JS code
updates the inline CSS width and left properties of each element
within the body tag by multiplying them by the scaling factor (𝑆).

4.3 MAMLScript
One of MAML’s design principles is to avoid webpage bloat via com-
plete JS removal, similar to Brave’s “block script” feature [7]. The
side effect of this aggressive strategy is a lack of page interactivity
which can severely hinder the user experience. In order to provide
some page interactivity, we design a simpler scripting language,
MAMLScript, that efficiently supports a limited but popular set of
JS functionalities.

MAMLScript is included at the end of a MAML file within a script
element that has a property named code. The value of this property
contains the MAMLScript code. When the MAML file is parsed,
this element gives information about the dynamic updates applied
to various elements. This method simplifies the mapping of actions
to specific page components, thus facilitating a more streamlined
interactivity framework, as can be seen in the following example:
{"type":"script", "code":"MAMLScript here."}

Supported Functionalities: MAMLScript only supports popular
JS functions, which we identify by analyzing the most frequently
used interactive features across popular websites that rely on JS.
Our analysis is performed manually due to the lack of a tool ca-
pable of accurately assessing interactive elements, which often
require contextual understanding and nuanced evaluation. We ana-
lyze 100 websites with most visitor traffic and page views according
to Amazon’s Alexa Web Ranking service [10]. While a sample size
of 100 may seem limited, it serves as a valuable indicator of the
primary features that are essential for user interaction across di-
verse platforms. Moreover, Alexa’s ranking is globally inclusive,
representing a broad spectrum of sites, including those from devel-
oping regions, such as China’s qq.com and sohu.com, as well as
Indonesia’s okezone.com. With the potential for open-source con-
tributions, there is an opportunity for the community to expand on
this evaluation, allowing for a more comprehensive understanding
of interactive functionalities over time.
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Our analysis works as follows: 1) identify components that
change automatically, 2) hover over various parts of the page, and 3)
interact through clicks. When a noticeable visual change occurs, we
verify whether it was JS related and, if so, include it in our dataset.
After inspecting these 100 websites, we identify the most common
interactive features, seven of which are currently supported by
MAML: 1) drop-down menus, 2) infinite scroll (loading new con-
tent when reaching the bottom), 3) video players, 4) image carousels,
5) elements that appear after scrolling past a certain point, 6) count-
down timers, and 7) notification pop-ups. Beyond those, we found
other frequently used features like 8) scroll-triggered animations, 9)
auto-animations, 10) theme-toggle buttons, and 11) video previews
activated by hovering over thumbnails. MAMLScript currently does
not support these features, but can be added in the future.
Structure: MAMLScript closely mirrors familiar programming con-
structs found in languages like JS, making it accessible to a broad
range of developers. This design choice not only reduces the learn-
ing curve but also enables developers to leverage their existing
coding skills when working with MAML files.

on("click", "button1") {
show("image2");
hide("image1");
swap(val("input3"), "text3");}

Above, we show a MAMLScript which configures a sequence
of actions to be executed in response to a click event on “but-
ton1”. Upon activation, the script first makes “image2” visible us-
ing the show(“image2”) trigger. Then, it hides “image1” from
view with the hide(“image1”) trigger, ensuring that “image2”
takes its place on the screen. Finally, the script swaps the text of
“text3” to the value of the text input field “input3” using the
swap(val(“input3”), “text3”) trigger.
Listeners and Triggers:MAMLScript uses an Event-Driven Pro-
gramming (EDP) paradigm. Each functionality is determined via a
listener followed by one or more triggers. In the above example, on
is used to listen to an event “click” on element id “button1”. Three
functions (show, hide, and swap) are then triggered on “image2”,
“image1”, and “text3” one by one. Additionally, MAMLScript sup-
ports nested triggers—triggers that return values can be used as a
value for another trigger, as illustrated by the swap and val triggers
used together in the same example. Table 3 and 4 show the available
listeners and triggers along with their usage.

5 MAML Backward Compatibility
Backward compatibility is the final founding principle of MAML
(see Section 4.1). This principle translates into support of transpiling
from MAML into HTML/JS/CSS, without requiring any modifica-
tion to existing browsers. MAML achieves this by using the MAML
“translator” (see subsection 5.2). The translator sequentially con-
verts each line of a MAML file into an equivalent HTML component
including its attributes and inline CSS styles. For example, a MAML
element defined as an image will be translated into an HTML <img>
tag with appropriate attributes such as id, src, and inline styles. It
finally converts MAMLScript to JS by sequentially parsing listeners
and triggers and writing the equivalent JS code that handles events
and interactions defined in the MAMLScript.

Listener Usage
click on(“click”, element_id) { [triggers...] }

change on(“change”, element_id) { [triggers...] }
keydown on(“keydown”, element_id, key_name) { [triggers...] }

reach on(“reach”, element_id) { [triggers...] }
timer on(“timer”, seconds) { [triggers...] }
Table 3: MAMLScript listeners and their usage.

Trigger Usage
val val(element_id);

show show(element_id);
hide hide(element_id);
swap swap(content, element_id);

Table 4: MAMLScript triggers and their usage.

To easily integrate MAML into a developer workflow, we have
also developed a MAML editor (see subsection 5.2) based on a drag-
and-drop interface mimicing other popular web editors, such as
Wix [60], Elementor [25], Webflow [59], etc.

5.1 Editor
The MAML editor (see Figure 2) is a web application designed for
both experienced and inexperienced web developers. The editor
features a drag-and-drop interface to design the layout of a webpage
and add interactivity to its elements. The implementation of the
MAML editor is available online as open-source software [23].
User Workflow. Once users log in to the web-based MAML editor,
they can: 1) create a MAML page from scratch; 2) import an existing
.maml file from their local machine and customize it; or 3) import
a URL that gets converted into the MAML format using the MAML
“translator” (see subsection 5.2). To design the page layout, users can
drag and drop elements from the sidebar onto themain canvas. Once
an element is dropped, users see options to change the position,
styles, and additional properties of the element.

To add interactivity to the elements, users can use the “interac-
tivity designer”. Users are required to drag and drop listeners and
triggers to add event-driven behavior to the elements. For example,
a user can set up a button to hide a specific image when clicked. The
interactivity designer provides a visual interface for defining these
interactions, making it easy for users to add dynamic functionality
to their webpages. Once the page is complete, users can either: 1)
export the page into a MAML file; or 2) export/preview an HTML

Figure 2: MAML editor’s user interface featuring a) canvas of
size 1200×800px; b) toolbar; c) import MAML file or existing
url to translate; d) download a .maml file of the current design
e) save & preview the resulting HTML version of the page; f)
add interactivity using drag-and-drop listeners and triggers.
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version of their page converted using the MAML “translator”, along
with images zipped into the same output.
Implementation. We implemented the MAML editor as a web ap-
plication that can run on any web browser. We used a microservices
architecture, primarily consisting of a User Interface (UI) developed
using Next.js and TypeScript, a Node.js API service to han-
dle APIs and authentication, a MongoDB database for data storage,
and a translator developed using Python and Selenium [6] for
converting existing webpages into the MAML format.

Figure 2 shows a sample screenshot of the MAML editor user
interface. On the back end, we implemented a web server, which is
primarily responsible for managing APIs that facilitate several key
functions: a) users’ authentication, b) image(s) uploading, c) page
translation, and d) saving the pages, enabling users to continue
their work from where they left off.

5.2 Translator
The MAML “translator” is designed to streamline the conversion of
webpages into MAML, and vice-versa. The translator can transpile
MAMLScript to JS, but not JS to MAMLScript, due to the complexity
of JS, and the need of some human interaction to identify and trigger
the set of functions needed. For this task, the translator is paired
with the editor while controlled by a developer. An interesting
avenue of future work is to explore the role of artificial intelligence
in further automating the translator functionalities [9].

Given a webpage URL or local source code, the MAML transla-
tor leverages Selenium Google Chrome to load the webpage. To
ensure that all resources, especially those with lazy loading, are
fully loaded, the translator performs a sequential scroll through
the entire webpage, and then returns to the top. Once the entire
webpage has loaded, the translator conducts a Depth-First Search
(DFS) of all HTML elements on the page and extracts the necessary
information from them. For each supported element, the translator
converts it into the corresponding MAML format while simultane-
ously recording the element’s two-dimensional layout coordinates
(x, y) on the page, dimensions (w, h) and its hierarchical positioning
in terms of stacking order relative to other elements (z value). The
x and y values are used for absolute positioning. With respect to
proportional scaling, we translate the webpage for a mobile device
with a relatively small screen size; hence the clickability of elements
is not affected. The generated MAML file is then stored on the back-
end server, and its corresponding public URL is returned in the API
response, enabling it to be imported into the editor’s user interface.

Although the MAML translator effectively handles many stan-
dard HTML elements, it currently struggles to accurately capture
dynamic components, such as carousels and animated elements.
These elements can update in real-time, but the translator only
takes snapshots at specific moments, often missing transient states.
Additionally, it does not fully represent animation and transition
effects, as it might capture elements before their animations com-
plete. Furthermore, the translator has limitations in capturing CSS
properties defined at the parent level, such as content alignment
and growth properties of child elements within a flex container.
The MAML translator also encounters challenges with components
that heavily rely on JS for rendering. These limitations indicate
significant areas for further improvements.

6 MAML Benchmarking
This section benchmarks MAML with respect to: 1) user QoE mea-
sured with web performance metrics, 2) bandwidth savings, and
3) similarity with the originating webpage. We compare MAML
webpages with both original and Google AMP [3] webpages, which
was selected among the existing optimization tools since used by
popular websites (e.g., today.com and bbc.com); further, it shares
MAML’s core principles (see Section 4.1). In the remainder of this
section, we detail our methodology and present our analysis.
Methodology.We start by identifying a set of testing webpages.
Given any webpage can be converted to MAML, we leverage the
availability of AMP webpages as the key driver of our selection.
Next, we generate MAML versions of these webpages using our
translator. We do not include developers in this generation process
so we can target a large(r) number of wepbages, while also bench-
marking the performance of the sole MAML translator. We then
rely on (student) developers, and a subset of webpages, to evaluate
the full developing cycle envisioned for MAML.

We collect a list of AMP webpages using a methodology simi-
lar to [41]. First, we gather trending Google search queries from
Google’s Year in Search 2023 [32]. Next, we perform a Google search
for each trending query and visit up to 100 webpages (up to page 10
of the search results) per query. For each webpage visited, we search
for the link element with attribute rel=“amphtml” located inside
the head element. The href attribute of this element provides the
AMP URL of a given webpage. We filter the list to include only one
webpage per domain, resulting in a total of 115 webpages. From
this list, we randomly select 100 properly working webpages.

Next, we use webpagetest [13] to automate the loading of these
webpages in Google Chrome. Each webpage is loaded five times
using network configurations representative of mobile networks
in developing regions [48]: 1) 3G Slow: 400 Kbps downlink/uplink
rates with 400 ms RTT, 2) 3G Fast: 1.6 Mbps downlink/768 Kbps
uplink rates with 150ms RTT, and 3) LTE: 12Mbps downlink/uplink
rates with 70 ms RTT. A low-end mobile device (Xiaomi Redmi Go
with a Quad-core 1.4 GHz CPU and 1GB RAM) is used to access
each version of the webpages five times. The Xiaomi Redmi Go is
chosen for its affordability in developing regions (costing ∼40 USD),
and to ensure realistic testing conditions.

As web performance metrics, we measure First Contentful Paint
(FCP) [34], which is a user-centric metric measuring perceived load
speed as it marks the first point in the page load timeline. Next,
Speed Index (SI) [33] which measures how quickly a website’s
content is visually displayed during load. Finally, Page Load time
(PLT) [46] whichmeasures the amount of time it takes for awebpage
to fully load. We also measure the total data (MB) consumed by
each version of a webpage, and a visual similarity score obtained
via a user study in Prolific [2].
Results. Figure 3(a) shows the Cumulative Distribution Function
(CDF) of the delta size between a MAML and both an original (ORG)
and AMP version of each of the 100 webpages under test, i.e., a
positive value indicates MAML data savings. Each value in the
figure represents the median computed across 5 runs. The figure
shows that MAML generates positive data savings for 90% of the
webpages, with a median saving of 1 MB when compared to AMP
and 2.4 MB when compared to original. Note also the long tail,
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Figure 3: MAML vs. Original (ORG) and AMP in web performance metrics (FCP, SI, PLT), page sizes, and visual similarity.
Triangles represent the mean, horizontal lines inside the boxes represent the median, and whiskers show the range within 1.5
times the interquartile range (IQR) from the lower and upper quartiles. Outlined circles represent the outliers.

with 50% of the savings spread between 1/2 MB and up to 15 MB;
such large savings are possible since MAML webpages are rarely
larger than 1 MB, as shown in the inset of figure 3(a). Note that
about 10% of MAML webpages are larger than both original and
AMP webpages due to the usage of image libraries which generate
separate URLs for different image resolutions, updating based on the
viewport size. However, the MAML translator could only capture
the original, larger source file because different image libraries have
separate ways to handle multiple source files, which the translator
is not accustomed to, thus increasing the page size.

Next, Figure 3(b) shows boxplots of the (median) delta between
the web performance metrics (FCP, SI, and PLT) measured for the
original (ORG) and MAML version of each webpage under test,
when considering variable network conditions (3G Slow, 3G Fast,
and LTE). Accordingly, positive values represent MAML speedups;
note that hatched boxplots refer to the delta of each metric when
considering AMP as a baseline, and LTE, i.e., the most challeng-
ing network condition for a potential speedup. Overall, the figure
shows that MAML largely outperforms both original and AMP ver-
sions of each webpage, across all metrics and network conditions.
As expected, the speedups are more prominent when considering
worst network conditions, e.g., tens of seconds, regardless of the
metric, when considering a “3G Slow” network. Still, even at LTE
speed and when considering FCP, i.e., the fastest metric, MAML
shaves multiple seconds when compared to both original and AMP
versions of the test webpages. The negative values are present be-
cause, for some pages, the MAML “translator” captured a higher
resolution image, while these pages used image libraries to render
a compressed image based on the viewport size.

Finally, we evaluate the similarity between MAML and AMP
webpages with the originating webpage. To do so, we generate
screenshots of each version of a fully loaded webpage and run a
crowdsourcing campaign on Prolific [2] where we ask how similar
each version of a webpage (AMP and MAML) is with respect to the
original version of the webpage (see Appendix B for screenshots
examples). We recruited 50 participants, each rating 10 screenshot
pairs. Note that in this study Prolific testers cannot interact with
the webpages, and can thus only evaluate their visual similarity.
Please refer to the next section for a user study involving actual
webpage interactions. We further limit this study to 50 webpages
for which we also have MAML versions of the webpages generated
by (student) developers (see the next subsection) which allows to
evaluate the correctness of MAML translator.

Figure 3(c) shows the CDF of the median score received by each
webpage version, with 0 indicating “completely dissimilar” and 10
indicating “completely similar”. The figure shows that, for MAML,
negative scores (0-3) are rare (about 10% of the scores) even when
webpages are “translated”, i.e., only generated by the translator
with no human intervention. Still, the role of a developer is not
negligible to achieve high visual similarity score, with an overall
score improvement of two points, on average. Last but not least,
MAML outperforms AMP by one point when translated and up to
3 points when allowing a developer in the generation process.

7 MAML Usability

Methodology. We recruited 25 students from an international
university to participate in a competition to createMAMLwebpages
which closely resemble their original versions, both in term of visual
aspect and interactivity. The competition offered prizes for the first
(iPhone 13), second (iPad), and third-place (AirPods) winners. The
competition was conducted asynchronously, i.e., students were
allowed to work on creating MAML webpages on their own over
the course of twoweeks. Each student was given 2 unique webpages
randomly extracted from the 100 webpages from Section 6. The
students were given an introduction on how to use the MAML
editor; further, an institutional review board (IRB) approval was
granted to conduct the user study, and the authors who conducted
the study are CITI [8] certified. No sensitive or personal information
of the participants is collected, except for their university email
address required to contact them for the prize.

Before the competition, participants filled out a form asking
about their expertise in web development and how important page
load time is for them in building a website. With regards to ex-
perience, out of all participants, 2 had no web experience, 6 were
beginners, 7 were intermediate developers, and 5 had advanced web
experience. As for the importance of page load time, the majority of
participants responded with either 4 or 5 (5 indicating “extremely
important”, and 0 indicating “not at all important”). Appendix A
describes the details of the survey.
Results.We start by extending the results from Figure 3(c) when
considering 50 MAML webpages produced by our student develop-
ers and judged by five expert evaluators. Differently from before,
we ask the evaluators to interact with a MAML webpage and stress
test it, i.e., explore all its functionalities to the best of their ability.
We discard Prolific since, as discussed in [28, 54], crowdsourcing
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Figure 4: Developed MAML webpages in terms of their functional similarity to Original webpages, their size comparison to the
“translated” MAML webpages, and the delta size (“translated” - “developed”) correlation as a function of webpage complexity.

ICC 95% CI F Test with True Value 0
Lower Upper Value df1 df2 P
Bound Bound value

ICC(3,k) 0.734 0.56 0.85 3.76 33 132 3.2 × 10−8

Table 5: Inter-rater reliability of our expert evaluation on the
functional similarity results.

usability/performance tests on the Web is quite challenging due
to: 1) device variability, 2) browser differences, 3) local network
connectivity, 4) user expertise, and 5) professional website deploy-
ment. Instead, we resort to five expert developers who can conduct
thorough assessments and identify nuanced differences in func-
tionality. They are tasked to evaluate: 1) the functional similarity
between each MAML and original page, 2) the impact of eventu-
ally missing functionalities. Both questions are answered on the
usual scale comprised between 0 (“completely dissimilar” and “no
impact”) and 10 (“completely similar” and “extreme impact”). Fig-
ure 4(a) summarizes the responses collected for both questions. The
figure shows that all webpages have very high scores (6-10) with
respect to functional similarity (green bars), indicating that most
webpages generated closely mimic the original webpages. With
respect to the impact of the missing functionalities (red bars), most
scores are comprised between 0 and 4, suggesting either no impact
or moderate impact. While empirically evaluating the missing func-
tions, we found that these functions are currently not supported
by MAMLScript (see Section 4.3), e.g., interactive graphs and user
triggered animations, but can be supported in the future.

We evaluate the inter-rater reliability of the expert annotations
using the Intraclass Correlation Coefficient (ICC)—a statistical mea-
sure used to assess the reliability or consistency of measurements
made by different raters or across repeated measurements of the
same subject. The ICC values are shown in Table 5, and are de-
rived using the ICC(3,k) model, which is appropriate for a fixed set
of raters providing ratings on a common set of images [42]. The
Intraclass correlation value was 0.734, indicating good inter-rater
reliability with a statistically significant agreement, with p-values
well below 0.05, further validating the consistency of the ratings.

Next, we set out to validate the speedup and data savings obtained
by the translator in Section 6. Figure 4(b) shows the CDF of the delta
between the web performance metrics (FCP, SI, and PLT) measured
for the “translated” and “developed” 100 webpages, i.e., a negative
value indicates a slowdown, when considering LTE (i.e., the most

challenging network condition for a potential speedup). Overall,
the figure shows a slowdown for ∼78% of the webpages due to the
extra content added by the developers while “fixing” the translated
webpages (1 MB at the median as shown in Figure 4(c)). This had
almost a negligible effect on the fast FCP (less than 280ms), while
added 1/2 seconds for 5% of the webpages in term of SI (and less than
500 ms for the remainder 73% of webpages). PLT is the most affected
metric, for which 20% of the webpages had a slowdown of roughly
1.5 - 4 seconds. This is expected as PLT measures the amount of
time it takes for a webpage to fully load, and it is thus impacted
the most by the larger size. Even with these corrections, MAML
still offers considerable webpages speedups over both original and
AMP webpages (see Figure 3(b)).

Finally, Figure 4(b) shows show considerable speedups – up to 15
seconds for PLT – for about 22% of the developer webpages. These
speedups are due to image optimizations done by our developers,
who have properly selected lower resolution images compared to
higher resolutions picked by the translator, as previously discussed.

8 Conclusion
This paper has presented the Mobile Application Markup Language
(MAML), a flat layout-based web specification language that re-
duces computational and data transmission demands, thereby ac-
celerating and slimming webpages to improve the web quality of
experience of users in developing regions. To demonstrate and eval-
uate MAML, we have developed a web-based editor and recruited
25 students to compete in porting popular webpages to MAML.
We have further developed a translator which allows to automate
this conversion, while missing complex page functionalities related
to web page interaction. We use the translator to benchmark 100
popular webpages which also support AMP, a Google format which
rewrites webpages with newHTML tags and elements optimized for
performance. Our analysis shows that MAML vastly outperforms
AMP, accelerating webpages by tens of seconds under challenging
network conditions thanks to its very compressed format (50-80%
page size reduction). Further, these performance optimizations are
achieved while generating webapges which adhere more to the orig-
inal webpages than what AMP can achieve. With respect to page
functionalities, a user study shows that MAML is quite effective in
maintaining the most important functionalities when pairing the
translator with some developers help.
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Question Options
How much web development experience do you have? A. None

B. Beginner (understand the basics, can use templates and customize them)
C. Intermediate (can develop pages from scratch and write limited JS code
for interactivity)
D. Advanced (have developed webpages from scratch using modern web
development technologies and can write JS code from scratch)

How important is page load time for you when developing webpages? Rate
on a scale from 0 to 5.

0 - Not at all important

5 - Extremely Important
Table 6: Pre-competition survey questionnaire

Question Options
How would you rate the learning curve of the MAML Editor on a scale from 0 to 10? 0 - Extremely Hard

10 - Very easy to learn
Rate MAML Editor’s web interface on a scale from 0 to 10. 0 - Terrible

10 - Excellent
Rate the MAML editor usability on a scale from 0 to 10. 0 - Unusable

10 - Easy to use
Table 7: Post-competition survey questionnaire

Question Options
Rate the visual similarity of the two pages on a scale from 0 to 10. 0 - Not similar at all

5 - Moderately similar
10 - Identical

Rate the visual impact of the missing content on the user experience on a scale from 0 to 10. 0 - No impact
5 - Moderate impact
10 - Extreme impact

Rate your willingness to sacrifice missing content for a significant increase in loading speed. 0 - Not willing at all
5 - Moderately willing
10 - Extremely willing

Table 8: Content similarity study questionnaire on Prolific

Question Options
Rate the functional similarity of the two pages on a scale from 0 to 10. 0 - Not similar at all

5 - Moderately similar
10 - Identical

Rate the functional impact of the missing content on the user experience on a scale from 0 to 10. 0 - No impact
5 - Moderate impact
10 - Extreme impact

Table 9: Functional similarity study questionnaire for manual inspection
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B Sample Original vs. MAML pages

(a) ifttt.com original page (b) ifttt.com MAML page

(c) flickr.com original page (d) flickr.com MAML page
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(e) doctorswithoutborders.org original page (f) doctorswithoutborders.org MAML page
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