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ABSTRACT
The fork-based development mechanism provides the flexibility
and the unified processes for software teams to collaborate easily
in a distributed setting without too much coordination overhead.
Currently, multiple social coding platforms support fork-based de-
velopment, such as GitHub, GitLab, and Bitbucket. Although these
different platforms virtually share the same features, they have
different emphasis. As GitHub is the most popular platform and the
corresponding data is publicly available, most of the current stud-
ies are focusing on GitHub hosted projects. However, we observed
anecdote evidences that people are confused about choosing among
these platforms, and some projects are migrating from one platform
to another, and the reasons behind these activities remain unknown.
With the advances of Software Heritage Graph Dataset (SWHGD),
we have the opportunity to investigate the forking activities across
platforms. In this paper, we conduct an exploratory study on 10
popular open-source projects to identify cross-platform forks and
investigate the motivation behind. Preliminary result shows that
cross-platform forks do exist. For the 10 subject systems used in
this study, we found 81,357 forks in total among which 179 forks
are on GitLab. Based on our qualitative analysis, we found that
most of the cross-platform forks that we identified are mirrors of
the repositories on another platform, but we still find cases that
were created due to preference of using certain functionalities (e.g.
Continuous Integration (CI)) supported by different platforms. This
study lays the foundation of future research directions, such as
understanding the differences between platforms and supporting
cross-platform collaboration.
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1 INTRODUCTION
Fork-based development allows developers to start development
from an existing codebase while having the flexibility and indepen-
dence to make changes [13, 18]. Prior work studied the fork-based
development mechanism from different perspectives, such as the
collaboration efficiencies of software teams using forks [19], pull
request management processes [13], sustainability of open-source
communities [17], and different types of forks on GitHub [16]. How-
ever, most of these studies focus on GitHub. Although GitHub is
the most popular platform that supports fork-based development,
other reasonably popular platforms support the fork-based develop-
ment mechanism as well, such as BitBucket and GitLab. BitBucket
announced that till April 2019 they reached 10 million registered
users and over 28 million repositories1. Similarly, GitLab is used
by more than 100,000 organizations and its open-source codebase
is contributed by 2,988 developers2. These platforms have differ-
ent functionality emphasis such as DevOps solution, self-managed
hosting, automatic code change monitoring, and Continuous In-
tegration/Continuous Deployment (CI/CD). Anecdotal evidences
show that people are struggling about which platform to choose for
software development, and we observed projects migrating from
one platform to another, such as the project Vim [11] was hosted
on GitHub, and then was moved to GitLab because of the CI feature
of GitLab and was renamed as mg-vim [4].

Prior work on understanding different types of forks defined two
main types of active forks on GitHub [19]: social fork, which is
created to contribute back to the main repository, and hard fork,
which is aiming for superseding or replacing the original project.
With the advances of the SWHGD [14, 15], which brings different
social coding platforms data under single roof including GitHub,
GitLab, Debian, and PyPI, we have the opportunity to study the fork-
ing activity among different social coding platforms. Specifically,
we would like to understand why developers prefer one platform

1https://en.wikipedia.org/wiki/Bitbucket
2https://about.gitlab.com/company/
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over another, what are the features and limitations of platforms that
drive the migration of code, and see if there is space of improvement
to current fork-based development mechanism.

In a nutshell, this paper conducts an exploratory empirical study
using mixed methods (qualitative and quantitative) on ten popular
projects to address the following two research questions:

• RQ1. How often do cross-platform forks happen?
• RQ2. What are the motives behind cross-platform forks?

The contributions of this paper are as follows. (1) We conducted
the first-ever empirical study on cross-platform forks, (2) we pro-
pose an algorithm that automatically detects cross-platform forks,
and (3) we provide a foundation of future research directions to-
wards finding active cross-platform forks automatically and track-
ing their activities.

2 RQ1: HOW OFTEN DO CROSS-PLATFORM
FORKS HAPPEN?

We would like to understand the frequency of cross-platform forks.
To achieve our goal, we designed a two-step quantitative study to
automatically detect the cross-platform fork candidates. First, we
tried to detect forks of a target origin from the SWHGD. Second, we
filtered out the forks of different platforms to find cross-platform
forks. From our preliminary analysis with 10 representative projects
from GitHub, we found 179 cross-platform forks for our subject
systems.

2.1 Subject Systems and Data Collection
SWHGD. The origin table of the SWHGD [15] contains URLs

of the repositories crawled. After some time interval, URLs of the
origin table are visited again to capture new updates. These visits to
an origin URL is stored in the origin_visit table. The snapshot table
contains information about snapshots of an origin URL. Branches
associated with each snapshot are stored in the snapshot_branches
table. The snapshot_branch table stores the commits each branch of
a snapshot points to. Finally, all commits of an origin URL are stored
in the revision table which contains information about individual
commits (i.e. author, committer, date, and message).

Sampled dataset. We randomly selected 10 projects on GitHub
with a different number of forks using GHTorrent [12]. To not
bias our analysis by practices applied by the largest or by many
small projects, we sampled 5 very frequently forked projects and 5
moderately forked projects, as shown in Table 1.

Experiment setup. We downloaded the full version of Software
Heritage Dataset3 in a VM with 24-core processor and 64GB RAM.
The physical machine has dual Intel(R) Xeon(R) CPU E5-2680 v4
@ 2.40GHz CPUs, with a total of 28 cores (56 threads). We used a
local PostgreSQL server to load the instance. During the indexing
process, we omitted the unnecessary tables to save time. We used
Python code to run SQL queries on the PostgreSQL instance using
Sqlalchemy [8] module. We uploaded the extracted data [3] and
used Python program [6] to Zendoo.

3https://annex.softwareheritage.org/public/dataset/graph/latest/sql/

Table 1: 10 subject systems with number of forks from the
GitHub API, the SWHGD and time required to extract from
the SWHGD

No URL Name No. of Forks No. of forks Time(Hr)
(https://github.com) (From GitHub) (From SWHGD)

1 /sloria/TextBlob TextBlob 903 513 27min
2 /explosion/spaCy spaCy 2700 756 45min
3 /flutter/flutter Flutter 1080 483 8hr 7min
4 /vim/vim Vim 2600 1339 12hr
5 /neovim/neovim Neovim 2600 2284 5hr 15min
6 /bitcoin/bitcoin Bitcoin 25000 10228 29hr 17min
7 /scikit-learn/scikit-learn scikit-learn 19000 10551 10h 33min
8 /facebook/react-native ReactNative 18800 11785 16hr 5min
9 /nodejs/node Node.js 16000 15510 30hr 12min
10 /tensorflow/tensorflow TensorFlow 79400 27908 21hr 8min

Algorithm 1 SQL queries to retrieve forks of a target URL

1: select id as origin_id from origin where url = :target_url
2: select snapshot_branch.target as interval_commits from ori-

gin_visit, snapshot_branches, snapshot_branch where snap-
shot_branch.object_id = snapshot_branches.branch_id and
snapshot_branches.snapshot_id = origin_visit.snapshot_id and
origin = :origin and status = ‘full’

3: select distinct id as child_commits from revision_history
where parent_id = ANY(:interval_commits)

4: select url, snapshot_branch.target as rev from origin, ori-
gin_visit, snapshot_branches, snapshot_branch where ori-
gin.id = origin_visit.origin and origin_visit.snapshot_id = snap-
shot_branches.snapshot_id and snapshot_branches.branch_id
= snapshot_branch.object_id and snapshot_branch.target =
ANY(:interval_commits + :child_commits) and url != :tar-
get_url

2.2 Research Method
As SWHGD uses a deduplication technique to avoid storage of the
same snapshot for multiple forks, all the forks including the original
repository points to the same snapshot which allows us to detect
forks over multiple platforms. To achieve generalization, SWHGD
only stores project-specific data (commit, directory, release, snap-
shot, branch), and skipped platform dependent data such as issues,
pull requests, forks, and others. Therefore, in order to detect forks,
we need to rely on the comparison of commit history informa-
tion and corresponding platform URL to find the cross-platform
fork candidates. Specifically, we detect cross-platform forks by ana-
lyzing the following tables from the SWHGD: origin, origin_visit,
snapshot_branches, and snapshot_branch4.

Step 1: Finding forks from commit information. As shown in Al-
gorithm 1, we detected forks of a repository from the SWHGD
step by step. In (1), id of the target origin URL is retrieved. In (2),
we extracted interval commits (last commit of each branch during
a snapshot stored in snapshot_branch table) of an origin URL by
joining origin_visit, snapshot_branches, snapshot_branch tables. (3)
is to find child commits of the origin interval commits by searching
all commits in revision_history table. Now, we need to map all the

4We are aware of the method of combining both GHTorrent data and SWHGD data
together to find forks, but there are inconsistencies that need more manual work to
resolve, so in this study, we only focus on the SWHGD.

/sloria/TextBlob
/explosion/spaCy
/flutter/flutter
/vim/vim
/neovim/neovim
/bitcoin/bitcoin
/scikit-learn/scikit-learn
/facebook/react-native
/nodejs/node
/tensorflow/tensorflow
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Figure 1: Percentage of forks retrieved by our approach

commits to their corresponding URL so that we can get the forks
for our target URL. Before going to (4), we merged the interval
commits and their child commits from (2), (3) into a target com-
mit list. Finally, the query of (4) is used to map target commits
with their corresponding URL by joining origin, origin_visit, snap-
shot_branches, and snapshot_branch tables where commits are in
target commit list and URL is different from our target URL. For
more details of the approach, we would recommend the interested
readers to look into our code made available via Zendoo [6]. We
only selected commits pointed by snapshot_branch table to find
forks. The reason behind this choice is when we select all commits
of an origin URL, the query to map commits to their URL takes
a long time which hinders our approach to investigate motives
behind cross-platform forks. As the commit to URL map query of
(4) of Algorithm 1 joins four large tables, the increase in number
of commits increases the time required for the query. For example,
when we tried to get forks for spaCy project using all the commits,
we have found 802 forks which is a little bit more compared to
the numbers reported in Table 1. However, the time taken for the
algorithm is 12 hours where considering interval commits from the
snapshot_branch table takes 45 minutes to find 756 forks.

Step 2: Finding cross-platform forks. In the second step, we used
the forks extracted from the previous step to detect forks of a project
on different platforms. While extracting forks, we used the commit
information to detect whether a repository is a fork of a target
origin. Hence, we expect to get forks from platforms different than
GitHub, as our subject systems are from GitHub. Therefore, we
filtered out the forks where URL has https://github.com as a prefix
of their URL. We reported the number of cross-platform forks in
Figure 2.

2.3 Findings
In Table 1, we presented URL of the repositories, with the number
of forks collected from GitHub and our approach. We also reported
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Figure 2: Forks detected from GitLab by our approach

time taken by our program to search forks from 88,290,221 repos-
itories stored in the origin table of the SWHGD. In Figure 1, we
plotted the percentage of forks we have been able to detect com-
pared to the data from GitHub. We can see that for Node.js and
Neovim our approach detected above 87% forks reported in GitHub.
For TextBlob, Vim, scikit-learn, and ReactNative our approach de-
tected approximately 56%-63% forks. For spaCy, Vim, Bitcoin and
TensorFlow the percentage of forks is below 50%. As we only used
interval commits stored in the snapshot_branch table and their child
commits from the revision_history table, the number of detected
forks depends on how many forks points to the interval commits
and their child commits.

Figure 2 plots the number of extracted forks from GitLab by
our approach. For Bitcoin and Node.js library, we found 57 forks
from GitLab which is the highest among all our subject systems.
TensorFlow repository got the 2nd position among 10 subject sys-
tems by getting 23 forks from GitLab. ReactNative, scikit-learn and
Vim got 12-13 forks from GitLab. Whereas spaCy, TextBlob have no
forks from GitLab. In the following section, we conducted a manual
analysis to identify the motives behind the detected GitLab forks.

3 RQ2: WHAT ARE THE MOTIVES BEHIND
CROSS-PLATFORM FORKS?

In 2018, when Microsoft acquisition of GitHub took place, GitLab
reported a spike of importing GitHub projects to their platform [1].
As many open-source developers believe that Microsoft is not open-
source friendly, the acquisition of GitHub might have motivated
some of the developers to move their projects to GitLab. This is
one of the motivations which caused cross-platform forks. Still,
there might be other reasons for cross-platform forks. To better
understand the motivation behind cross-platform forks, we con-
ducted a qualitative study to findmotives behind switching between
platforms.



MSR ’20, October 5–6, 2020, Seoul, Republic of Korea A. Bhattacharjee, et al.

3.1 Research Method
To answer RQ2, two of the authors of this paper manually compared
cross-platform forks with their origin repositories. For comparison
between two repositories, title, description, commit history, and
username of the fork owner are considered. To remove the sub-
jectivity issue, two authors individually noted above-mentioned
properties for studied 100 GitLab projects and their corresponding
origin repositories. Later, a third author analyzed the notes and
categorized them into five different categories which we described
briefly below with examples.

3.2 Findings
We randomly sampled 100 cross-platform fork candidates and man-
ually analyzed the corresponding information. We classified the
forks in five categories based on their activity history.

3.2.1 Forks created using mirroring feature. During our manual
analysis, we found that most of the forks are created using the mir-
ror feature of GitLab. The mirror feature in GitLab crawls the origi-
nal GitHub repository every five minutes to keep the forked repos-
itory in sync. For example, when we investigated cross-platform
forks for Bitcoin [2], we find a project SeppPenner/bitcoin [7] in Git-
Lab where the description section mentions the project is a mirror
of the original Bitcoin project. Also, it mentions that the project was
updated 17 minutes ago which means GitLab was crawling it with
some time interval. Later, we found from GitLab documentation5
that their mirror can be used to push or pull from or to a remote
repository which is automatically updated in 5-minute intervals.
This feature is a key for a significant number of cross-platform
forks.

3.2.2 Forks owner are also a contributor of the original project.
Some cross-platform forks are owned by one of the contributors of
the original repository and the last commit in the cross-platform
fork belongs to the origin repository, whose committer is the fork
owner. We verified that this commit belongs to the same person by
comparing the usernames in GitHub and GitLab. For example, we
found a project vectorci/tensorflow [10] which is a cross-platform
fork of tensorflow/tensorflow [9] on GitHub, where the owner is
vectori, who is also the committer of the last commit in GitLab
which belongs to the original project. We found the account under
username vectori does not exist anymore in GitHub. We suspect
that the developer might want to leave Github and make GitLab as
their new version control hosting platform. Therefore, to preserve
their contribution to the main TensorFlow repository, the developer
forked it to GitLab.

3.2.3 Forks of which title renamed after forking. Another kind of
cross-platform forks has a different name compared to the original
project. During our manual analysis, we came across these kind
of forks. For example, we found a repository on GitLab named
onyx-gameboost [5] in description section of which says “Onyx
GameBoost Dev Repo”. From the SWHGDwe detected this repository
as a cross-platform fork of the TensorFlow [9] repository, as all
the commits in the GitLab copy are originated from the original
TensorFlow repository. From observing this type of cross-platform

5https://docs.gitlab.com/ee/user/project/repository/repository_mirroring.html

forks, we can possibly conclude that some forks are created and
renamed for some purpose. Later, developers did not go through
their intentions.

3.2.4 Forks intended for an individual copy. We found almost 70%
of the cross-platform forks are just merely for having a copy in
different social coding platform accounts of the developers. As
different social coding platforms provide different facilities, devel-
opers prefer to have copies of their own in different platforms for
the projects they are interested in. All the cross-platform forks we
found are one to four years older and they are inactive. Therefore,
we can safely conclude that they are for keeping an individual copy.

3.2.5 Forks intended to continue development with another social
coding platform. From our analysis, we managed to retrieve one
worth mentioning example. We found a repository named mg-
vim [4] on GitLab which is a cross-platform fork of original Vim [11]
repository. We found a commit which is absent in the original repos-
itory. From investigating the commit, we detected that it was due
to adding CI/CD support provided by GitLab for the repository.
Additionally, we studied about CI/CD support provided by different
social coding platforms6. GitLab offers free CI/CD support devel-
oped by them. On the contrary, GitHub allows third-party CI/CD
tools to be integrated on their platform but does not provide any
support themselveswhen the fork created, although recently Github
Actions started supporting free CI/CD for public repositories. Fur-
ther investigation and interviews with the developers can reveal
more concrete reasons over cross-platform forks.

4 THREATS TO VALIDITY
One might question the generality of our findings since we only
used 10 projects from GitHub. In order to at least partially miti-
gate this issue, we carefully chose projects of diverse varieties and
thus our findings could be generalizable to some extent. Of course
analyzing more data might provide more insights for forking. How-
ever, by manually investigating the sampled projects, we reach the
saturation and the findings already seem interesting and important.

5 CONCLUSION AND FUTUREWORK
To sum up, we conducted a mixed-method study (quantitative and
qualitative) to identify cross-platform forks using the SWHGD. For
our experiment, we started with 10 popular GitHub repositories
and then detected their forks among all the platforms. Based on our
qualitative analysis, we reported five types of cross-platform fork
scenarios with concrete examples. In future, we plan to conduct a
large scale analysis along with interviews with the developers to un-
derstand the pros and cons of different platforms, help stakeholders
to make deliberate decisions on choosing code hosting platforms,
and help platform providers to better facilitate social coding activ-
ities. Another research direction could be designing methods to
track activities among cross-platform forks and generate a larger
overview for cross-platform forks as a whole along with the idea
proposed by Zhou et al. [18].

Acknowledgments: This work is supported in part by the
Canada First Research Excellence Fund (CFREF) under the Global
Institute for Water Security (GIWS).
6https://usersnap.com/blog/gitlab-github/
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