
ECE444: Software Engineering

Architecture2: Patterns, and Tactics

Shurui Zhou

About Milestone2

• About interview script, open&closed-ended questions, flow
• If you have questions, please schedule a meeting with me separately

or join the office hour. (Fri 4-5pm)

Learning Goals

• Use diagrams to understand systems and reason about tradeoffs.
• Understand the utility of architectural patterns and tactics, and give a couple of

examples.
• Understand Architecture in Agile and trade-offs

Architectural Tactics and Patterns

Design Patterns

Model
/ Subject

View

Controller

Factory

Observer

Command

Architecture

Common Views in Documenting Software Architecture

• Modules (Static)
Modules are assigned specific computational responsibilities, and are
the basis of work assignments for programming teams
• Dynamic (Component-and-connector C&C)
Focus on the way the elements interact with each other at runtime to
carry out the system’s functions.
• Allocation (Physical, Deployment)
Mapping from software structures to the system’s organizational,
developmental, installation, and execution environments.

Architectural Patterns

• Context + Problem + Solution
• Describes computational model
• E.g., pipe and filter, call-return, publish-subscribe, layered, services

• Related to one of common view types
• Static, dynamic, physical

• For example: a web-based system
• 3-tier client server architectural pattern + replication, proxies,

caches, firewalls, MVC, etc.

Example Architectural Patterns

• Modules (Static)
• Layered Pattern

• Dynamic (Component-and-connector C&C)
• Broker Pattern
• MVC (Model-View-Controller) Pattern
• Client-Server Pattern

• Allocation (Physical, Deployment)
• Map-Reduce Pattern
• Multi-tier Pattern

Layered Pattern
• Separation of concerns
• Constraints on the allowed-to-use relationship among the layers,

the relations must be unidirectional
• Normally only next-lower-layer uses are allowed
• “above” and “below” matter

Layered Pattern

Layers with a “sidebar”

Layered Pattern

Layered design with segmented layers

Example Architectural Patterns

• Modules (Static)
• Layered Pattern

• Dynamic (Component-and-connector C&C)
• Broker Pattern
• MVC (Model-View-Controller) Pattern
• Client-Server Pattern

• Allocation (Physical, Deployment)
• Map-Reduce Pattern
• Multi-tier Pattern

Broker Pattern

• A collection of services distributed across multiple servers
• Separates users of services (clients) from providers of services

(servers) by inserting an intermediary, called a broker
• Proxies are commonly introduced as intermediaries in addition to the

broker
• Benefit: modifiability, availability, performance
• Downside: add complexity, latency

Real-world Application

• Common Object Request Broker Architecture (CORBA)
• Enterprise Java Beans (EJB)
• Microsoft’s .NET platform
• SOA - Service-Oriented Architecture

Example Architectural Patterns

• Modules (Static)
• Layered Pattern

• Dynamic (Component-and-connector C&C)
• Broker Pattern
• MVC (Model-View-Controller) Pattern
• Client-Server Pattern

• Allocation (Physical, Deployment)
• Map-Reduce Pattern
• Multi-tier Pattern

MVC (Model-View-Controller) Pattern

• Separate UI functionality from the application functionality
• Multiple views of the user interface can be created, maintained, and

coordinated when the underlying application data changes

Example: MP3 player

Head_First_Design_Patterns (Chapter 12)

MVC and the Web
https://realpython.com/the-model-view-controller-mvc-
paradigm-summarized-with-legos/

MVC (Model-View-Controller) Pattern

• Weaknesses: The complexity may not be worth it for simple user
interfaces.

Real-world Application

• Java’s Swing classes
• ASP.NET
• Adobe’s Flex software Development kit
• Nokia’s Qt framework
• Flask + MVC

• https://alysivji.github.io/flask-part2-building-a-flask-web-application.html
• https://realpython.com/the-model-view-controller-mvc-paradigm-summarized-with-legos/

https://alysivji.github.io/flask-part2-building-a-flask-web-application.html
https://realpython.com/the-model-view-controller-mvc-paradigm-summarized-with-legos/

Example Architectural Patterns

• Modules (Static)
• Layered Pattern

• Dynamic (Component-and-connector C&C)
• Broker Pattern
• MVC (Model-View-Controller) Pattern
• Client-Server Pattern

• Allocation (Physical, Deployment)
• Map-Reduce Pattern
• Multi-tier Pattern

Client-Server Pattern

• Context: There are shared resources and services that large numbers of
distributed clients wish to access, and for which we wish to control access or
quality of service.
• Modifiability, Reuse, Scalability, Availability
• Asymmetric or Synchronous

25

Where to validate user input?

Example: Yelp App

Client-Server Pattern

Disadvantages:
• the server can be a performance

bottleneck and it can be a single point of
failure

• decisions about where to locate
functionality (in the client or in the server)
are often complex and costly to change
after a system has been built.

Real-world Example

• WWW
• ATM

Example Architectural Patterns

• Modules (Static)
• Layered Pattern

• Dynamic (Component-and-connector C&C)
• Broker Pattern
• MVC (Model-View-Controller) Pattern
• Client-Server Pattern

• Allocation (Physical, Deployment)
• Map-Reduce Pattern
• Multi-tier Pattern

Map-Reduce Pattern

• Context:
• Petabyte scale of data à Programs for the analysis of this data should be easy

to write, run efficiently, and be resilient with respect to hardware failure.
• Solution
• a specialized infrastructure takes care of allocating software to the hardware

nodes in a massively parallel computing environment and handles sorting the
data as needed.
• map function
• reduce function

Multi-tier Pattern

• Context: In a distributed deployment, there is often a need to
distribute a system’s infrastructure into distinct subsets. This may be
for operational or business reasons (for example, different parts of
the infrastructure may belong to different organizations)
• Solution: The execution structures of many systems are organized as

a set of logical groupings of components. Each grouping is termed a
tier. The grouping of components into tiers may be based on a variety
of criteria, such as the type of component, sharing the same
execution environment, or having the same runtime purpose.

Multi-tier Pattern

30

https://wiki.sei.cmu.edu/confluence/pages
/viewpage.action?pageId=146280205

Tactics

• Architectural techniques to achieve qualities
• More tied to specific context and quality

• Smaller scope than architectural patterns
• Problem solved by patterns: “How do I structure my (sub)system?”
• Problem solved by tactics: “How do I get better at quality X?”

• Collection of common strategies and known solutions
• Resemble OO design patterns

32

Achieving Quality Attributes through Tactics

Modifiability

Modifiability

• coupling - probability that a
modification to one module will
propagate to the other

• cohesion - how strongly the
responsibilities of a module are
related

Low coupling, high cohesion,

better modifiability

Performance

• about time and the software system’s ability to meet timing
requirements
• Event arrival patterns: Periodic, Stochastic, Sporadic
• Measurements:
• Latency
• Deadlines in processing
• Throughput
• jitter of the respsonse
• number of events not processed

Performance response time = processing time + blocked time

Security

Testability

Usability

Summary of Tactics and Patterns
Tactics are the “building blocks” of design, from which architectural
patterns are created. Tactics are atoms and patterns are molecules.
Most patterns consist of several different tactics.

Many tactics described in Chapter 4-10

• Brief high-level descriptions (about 1 paragraph
per tactic)

• Checklist available

Summary of Architecture

49

Architecture as
structures and relations
• Patterns
• Tactics

Architecture as
documentation
• Views
• Rationale

Architecture as process
• Decisions
• Evaluation
• Reconstruction
• Agile

What they don’t tell you

• Good architecture requires experience
• There is more to being an architect than picking the architecture
❙ “chief builder”
❙ create conceptual integrity

Future Readings

• Bass, Clements, and Kazman. Software Architecture in Practice. Addison-Wesley,
2013.
• Boehm and Turner. Balancing Agility and Discipline: A Guide for the Perplexed,

2003.
• Clements, Bachmann, Bass, Garlan, Ivers, Little, Merson, Nord, Stafford.

Documenting Software Architectures: Views and Beyond, 2010.
• Fairbanks. Just Enough Software Architecture. Marshall & Brainerd, 2010.
• Jansen and Bosch. Software Architecture as a Set of Architectural Design

Decisions, WICSA 2005.
• Lattanze. Architecting Software Intensive Systems: a Practitioner’s Guide, 2009.
• Sommerville. Software Engineering. Edition 7/8, Chapters 11-13
• Taylor, Medvidovic, and Dashofy. Software Architecture: Foundations, Theory,

and Practice. Wiley, 2009.

