
ECE444: Software Engineering

Architecture4: Styles and Hypes

Shurui Zhou



Midterm Presentation 

• If your group cannot present in the lecture, 
please let me know and send me the 8min video 
by 10/25.



Spike in Agile

• A special type of user story that is used to gain the knowledge necessary to 
reduce the risk of a technical approach, better understand a requirement, or 
increase the reliability of a story estimate
• Has a maximum time-box size
• For example:

• The team may not have knowledge of a new technology, and spikes may be used for basic 
research to ensure the feasibility of the new technology (domain or new approach).

• A story requires to be implemented using a 3rd party library with API that is poorly written 
and documented.

• The story may contain significant technical risk, and the team may have to do some 
experiments or prototypes to gain confidence in a technological approach that may allow 
them to commit the user story to some future timebox.



• Creational patterns

• Singleton

• Factory Method

• Structural patterns

• Composite

• Behavioral patterns

• Strategy

• Observer

Classification of patterns



MVC Architecture
• Model – Observer Pattern
• View – Composite + Strategy
• Controller -- Strategy Pattern



Cargo cult programming

https://blog.ndepend.com/are-solid-principles-cargo-cult/



Learning Goals

• Understand history of Microservices
• Reason about tradeoffs of Microservices architectures.



"After that experience, we determined we needed to step back. We 
then determined we needed to re-architect the site to support the 
continued growth of Twitter and to keep it running smoothly."



Monolithic Architecture



Example: a shopping cart app

deploy

deploy



Monolithic Architecture Benefits

• Simple to develop 
• Simple to deploy 
• Simple to scale 



Challenges of Monolithic Architecture

• Inflexible — Monolithic applications cannot be built using different 
technologies

• Unreliable — Even if one feature of the system does not work, then the entire 
system does not work

• Unscalable — Applications cannot be scaled easily since each time the 
application needs to be updated, the complete system has to be rebuilt

• Blocks Continuous Development — Many features of the applications cannot 
be built and deployed at the same time

• Slow Development — Development in monolithic applications take lot of time 
to be built since each and every feature has to be built one after the other

• Not Fit For Complex Applications — Features of complex applications have 
tightly coupled dependencies



Microservices



17-313 Software Engineering 14



17-313 Software Engineering 15

https://microservices.io/articles/whoisusingmicroservices.html



Use case: Shopping Cart Application





The scale Cube

• X-axis: running multiple 
copies of an application 
behind a load balancer.
• Y-axis: split the app into 

services
• Verb-based
• Noun-based

• Z-axis: each server is 
responsible for only a 
subset of the data.





Principle of Microservices



Benefits of Microservices

• Faster and simpler deployments and rollbacks
• Elimination of long-term commitment to a single technology stack
• Improved fault isolation
• Independently scalable services
• Technology diversity
• Ability to write new features as plugins



Drawbacks of Microservices

• Increased network communication
• Serialization between microservices
• Additional complexity in testing a distributed system
• Increased complexity in deployment



Microservies overhead



Broker Pattern

• A collection of services distributed across multiple servers
• Separates users of services (clients) from providers of services (servers) by 

inserting an intermediary, called a broker
• Benefit: modifiability, availability, performance
• Downside: add complexity, latency
• Example: Service-Oriented Architecture (SOA)



SOA

• Service: self-contained functionality
• Remote invocation, language-independent interface
• Dynamic lookup possible
• Often used to wrap 

legacy systems

Service 
Registry

Service 
Requestor

Service 
Providerbind/

call

publishfind



How to decompose the application into 
services?
• Decompose by business capability
• Decompose by verb or use case
• Decompose by by nouns or resources





How to decompose the application into 
services?

• Decompose by business capability
• Decompose by verb or use case
• Decompose by by nouns or resources



How to maintain data consistency?

2PC (Two-phase commit)
Saga Pattern

saga – a sequence of local transaction



Saga Pattern
The master process called “Saga Execution Coordinator” or SEC.
• two ways to achieve sagas

• Choreography : each local transaction publishes domain events that trigger 
local transactions in other services.
• Orchestration : an orchestrator (object) tells the participants what local 

transactions to execute.



Orchestration



Example
3 personas

https://github.com/victoramsantos/saga-pattern-example

https://github.com/victoramsantos/saga-pattern-example/releases/tag/v1.0.0


Other examples and platforms



How are services packaged and deployed?

• Container
• Serverless deployment
• Platform as a Service (PaaS)



The 2019 Microservices Ecosystem

https://glasnostic.com/blog/the-2019-microservices-ecosystem



Technology Stacks

https://github.com/mfornos/awesome-microservices

https://github.com/mfornos/awesome-microservices


Discussion of Microservices
• Are they really “new”?
• Do microservices solve problems, or push them down the line?
• What are the impacts of the added flexibility?
• Beware “cargo cult”
• “If you can’t build a well-structured monolith, what makes you 

think microservices is the answer?” – Simon Brown
• Leads to more API design decisions




