ECE444: Software Engineering

Architecture2: Patterns, and Tactics

Shurui Zhou

«;é* The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

%2 UNIVERSITY OF TORONTO

QL
AAAAA

About Milestone?2

* About interview script, open&closed-ended questions, flow

* If you have questions, please schedule a meeting with me separately
or join the office hour. (Fri 4-5pm)

Learning Goals

* Use diagrams to understand systems and reason about tradeoffs.

* Understand the utility of architectural patterns and tactics, and give a couple of
examples.

* Understand Architecture in Agile and trade-offs

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

%%“ UNIVERSITY OF TORON"}O

Architectural Tactics and Patterns

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%’%\g UNIVERSITY OF TORONTO

Design Patterns

The Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

&gg UNIVERSITY OF TORONTO

| >
: >
| » —]
|
|
|
| L. A vy & - -=7T === == v
| 1 Factory > View < I <
I I '
I I '
I I :
| . v v :
: : Observer g /,\S/Iuob(;eelct < Controller ﬁ—|—
I I 4 A |
| l I I
I
1 I Command :I
| = [—
: A
|
|
|
|
|

Architecture

-—-—_-—_-—_-—_-F_________________

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%,a?mga UNIVERSITY OF TORONTO

Common Views in Documenting Software Architecture

* Modules (Static)

Modules are assigned specific computational responsibilities, and are
the basis of work assignments for programming teams

* Dynamic (Component-and-connector C&C)

Focus on the way the elements interact with each other at runtime to
carry out the system’s functions.

* Allocation (Physical, Deployment)

Mapping from software structures to the system’s organizational,
developmental, installation, and execution environments.

%*i':ff The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

%, UNIVERSITY OF TORONTO

Architectural Patterns

 Context + Problem + Solution

* Describes computational model
* E.g., pipe and filter, call-return, publish-subscribe, layered, services

* Related to one of common view types
e Static, dynamic, physical

* For example: a web-based system

* 3-tier client server architectural pattern + replication, proxies,
caches, firewalls, MVC, etc.

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
%ﬁ, UNIVERSITY e TORONTO

Example Architectural Patterns

* Modules (Static)
* Layered Pattern

* Dynamic (Component-and-connector C&C)

* Broker Pattern
* MVC (Model-View-Controller) Pattern
e Client-Server Pattern

* Allocation (Physical, Deployment)
* Map-Reduce Pattern
* Multi-tier Pattern

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Layered Pattern

e Separation of concerns

* Constraints on the allowed-to-use relationship among the layers,
the relations must be unidirectional

* Normally only next-lower-layer uses are allowed

e “above” and “below” matter

A
Key:
B
Layer
C A layer is allowed to use
the next lower layer. <

f El

= O ec
%:Q UNIVERSITY OF TORONTO

Layered Pattern A

B D
C
Applications
Layers with a “sidebar”
Services
Data Bank

Environmental Models

Security

Environment Sensing

Key:
JVM

layer

Software in a layer is allowed to use software

in the same layer, or any layer immediately =~ C—————
OS and Hardware below or to the right.

Layered Pattern

[Web UI] [Rich j [Com.mand]
Cllent Line

Business Logic

Key:
¢ Layer
Data Access

&
Local Data Remote Data segment
Access Access —» Allowed to use

Layered design with segmented layers

eEiVH‘]SRo SD} artment
Ilg

Electrical & Computer Eng
’Péa UNIVERSITY OF TORONTO

Example Architectural Patterns

* Modules (Static)
* Layered Pattern

* Dynamic (Component-and-connector C&C)

* Broker Pattern
* MVC (Model-View-Controller) Pattern
e Client-Server Pattern

* Allocation (Physical, Deployment)
* Map-Reduce Pattern
* Multi-tier Pattern

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Broker Pattern

* A collection of services distributed across multiple servers

» Separates users of services (clients) from providers of services
(servers) by inserting an intermediary, called a broker

* Proxies are commonly introduced as intermediaries in addition to the
broker

* Benefit: modifiability, availability, performance
* Downside: add complexity, latency

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

CORBA

Real-world Application) | it |, 5

OBJECT

e Common Object Request Broker Architecture (CORBA) SERVICES
e Enterprise Java Beans (EJB) OMG Reforence Model architocture
* Microsoft’s .NET platform
* SOA - Service-Oriented Architecture Client | JBoss Server
1 — —

Application Application Application
X Y p4 abc transport=abc I service=Invoker,
P =
I I I roxy | type=abc \ EJBContainer

Y/
<3
N—
I MBean | JMX
Server Bean

| f—y
External
System

SOA Infrastructure

Development
Securlly Tools Dlscovery

F e

transport=abc I service=Invoker,
| type=xyz

I —_— —_—

Enterprise Legacy or New
Information System Code
Intemal Users

Example Architectural Patterns

* Modules (Static)
* Layered Pattern

* Dynamic (Component-and-connector C&C)

* Broker Pattern
* MVC (Model-View-Controller) Pattern
e Client-Server Pattern

* Allocation (Physical, Deployment)
* Map-Reduce Pattern
* Multi-tier Pattern

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

MVC (Model-View-Controller) Pattern

e Separate Ul functionality from the application functionality

* Multiple views of the user interface can be created, maintained, and
coordinated when the underlying application data changes

Component Description

Handles application data and data-management

el Central component of MVC

e Can be any output representation of information to user

BE e Renders data from model into user interface

~ Controller e Accepts input and converts to commands for model/view

-‘i‘i{'{f The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

Example: MP3 player

CONTROLLER

Takes user input and figures out
what it means to the model.

MODEL

The model holds all
VIEW Heve's the treamy the data, state and
Gives you a presentation contraller; it lives in application logic. The
of the model. The view Lhe middle: mode'l is oblivious to
usually gets the state ¢ Ry the view and controller,
and data it needs to although it provides an
display directly from interface to manipulate

state and it can send

the model. / and retrieve its

notifications of state
/ TN @ changes to observers.
Change your

@ The user did COM’YO"er stafe
something /
@ Change your
dlSplOY class Player

Head_First_Design_Patterns (Chapter 12)

play () {}
@ rip() {}
T've changed! — burn () {}
/(\ T need your stafe

information

Heve's the

This is the user model; it
intecface. handles all
a\v‘:\\ca{i\on data
and logic-

https://realpython.com/the-model-view-controller-mvc-
paradigm-summarized-with-legos/

MVC and the Web

@'KP:// some-pPage

T

LROUTES\\ A

CONTROLLER

MOoDEL

VIEW

DATABASE

he Edward S. Rogers Sr. Department

lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

MVC (Model-View-Controller) Pattern

* Weaknesses: The complexity may not be worth it for simple user
interfaces.

’fﬁé The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering
+%3 UNIVERSITY OF TORONTO

Real-world Application

* Java’s Swing classes

 ASP.NET

* Adobe’s Flex software Development kit
* Nokia’s Qt framework

* Flask + MVC

e https://alysiviji.github.io/flask-part2-building-a-flask-web-application.html

e https://realpython.com/the-model-view-controller-mvc-paradigm-summarized-with-legos/

cal & Computer Engineering

OF TORONTO

] ectri
%Z?:a UNIVERSITY

https://alysivji.github.io/flask-part2-building-a-flask-web-application.html
https://realpython.com/the-model-view-controller-mvc-paradigm-summarized-with-legos/

Example Architectural Patterns

* Modules (Static)
* Layered Pattern

* Dynamic (Component-and-connector C&C)

* Broker Pattern
* MVC (Model-View-Controller) Pattern
e Client-Server Pattern

* Allocation (Physical, Deployment)
* Map-Reduce Pattern
* Multi-tier Pattern

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Client-Server Pattern

e Context: There are shared resources and services that large numbers of
distributed clients wish to access, and for which we wish to control access or
qguality of service.

* Modifiability, Reuse, Scalability, Availability

* Asymmetric or Synchronous

N &®

System
Client (c8)
S
Server @
& o
Key: | Module Key: Component
\ / \ 9 Request-Reply /

Decomposition View Client-Server View

e Edward S. Rogers Sr. Department
2 Electrical & Computer Engineering

424 UNIVERSITY OF TORON"}O

Client-Server Pattern

Where to validate user input?

Example: Yelp App

i Prd W 4:02

Disadvantages:
 the server can be a performance
bottleneck and it can be a single point of o

fai | re is so expertly crafted and planned that it is nothing
u short of genius. Last night, | had one of those
meals - the Mahi Mahi.

¢ deCiSionS abOUt Where to Iocate The dish was excellently prepared. Grilled, juicy,

. and fresh without a hint of fishiness. A glaze of
i b ht a hint of .
functionality (in the client or in the server) e bt e,
rice. The combination of the fish and rice alone

are often complex and costly to change
after a system has been built.

X Write Review POST

Real-world Example

y- y— -
y- - -
Bank ATM ATM
transaction monitoring reconfiguration
°
WWW authorizer server server
° ATM server server server server server
client client client client client
twman [} Peconfos s
process P
process program
I | I |
Key: I ll TCP socket connector with
Client Server client and server ports

FTX server ATM OS/2 Windows
¢ Edward S. Rogers St. Department daemon client process application

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Example Architectural Patterns

* Modules (Static)
* Layered Pattern

* Dynamic (Component-and-connector C&C)

* Broker Pattern
* MVC (Model-View-Controller) Pattern
e Client-Server Pattern

* Allocation (Physical, Deployment)
* Map-Reduce Pattern
* Multi-tier Pattern

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Map-Reduce Pattern

* Context:

* Petabyte scale of data = Programs for the analysis of this data should be easy
to write, run efficiently, and be resilient with respect to hardware failure.

e Solution

* a specialized infrastructure takes care of allocating software to the hardware

nodes in a massively parallel computing environment and handles sorting the
data as needed.

* map function
e reduce function

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Multi-tier Pattern

e Context: In a distributed deployment, there is often a need to
distribute a system’s infrastructure into distinct subsets. This may be
for operational or business reasons (for example, different parts of
the infrastructure may belong to different organizations)

 Solution: The execution structures of many systems are organized as
a set of logical groupings of components. Each grouping is termed a
tier. The grouping of components into tiers may be based on a variety
of criteria, such as the type of component, sharing the same
execution environment, or having the same runtime purpose.

Adventure Builder - Software Architecture Document (SAD)

Created by Todd Waits, last modified by Tamara L. Marshall-Keim on Sep 16, 2019

Multi-tier Pattern

Documentation Roadmap

[" - Y] _______ Y o—o_d— - “‘ How a View Is Documented

I mapplngsxml | | Tpckr esr; ice | ’
[| I | Ui A | System Overview
: Ly *.do Main ”: 1"/ | |

| | > Servlet - | pcPchhase | Views
I | \ ~ A OrderService
| | | ~ I | | 1. Module Views

| *.screen ~ Catal [| .
| I |8 N I~ Fa a gg | I a. Top Level Module Uses View
: | I E Template Screen N |1~ acade | | b. OPC Module Decomposition View
= o — 2N c. OPC Module Uses View

| (@) Servlet JSP |\|\ | . . .
I T =S R | i. OpcPurchaseOrderService Interface Documentation
| : | |9 V Soroen | Adventure | ii. OpcOrderTrackingService Interface Documentation
I | | } ; ‘|definitions.xml| »rl ! Catalog | d. workflowmanager Module Uses View
| | —>|index.jsp — P DB | e. Data Model
| | — — | 2. C&C Views
| | : | — /‘ | a. Top Level SOA View
: I | ISR Mol Wty : b. Consumer Website Multi-tier View
I by | c. OPC C&C View

| 3. Allocation Views
| Cl|ent tier) ! Web tier |

A o~ a. Deployment View
K b. Install View
e . .
y c. Implementation View
Client-side Java Senvlet Stateless Data File Java EE Context
application EE ervie session store application listener Mapping Between Views
filter bean
D

—pHTTP/ — —=> Java JDBC +eeeeeen > File ———=SOAP Web services | [Container
HTTPS call I/0 call endpoint (G

Rationale

https://wiki.sei.cmu.edu/confluence/pages
/viewpage.action?pageld=146280205

FIGURE 13.15 A multi-tier view of the Consumer Website Java EE application,
s Which is part of the Adventure Builder system

,%4 UNIVER ON

Tactics

* Architectural techniques to achieve qualities
* More tied to specific context and quality

* Smaller scope than architectural patterns

* Problem solved by patterns: “How do | structure my (sub)system?”
* Problem solved by tactics: “How do | get better at quality X?”

* Collection of common strategies and known solutions
* Resemble OO design patterns

- e Edward S. Rogers Sr. Department
Electrical & Cor I,t r Engine

‘&:’ﬁ UNIVERSITY OF TORONTO

Achieving Quality Attributes through Tactics

System Software
Product Quality

Portability

Maintainability

Functional Performance
suitability officiency Compatibility Reliability

Functional
completeness . . \ i o
. Time behavior Coexistence Appropr_l Ll Maturity Confidentiality Modularity Adaptability
recognizability

Functional
correctness Resource - - o . - .
T Interoperability Learnability Availability Integrity Reusability Installability

Functional
appropriateness

Analyzability Replaceability

Capacity Operability Fault tolerance Nonrepudiation

p;;:dri;rilc')onr Recoverability Accountability Modifiability

User interface Authenticity Testability

aesthetics

Accessibility

Modifiability

Portion of Scenario Possible Values

Source End user, developer, system administrator

Stimulus A directive to add/delete/modify functionality, or change a
quality attribute, capacity, or technology

Artifacts Code, data, interfaces, components, resources, configurations,

Environment Runtime, compile time, build time, initiation time, design time

Response One or more of the following:

= Make modification
* Test modification
* Deploy modification

Response Measure Cost in terms of the following:

= Number, size, complexity of affected artifacts

Effort

Calendar time

Money (direct outlay or opportunity cost)

Extent to which this modification affects other functions or
quality attributes

* New defects introduced

he Edward S. Rogers Sr. Department
Electrical & Computer Engineering

‘?m“ UNIVERSITY OF TORONTO

Modifiability

Reduce Size
of a Module
Change
.—>
Arrives
Split Module

ctrical &

Modifiability Tactics

Increase Reduce Defer
Cohesion Coupling Binding
Increase Encapsulate
Serr?antlc U e
Coherence |niarmediary

Restrict

Dependencies

Refactor

Abstract Common
Services

Change Made>

OIIlplltGl‘ ngineering

within Time
and Budget

e coupling - probability that a
modification to one module will
propagate to the other

e cohesion - how strongly the
responsibilities of a module are
related

Low coupling, high cohesion,

better modifiability

& 2
NIVERSITY

OF TORONTO

Performance

e about time and the software system’s ability to meet timing
requirements

* Event arrival patterns: Periodic, Stochastic, Sporadic

* Measurements:
* Latency
e Deadlines in processing
* Throughput
* jitter of the respsonse
* number of events not processed

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Pe

Event

formance

Arrives

>

Performance Tactics

Control Resource Demand

l

Manage Sampling Rate
Limit Event Response
Prioritize Events
Reduce Overhead
Bound Execution Times

Increase Resource
Efficiency

Manage Resources

l

Increase Resources
Introduce Concurrency

Maintain Multiple
Copies of Computations

Maintain Multiple
Copies of Data

Bound Queue Sizes

Schedule Resources

Response

'
Generated within
Time Constraints

response time = processing time + blocked time

Security

Security Tactics

Detect Attacks Resist Attacks React to Recover
¢ Attacks from AttaCkS
l |dentify #
Detect Actors E(?(\:/ggs Maintain Restore
| sion i ' i
Attack nir . sudnshilesie AT AL System Detects,
— | Detect Service Actors Lock Resists Reacls”
Demal AUy Computer See of Recovers
Verify Message actors Inform Availability
Integrity
Limit Access Actors

Detect Message

Delay Limit Exposure

Encrypt Data

Separate
Entities

Change Default
Settings

Testability

Tests

Executed

Testability Tactics

Control and Observe Limit Complexity
System State l

Specialized Limit Structural
Interfaces Complexity
Record/ Limit

Playback Nondeterminism

Localize State
Storage

Abstract Data
Sources

Sandbox

Executable
Assertions

Faults

Detected

Usability

User

>
Request

Usability Tactics

Support User Support System

Initiative

Initiative

l

Maintain Task

Cancel
Model
Undo Maintain User
Model
Pause/Resume
Maintain System
Aggregate Model

User Given
Appropriate

Feedback End
Assistance

Summary of Tactics and Patterns

Tactics are the “building blocks” of design, from which architectural
patterns are created. Tactics are atoms and patterns are molecules.
Most patterns consist of several different tactics.

Software

Architecture Many tactics described in Chapter 4-10
in Practice

Third Edition

* Brief high-level descriptions (about 1 paragraph
per tactic)
* Checklist available

Len Bass - Paul Clements - Rick Kazman

Summary of Architecture

Architecture as Architecture as
structures and relations documentation
* Patterns * Views

* Tactics e Rationale

Architecture as process
* Decisions

e Evaluation

* Reconstruction

* Agile

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

%%“ UNIVERSITY OF TORON"}O

What they don’t tell you

* Good architecture requires experience

* There is more to being an architect than picking the architecture
| “chief builder”
| create conceptual integrity

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IIU
% UNIVERSITY e TORONTO

Future Readings

ggsisé Clements, and Kazman. Software Architecture in Practice. Addison-Wesley,

Boehm and Turner. Balancing Agility and Discipline: A Guide for the Perplexed,
2003.

Clements, Bachmann, Bass, Garlan, Ivers, Little, Merson, Nord, Stafford.
Documenting Software Architectures: Views and Beyond, 2010.

Fairbanks. Just Enough Software Architecture. Marshall & Brainerd, 2010.

Jansen and Bosch. Software Architecture as a Set of Architectural Design
Decisions, WICSA 2005.

Lattanze. Architecting Software Intensive Systems: a Practitioner’s Guide, 2009.
Sommerville. Software Engineering. Edition 7/8, Chapters 11-13

Taylor, Medvidovic, and Dashofy. Software Architecture: Foundations, Theory,
and Practice. Wiley, 2009.

%*i':ff The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

%, UNIVERSITY OF TORONTO

