
Improving Collaboration Efficiency in Fork-based
Development

Shurui Zhou
Carnegie Mellon University, USA

Abstract—Fork-based development is a lightweight mechanism
that allows developers to collaborate with or without explicit
coordination. Although it is easy to use and popular, when
developers each create their own fork and develop independently,
their contributions are usually not easily visible to others. When
the number of forks grows, it becomes very difficult to maintain
an overview of what happens in individual forks, which would
lead to additional problems and inefficient practices: lost
contributions, redundant development, fragmented communities,
and so on. Facing the problems mentioned above, we developed
two complementary strategies: (1) Identifying existing best
practices and suggesting evidence-based interventions for
projects that are inefficient; (2) designing new interventions
that could improve the awareness of a community using fork-
based development, and help developers to detect redundant
development to reduce unnecessary effort.

Index Terms—Fork-based Development, Distributed Collabo-
ration, Awareness of Collaboration, Open-Source Community

I. PROBLEM: INEFFICIENCIES IN SOCIAL FORKING

Collaboration is essential for software development at scale,
in both industrial and open-source projects. Fork-based (or
branch-based) development is a lightweight mechanism that
allows developers to collaborate remotely. Developers could
simply copy code files from the original project, while having
freedom and independence to make modifications [1]. Recent
advances in distributed version control systems (e.g., ‘git
clone’) and social coding platforms (e.g., GITHUB fork) have
made fork-based development relatively easy and popular [2]
by providing support for tracking changes across multiple
forks and mechanism for integrating changes back [3]. We
measured from the GHTorrent [4] data and found that over
114,120 GITHUB projects have more than 50 forks, and over
9,164 projects have more than 500 forks as of June 2019, with
numbers rising quickly.

Before the rise of social coding, forking traditionally re-
ferred to the intention of splitting an independent development
line, competing with the original repository, often with a new
name. We use the term social fork (fork for short) in the
sense of creating a public copy of a git repository and refer to
the traditional definition of the splitting of a new independent
project as a hard fork.

While easy to use and popular in practice, fork-based
development has well-known downsides. When developers
each creates their own fork and develop independently, their
contributions are usually not easily visible to others, unless
they make an active attempt to merging their changes back
into the original project. When the number of forks grows,

Fig. 1: GITHUB’s network graph shows commits across known forks,
but is difficult to use to gain an overview of activities in projects with
many forks [6].

it becomes very difficult to keep track of decentralized de-
velopment activity in many forks. The key problem is that
it is difficult to maintain an overview of what happens in
individual forks and thus of the project’s scope and direction.
Also, in industrial contexts, researchers found that it is hard for
individual teams to know who is doing what, which features
exist elsewhere, and what code changes are made in other
forks [5].

Developers are interested in what happens in other forks,
but cannot effectively explore them with current technology,
such as GITHUB’s network view (see Fig. 1), which visualizes
the history of commits over time across all branches and
forks of a project [3]. Although the network view is a good
starting point to understand how the project evolves, it is
tedious to use if a project has many forks. Furthermore, the
problem of lacking an overview of forks can lead to several
additional problems and inefficient practices:
• Lost contributions: Developers may fix bugs, or add useful

features in forks, but unless they contribute those changes
back to the original project, those contributions are easily
lost, although these changes are technically public [6].
In our study, we regard a community in which more
developers attempt to contribute their changes to upstream
as more efficient. We calculate the fraction of forks that
attempt to contribute any changes back among all active
forks in our sample of 1131 GITHUB projects (details can
be found in paper [7]). And we found that a median of
50% active forks never contribute back (see Fig. 2a).

• Redundant development: Unaware of activities in other
forks, developers may re-implement functionality already
developed elsewhere. Gousios et al. [2] studied that 23% pull
requests (PRs) on GITHUB were rejected due to redundant
development. Also, this would demotivate developers from
continuously contributing to the repository [8] and signif-



StDev = 0.22

0% 25% 50% 75% 100%
% Forks contributing back

de
ns

ity

(a)

StDev = 0.19

0% 25% 50% 75% 100%
PR merged ratio

de
ns

ity

(b)

StDev = 0.059

0% 25% 50% 75% 100%
% Duplicate PRs among rejected PRs

de
ns

ity

(c)

StDev = 0.02

0.0% 2.5% 5.0% 7.5% 10.0%
% Hard forks among all forks

de
ns

ity
(d)

Fig. 2: Density plots of four inefficient forking practices with high
variance among projects in our sample. The arrow points towards
higher efficiency. The dashed line shows the median.

icantly increase the maintenance effort for maintainers [9].
Plotting the fraction of PRs rejected due to redundancies
in Fig. 2c, we can observe that redundant development is
a small but pervasive problem (mean 3.4 %; max 51 %).

• Rejected pull requests: When developers submit a PR that
gets rejected, they can perceive this as a waste of their
effort and get discouraged from contributing further [10].
One common reason for rejecting a PR is misalignment
with the maintainers’ vision of the project [10], [11]. From
the community’s perspective, a project in which most PRs
are accepted can be considered as more effective with
regard to contributor efforts. Observing the rate of rejected
PRs among all closed PRs in our 1131 GITHUB projects
plotted in Fig. 2b, we see that in most projects a majority
of PRs are accepted, but also note the high variance.

• Fragmented communities: Diffusion of efforts can be
observed on GITHUB in many secondary forks (i.e., forks
of forks) that contribute to other forks, but not to the original
repository [12]. This fragmentation can seriously threaten
the sustainability of open source projects when scarce
resources are additionally scattered across multiple projects.
In fragmented communities, we see multiple related
repositories receive contributions, but those contributions
are rarely shared. Hard forks are rare but potentially very
expensive for a community. Fig. 2d shows that a median
of 5% sampled projects have hard forks. Even though this
only happens to some projects, but the problem is severe.

II. AN OVERVIEW OF PROPOSED SOLUTIONS

Fig. 3: Outline of proposed work. (Arrows present the mapping
between solution and its targeting problems)

In this thesis, we first study the problem space by quan-
tifying the efficiencies in fork-based development. Then we
propose two strategies to mitigate these problems: First, we
would like to identify existing best practices and suggesting
evidence-based interventions to projects that are inefficient;
second, we would like to build tools that could improve the
awareness of a community and help developers to detect
redundant development to reduce developers’ unnecessary
effort. To evaluate the effectiveness and usefulness, we propose
to conduct both quantitative and qualitative studies.

III. IDENTIFYING EXISTING BEST PRACTICES.

In analyzing the inefficiencies of our sampled projects set,
we found that projects are indeed very different regarding the
degree of inefficiencies (see Fig. 2). These strong differences
bring us the opportunity of improving efficiencies for open-
source projects by identifying existing interventions from some
projects that are more efficient. Therefore, we would like to
understand: What characteristics and practices of a project
associate with efficient forking practices?

A. Research Method

We designed a mixed-method approach to first interview
15 developers to identify candidate project characteristics and
practices that may influence effectiveness in a project. Then,
based on those interviews, we derived eight hypotheses about
modularity and coordination-related factors and how they
influence the inefficiencies:
H1. Projects with a better modular design have a larger
portion of contributing forks.

H2. Projects with a better modular design accept a higher
fraction of PRs.

H3. Projects pursuing a centralized management strategy have
a larger portion of contributing forks.

H4. Projects pursuing a centralized management strategy have
a larger portion of merged PRs.

H5. Projects in which external developers tend to discuss or
claim an issue before submitting PRs have a lower frequency
of redundant development.

H6. Projects with a lower PR merge ratio have higher likeli-
hood of having at least one hard fork.

H7. Projects with a more modular design have higher likeli-
hood of having at least one hard fork.

H8. Projects pursuing a centralized management strategy have
higher likelihood of having at least one hard fork.

Next, we iteratively operationalized inefficiencies and
context factors (modularity and coordination) in GITHUB
repositories. Several measures are nontrivial and are built
on top of significant prior research (more details are in the
paper [7]). Finally, we tested our hypotheses using multiple
regression modeling.



B. Key Findings & Insights

Based on our modeling results, we find evidence in support
of both H1 and H3: projects with stronger coordination
practices, as evidenced by advanced planning of what work
needs to be done through issue linking, or more modular
architecture, tend to have a higher fraction of contributing
forks that submit patches upstream. Besides, even after
controlling for confounds, we found positive effects on the
average PR merge ratio, which supports H2 and H4: the
more modular the architecture, or the more planned the PRs
are, i.e., in response to open issues, the higher the average
acceptance rate. Furthermore, our result shows that the higher
the rate at which PRs are pre-communicated, the lower the
overall rate of duplication among PRs (H5). However, the
model fit is rather poor, so we conclude cautiously that: there
is only weak evidence that claiming PRs before working on
them associates with lower risk of duplicate work.

Regarding hard forks, our model confirms a sizeable neg-
ative effect for the PR merge ratio, strongly supporting H6.
The centralized management index also has a statistically
significant positive effect supporting H8. We do not find
a statistically significant effect though for the modularity
associating with hard forks (H7).

C. Planned Work – Exploring Trade-offs Regarding Frag-
mented Communities due to Hard Forks

We have mainly focused on social forks, while there is value
to explore the benefit or trade-off of hard forks, which could
lead to fragmented communities, and understand the transition
between social forks and hard forks. So we propose a mix-
method study that attempts to understand: Why do hard forks
occur? What characteristics of a community that associate
with would lead to hard forks? What are the trade-offs
between social forks and hard forks?

IV. DESIGNING NEW INTERVENTIONS TO IMPROVE
AWARENESS.

Awareness solutions could increase the transparency in
collaborative software development [13]. As there is a lot of
information that is publicly available but not easily accessible,
we saw opportunities for building awareness tools and miti-
gating inefficiencies. We designed an approach INFOX [6] to
summarize un-merged code changes in forks in order to gen-
erate a better overview of the community (see Fig. 4 of INFOX
overview page). We also designed an approach [14] to identify
potentially redundant code changes to save developers’ effort.

A. INFOX: Identifying Features in Forks

We design an approach to identify unmerged cohesive code
changes (named features) from forks (called INFOX).

1) Method: INFOX takes the diff between the latest commit
of the upstream and the latest commit of each fork from
GITHUB, for which gathers the non-merged changes from
fork. Then it proceeds in three steps:

#Active forks (within a year): 89
#Forks have un-submitted code changes: 33

Fig. 4: INFOX overview

• Identify a dependency graph among all added or changed
lines of code by parsing and analyzing the code for multiple
kinds of dependencies.

• Cluster the lines of the change based on the dependency
graph using a community-detection technique, mapping
each line of code to a feature, so that lines with many
connections in the graph are mapped to the same feature.

• Label each cluster by extracting representative keywords
with an information-retrieval technique.
2) Evaluation:

a) Effectiveness: We test the effectiveness of INFOX in
a controlled setting by quantitatively comparing clustering
results of INFOX and the state-of-the-art approach against
a ground truth of known features in a number of open-
source projects. Detailed of experiment design is described
in paper [6]. The result shows that INFOX could reach 90%
accuracy on a set of known features.

b) Usefulness and Actionable Insights: We contacted
open-source developers who maintain forks that contain un-
merged code changes to validate identified features and ex-
plore whether the generated summaries provide meaningful in-
sights. We interviewed 11 developers from 7 different projects
(response rate of 13.6%). In summary, participants generally
agreed that INFOX could identify correct clusters at certain
splitting or joining steps.

Furthermore, we looked particularly for signs that develop-
ers learned new insights while exploring the overview. Of the
11 participants, 8 gained different kinds of new information
from the overview page:
• Finding redundant development. Two participants found

other forks that are working on the same feature
implementation as they did before.

• Find interesting and potentially reusable feature. 6 partici-
pants identified specific features of interest that are impor-
tant to the project or they could reuse in their own forks.
In summary, even though we interviewed only a small num-

ber of participants, we found frequent and concrete evidence
of new insights gained from the overview page, including
redundant development and reusable contributions.

B. Identifying Redundancies in Fork-based Development

In this section, we focus on another inefficiency – redundant
development in fork-based development. Our goal is (1) to



Fig. 5: Mock-up bot: sending duplicate warnings.

help project maintainers to automatically identify redundant
PR order to decrease the workload of reviewing redundant
code changes, and (2) to help developers detect redundancies
as early as possible by comparing code changes with other
forks in order to eliminate wasted effort and encourage
developers to collaborate.

1) Training a Classifier to Detect Redundant Changes:
To identify potential clues that might help us to detect if two
changes are duplicates, we randomly sampled 45 PRs that have
been labeled as duplicate on GITHUB from 5 projects. For
each pair of duplicate PRs, we manually inspected the text
and code change information to extract clues indicating the
potential duplication and summarized the clues characterizing
the content of a code change as follows:

• Change description is a summary of the code changes
written in natural language, e.g., commit messages, PR title
& description.

• Reference to issue tracker is a common practice that
developers explicitly link the code change to an existing
issue or feature request in the issue tracker.

• Patch content is the differences of text changes in each
file by running ‘git diff’ command.

• A list of changed files is a set of changed files in the patch.
• Code change location is a range of changed lines in the

corresponding changed files.

Next, we calculate the similarity between a pair of changes
for each clue and then predict the probability of the two
changes being duplicate through a classification model (see
details in paper [14]).

2) Evaluation – Effectiveness: We evaluate the effective-
ness from two perspectives: (1) helping maintainers to identify
redundant PRs to decrease the code reviewing workload,
(2) helping developers to identify redundant code changes
implemented in other forks to save the development effort.
The result shows that our approach could achieve 57-83%
precision for identifying duplicate PRs and help developers
save 1.9-3.0 commits per PR on average.

3) Planned Work – Evaluation of Usefulness: We plan
to implement a bot for GITHUB and explore the research
questions: To what extent do developers agree with our
duplication detection result? The bot will monitor the com-
ing PR of each repository and informs the project maintainer
when the duplication is detected. We plan to measure the
success rate of our detection result, in which success means
the duplicate PR pairs we detect is correct. Also, we will
analyze how participants react after receiving the notification,

such as how positive the feedback is to evaluate the usefulness
of our bot. A mock-up of the bot is shown in Fig. 5.

V. CONCLUSION

In summary, we would like to understand how efficiently
developers use forks in different communities, and to what
degree project characteristics and practices of open-source
communities associated with inefficiencies. Specifically, we
designing measures to quantify inefficiencies, and then we
propose two strategies to mitigate these problems.

ACKNOWLEDGMENTS

The author is advised by Prof. Christian Kästner at Carnegie
Mellon University. This project has been supported in part by
the NSF (awards 1318808, 1552944, and 1717022). We thank
James D. Herbsleb, Andrzej Wąsowski, and Laura Dabbish for
their comments and advice on this project.

REFERENCES

[1] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czar-
necki, “An exploratory study of cloning in industrial software product
lines,” in Proc. Europ. Conf. Software Maintenance and Reengineering
(CSMR). IEEE, 2013, pp. 25–34.

[2] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of the
pull-based software development model,” in Proc. Int’l Conf. Software
Engineering (ICSE). ACM, 2014, pp. 345–355.

[3] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in github:
transparency and collaboration in an open software repository,” in Proc.
Conf. Computer Supported Cooperative Work (CSCW). ACM, 2012,
pp. 1277–1286.

[4] G. Gousios, “The ghtorent dataset and tool suite.” IEEE Press, 2013,
pp. 233–236.

[5] T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and A. Wą-
sowski, “Three cases of feature-based variability modeling in industry,”
in Proc. Int’l Conf. Model Driven Engineering Languages and Systems
(MoDELS). Springer, 2014, pp. 302–319.

[6] S. Zhou, Ş. Stãnciulescu, O. Leßenich, Y. Xiong, A. Wąsowski, and
C. Kästner, “Identifying features in forks,” in Proc. Int’l Conf. Software
Engineering (ICSE). New York, NY: ACM Press, 5 2018.

[7] S. Zhou, B. Vasilescu, and C. Kästner, “What the fork: A study of
inefficient and efficient forking practices in social coding,” in Proc.
Europ. Software Engineering Conf./Foundations of Software Engineering
(ESEC/FSE), 2019.

[8] I. Steinmacher, G. H. L. Pinto, I. S. Wiese, and M. A. Gerosa, “Almost
there: A study on quasi-contributors in open-source software projects,”
in Proc. Int’l Conf. Software Engineering (ICSE), 2018, pp. 1–12.

[9] Ş. Stănciulescu, S. Schulze, and A. Wąsowski, “Forked and Integrated
Variants in an Open-Source Firmware Project,” in 31st International
Conference on Software Maintenance and Evolution, ser. Proc. Int’l
Conf. Software Maintenance and Evolution(ICSME), 2015.

[10] I. Steinmacher, G. Pinto, I. S. Wiese, and M. A. Gerosa, “Almost there:
A study on quasi-contributors in open-source software projects,” in Proc.
Int’l Conf. Software Engineering (ICSE). IEEE, 2018, pp. 256–266.

[11] A. E. Azarbakht, “Longitudinal analysis of collaboration in forked open
source software development projects,” Ph.D. dissertation, Oregon State
University, 2017.

[12] K. H. Fung, A. Aurum, and D. Tang, “Social forking in open source
software: An empirical study.” in CAiSE Forum. Citeseer, 2012, pp.
50–57.

[13] C. Treude and M.-A. Storey, “Awareness 2.0: staying aware of projects,
developers and tasks using dashboards and feeds,” in Software Engineer-
ing, 2010 ACM/IEEE 32nd International Conference on, vol. 1. IEEE,
2010, pp. 365–374.

[14] L. Ren, S. Zhou, C. Kästner, and A. Wąsowski, “Identifying redundan-
cies in fork-based development,” in Proc. Int’l Conf. Software Analysis,
Evolution, and Reengineering (SANER), 2019, pp. 230–241.


