ECE1724H S2: Empirical Software Engineering

Statistical Analysis 2

Which Statistical Test?

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering
UNIVERSITY OF TORONTO

Student's t test

- For testing whether two samples really are different
 - given: two experimental treatments, one dependent variable
 - Assumes:
 - the variables are normally distributed in each treatment
 - the variances for the treatments are similar
 - the sample sizes for the treatments do not differ hugely
 - Basis: difference between the means of samples from two normal distributions is itself normally distributed.

Student's t test

- Procedure:
 - H₀: "There is no difference in the population means from which the samples are drawn"
 - P-Value: Choose a significance level (e.g. 0.05)
 - T score: a ratio between the difference between two groups and the difference within the groups. The larger the t score, the more difference there is between groups.

• Calculate t as
$$t = \frac{\overline{x_A} - \overline{x_B}}{\sqrt{(SE_A)^2 + (SE_B)^2}}$$
 where $SE = \frac{SD}{\sqrt{N}}$

Student's t test

One sample t-test

Is there a difference between a group and the population

Is there a difference between two groups

Unpaired t-test

Paired t-test

Is there a difference in a group between two points in time

• Cohen's d (Cohen 1998).

Cohen's $d = (M_2 - M_1)/SD_{\text{pooled}}$			
t 2 Tr pooled	Relative size	Effect size	% of control group below the mean of experimental group
		0.0	50%
(Small	0.2	58%
$SD_{\text{pooled}} = \sqrt{((SD_1^2 + SD_2^2)/2)}$	Medium	0.5	69%
	Large	0.8	79%
		1.4	92%

Group 1	Group 2
Mean (<i>M</i>):Standard deviation (<i>s</i>):Sample size (<i>n</i>):	Mean (<i>M</i>):Standard deviation (<i>s</i>):Sample size (<i>n</i>):

Analysis of Variance (ANOVA)

- or F-test
- Generalization of t-test for >2 treatments
 - given: n experimental treatments, one dependent variable
 - Assumes:
 - the variables are normally distributed in each treatment
 - the variances for the treatments are similar
 - the sample sizes for the treatments do not differ hugely
 - Works by analyzing how much of the total variance is due to differences within groups, and how much is due to differences across groups.

Fisher in 1913

Analysis of Variance (ANOVA) / F-Statistics

- F statistics (F critical value)
- F value
- F statistic must be used in combination with the p value

Analysis of Variance (ANOVA)

FIGURE 6.2

Difference in task completion time (in seconds) across two test conditions, Method A and Method B. Two hypothetical outcomes are shown: (a) The difference is statistically significant. (b) The difference is not statistically significant.

(Ch 6) Hypothesis Testing. from MacKenzie. Human-Computer Interaction. Elsevier 2013

ANOVA Table

Source of	Sum of	Degrees of	Mean Square	F-statistic
variation	squares (SS)	freedom(DF)	(MS)	
Treatments	SS _{between} (SS _b)	k-1	$MS_b = SS_b/(k-1)$	F=MS _b /MS _w
Error (or	SS _{Within} (SS _W)	N-k	$MSw = SS_W/(N-k)$	
Residual)				
Total	SS _{Total} (SS _T)	N-1		

https://sixsigmastudyguide.com/anova-analysis-of-variation/

ANCOVA EXAMPLE

Independent Variables

(Factor)

Level of Education (High School, College Degree, or Graduate Degree)

(Covariate)

Number of Hours Spent Studying

Dependent Variable

(Response)

Test Score

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering UNIVERSITY OF TORONTO

Question:

Correlation between categorical data?

Which Statistical Test?

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering UNIVERSITY OF TORONTO

Chi-squared test of Independence

- The **chi-square test** is a hypothesis test used for categorical variables with **nominal or ordinal** scales of measurement.
- The chi-square test checks whether the frequencies occurring in the sample differ significantly from the frequencies one would expect. Thus, the observed frequencies are compared with the expected frequencies and their deviations are examined.
- Null: Variable A and Variable B are independent
- Alternate: Variable A and Variable B are not independent.

How will you measure things?

Туре	Meaning	Example	Admissible Operations
Nominal Scale	Unordered categories	Gender, Political preferences, Place of residence	=
Ordinal Scale	Ranking of objects into ordered categories (intervals between the values are not necessarily of the same size)	Satisfaction, Happiness, grades	=, <, >
Interval Scale	Differences between points on the scale are meaningful (equal intervals)	Celsius, Fahrenheit Temperature, IQ (intelligence scale), SAT scores	=, <, >, difference, mean
Ratio Scale	Ratios between points on the scale are meaningful (ordered, equal intervals with a zero point)	weight, height, sales figures, ruler measurements, number of children	=, <, >, difference, mean, ratio

Chi-squared test

- Procedure:
 - Calculate an expected value (mean) for each column
 - Calculate χ_2 :

$$\chi^2 = \sum_{i=1}^{6} \frac{(O_i - E_i)^2}{E_i}$$

- Where O_i is an observed frequency
- E_i is the expected frequency asserted by the null hypothesis
- Compare with lookup value for a given significance level and degree of freedom.

P Value from Chi-Square Calculator

This calculator is designed to generate a *p*-value from a chi-squ score from raw data, you should use our chi-square calculator for you).

The calculator below should be self-explanatory, but just in cas chi-square score box, you stick your degrees of freedom in the square test for independence), select your significance level, th

Report a Chi-Square Result (APA)		
Chi-square score: <i>DF</i> :	58]
Significance Level:		
O.01		
0.05		
O 0.10		

The P-Value is < .00001. The result is significant at p < .05.

	$\frac{(O-E)^{2}}{E} + \frac{(O-E)^{2}}{E} + \frac{(O-E)^{2}}{E} + \frac{(O-E)^{2}}{E}$	EXAMPLE
	$\frac{(527-484)}{484}^{2} + \frac{(72-115)^{2}}{115} + \frac{(206-249)^{2}}{249} + \frac{(102-59)^{2}}{59}$	
	①Chi-Squared = 58.4	
	②Degree of freedom (rows - 1)* (column - 1) =	(2-1) * (2-1) = <mark>1</mark>
		12 million
0	bserved	
	Male Female	Total
1	Do not purchase grocery online 484 527 115 72	599 66%

		Male	F	emale		Total	
Do not purchase grocery online	484	527	115	72	[<u>599</u>	66%
purchase grocery online	249	206	59	102		<u>308</u>	34%
Total		733		174		<u>907</u>	

Is there a relationship between gender and the highest level of education?

Chi-squared test --- strength of association

• Cramér's V

Cramer's V is a measure of the strength of association between two nominal variables.

It ranges from 0 to 1 where:

- 0 indicates no association between the two variables.
- 1 indicates a strong association between the two variables.

Cramer's V = $\sqrt{(X^2/n)} / \min(c-1, r-1)$

Describing Strength of Association

Characterizations

>.5	high association
.3 to .5	moderate association
.1 to .3	low association
0 to .1	little if any association

Commonly used statistical tests

- Pearson's r: two continuous variables are correlated or related to each other
- **chi-square:** whether or not there is a relationship between two categorical variables
- **t-test:** whether there is a difference between two groups on a continuous dependent variable
- **ANOVA:** test differences between three or more groups
- Spearman: employ calculations based on ranks.

Tests for Ranked Data

English (mark)	Maths (mark)	Rank (English)	Rank (maths)
56	66	9	4
75	70	3	2
45	40	10	10
71	60	4	7
61	65	6.5	5
64	56	5	9
58	59	8	8
80	77	1	1
76	67	2	3
61	63	6.5	6

- Friedman test
- Kruskal-Wallis test
- Rank products
- Spearman's rank correlation coefficient
- Wilcoxon rank-sum test
- Wilcoxon signed-rank test

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering
UNIVERSITY OF TORONTO

Which Statistical Test?

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering UNIVERSITY OF TORONTO

Which correlation metric should you use?

	Categorical	Continuous
Catagorical	Lambda, Corrected	Point Biserial, Logistic
Categorical	Cramer's V	Regression
Continuouo	Point Biserial, Logistic	Spearman, Kendall,
Continuous	Regression	Pearson

https://medium.com/@outside2SDs/an-overview-ofcorrelation-measures-between-categorical-and-continuousvariables-4c7f85610365

O'REILLY

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering UNIVERSITY OF TORONTO