ECE444: Software Engineering

Architecture4: Styles and Hypes

Shurui Zhou

«;é* The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

%2 UNIVERSITY OF TORONTO

AAAAA

Midterm Presentation

Date Group
20

1 * If your group cannot present in the lecture,

2

26-Oct) please let me know and send me the 8min video

9 by 10/25.
15
17
11
8
10
19
16
18
5
14
4
3
6

28-Oct

30-Oct

Spike in Agile

* A special type of user story that is used to gain the knowledge necessary to
reduce the risk of a technical approach, better understand a requirement, or
increase the reliability of a story estimate

e Has a maximum time-box size

* For example:

* The team may not have knowledge of a new technology, and spikes may be used for basic
research to ensure the feasibility of the new technology (domain or new approach).

* A story requires to be implemented using a 3™ party library with API that is poorly written
and documented.
* The story may contain significant technical risk, and the team may have to do some

experiments or prototypes to gain confidence in a technological approach that may allow
them to commit the user story to some future timebox.

%*i‘fr,? The Edward S. Rogers Sr. Department
& | lectrical & Computer Engineering

%:Q UNIVERSITY OF TORONTO

Classification of patterns

* Creational patterns

e Singleton

* Factory Method

 Structural patterns

* Composite

* Behavioral patterns

* Strategy

* Observer

MVC Architecture

* Model — Observer Pattern
* View — Composite + Strategy
* Controller -- Strategy Pattern

Strategy) e s e

The user did -thc view
" i~ R S
A handle
The view — / \mows how Jfao "

the user attions.

dc,csajccs I Controller
'H'\Ch COh"ZV‘O’ lev We
andle 'H"C — - ¢ Can SWap i
user aﬁ‘tior\s. —— zho{hcr bChav?or “"OV'
View \ > he view by ¢ha
'{:"\C COh‘{:ko{’cr halha
Controller

The view onl\/ wovrvies about ?\rcscn{:a-[:lon The tontroller
wovvies about ‘bransla{:mg usev mPu‘E to attions on the model.

(3 ‘ ectrical & Computer Engineering

a@,” UNIVERSITY OF TORONTO

Cargo cult programming

https://blog.ndepend.com/are-solid-principles-cargo-cult/

Are SOLID principles Cargo Cult?

It looks like a plane, but will it fly?

Learning Goals

e Understand history of Microservices

e Reason about tradeoffs of Microservices architectures.

@ twitter

Twitter is over capacity.

ent and try again

''''''

& @Q

L%

SOUTH
AFRICA

st FIFA

WORLD CUP

© 2005 FIFATM

"After that experience, we determined we needed to step back. We
then determined we needed to re-architect the site to support the
continued growth of Twitter and to keep it running smoothly."

%*i':ff The Edward S. Rogers Sr. Department
& | lectrical & Computer Engineering

%:Q UNIVERSITY OF TORONTO

Monolithic Architecture

HTTP

T S
e

Qarvice
'.?:_.k_:;_ P‘.l,"_{ Le

‘ To;‘nputer Engineering
OF TORONTO

‘ © ctrica

= [1Ca
;g@ UNIVERSITY

Relational
DB

Key / Value
Store

7
Example: a shopping cart app IiEX

Apache Tomcat

deploy

Client Browser

ok

Nginx/Apache

App(s)

[Single Instance]

Monolithic Architecture Benefits

* Simple to develop

e Simple to deploy a
e Simple to scale N w

NETFLIX

Challenges of Monolithic Architecture

INFLEXIBLE

UNRELIABLE

UNSCALABLE

BLOCKS CONTINOUS DEVELOPMENT

SLOW DEVELOPMENT

NOT FIT FOR COMPLEX APPLICATIONS

he Edward S. Rogers Sr. Department
Electrical & Computer Engineering

Inflexible — Monolithic applications cannot be built using different
technologies

Unreliable — Even if one feature of the system does not work, then the entire
system does not work

Unscalable — Applications cannot be scaled easily since each time the
application needs to be updated, the complete system has to be rebuilt
Blocks Continuous Development — Many features of the applications cannot
be built and deployed at the same time

Slow Development — Development in monolithic applications take lot of time
to be built since each and every feature has to be built one after the other
Not Fit For Complex Applications — Features of complex applications have
tightly coupled dependencies

@?mg UNIVERSITY OF TORONTO

Microservices

The Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

&gg UNIVERSITY OF TORONTO

g WHATARE
A MIGRBSEHVIGES?‘.«S@-

\,
f»

. N
; - /',. .‘ "
“'/uv; 4 R

.F(‘

.80 HOT RIGHT NOW

memegenerator.net

.

% The Edward S. Rogers Sr. Department
@ of Electrical & Computer Engineering

@ UNIVERSITY OF TORONTO

https://microservices.io/articles/whoisusingmicroservices.html
]

shopify
NETFLIY 0TV

UBER GROUPON

Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Use case: Shopping Cart Application

Clieni)wser)
S & @
2 er

Single Instance

A monolithic application puts all its -’ A microservices architecture puts) '
functionality into a single process... ® each element of functionality into a
o9V separate service...
2
... and scales by replicating the ... and scales by distributing these services
monolith on multiple servers across servers, replicating as needed.
o? o? ol (e[®
@ @
4 4 4 4

lectrical & Computer Engineering

&

494 UNIVERSITY OF TORONT

(o

The scale Cube

3 dimensions to scaling -
e X-axis: running multiple
copies of an application
behind a load balancer.
, - o Y-axis: split the app into
Y axis - g services
functional '
decomposition § * Verb-based
Scale by : . & * Noun-based
splicng i R & . .
ifierent things & & e Z-axis: each server is
X o2 .
& é\@@" responsible for only a
A% subset of the data.
X axis - horizontal duplication &

Scale by cloning

HTTP AMQP
< >
>-
< g Relational
< >
- < HTTP DB
< > QN
<
n K >
< HTTP_ % HTTP . \
Key / Value
Store
HTTP 5 . /
< > HTTP

f Electrical & Computer Engineering

N/ NIVERSITY OF TORONTO

Principle of Microservices

Culture of
automation

Modeled around
business concepts

Hide internal
implementation
details

Microservices
Small autonomous
Services

Highly
observable

Decentralize all
the things

Isolate
failure

Deploy
independently

dward S. Rogers Sr. Department
ectrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

Benefits of Microservices

* Faster and simpler deployments and rollbacks
* Elimination of long-term commitment to a single technology stack

* Improved fault isolation

* Two-pizza teams

* Independently scalable services

* Full ownership

* Technology diversity

* Full accountability
* Ability to write new features as plugins

* Aligned incentives

+ “DevOps”

“dward S. Rogers Sr. Department

(3 ectrical & Computer Engineering
n 8

25 UNIVERSITY OF TORONTO

b 248
]

Drawbacks of Microservices

* Increased network communication
e Serialization between microservices
* Additional complexity in testing a distributed system

* Increased complexity in deployment

Microservies overhead

for less-complex systems, the extra
baggage required to manage
microservices reduces productivity

as complexity kicks in,

productivity starts falling

rapidly

the decreased coupling of
microservices reduces the
attenuation of productivity

Productivity
Microservice

Monolith

Base Complexity

e Edward S. but remember the skill of the team will

of Electrical &

9 UNIVERST outweigh any monolith/microservice choice

Broker Pattern

A collection of services distributed across multiple servers

Separates users of services (clients) from providers of services (servers) by
inserting an intermediary, called a broker

* Benefit: modifiability, availability, performanc soplcation Appicaion Appliton

» Downside: add complexity, latency | | | —~
SOA Infrastructu re m (Se';‘q

 Example: Service-Oriented Architecture (SOA) |E3... T Fll - N

External |
System |

!Y
Crvlce @ Servuce\

Legacy or New
Code

Enterprise ,
Informatlon System 1
Inter IU sers - \

e Edward S. Rogers Sr. Department
Electrical & Computer Engine

95 UNIVERSITY OF TORONTO

SOA

Service

* Service: self-contained functionality Registry

 Remote invocation, language-independent interface

* Dynamic lookup possible publish

e Often used to wrap

legacy systems Service Service
Requestor [$li Provider

Edward S. Rogers Sr. Department
ectrical & Computer Engineering

s UNIVERSITY OF TORONTO

g
$
‘

&

How to decompose the application into
services?

* Decompose by business capability
* Decompose by verb or use case
* Decompose by by nouns or resources

___________________________ a
|

Business capabilities I Amplicatinm architartve T 1

Application architecture

| ! | |
I | | I
: | | :
| Product : : <<service>> |
| catalog | | Product |
| management | | catalog I
| | | management '
I | | I
I | | I
I | | I
I | | I
I | | I
I | | I
: Inventory | | <<service>> :
I management | | Inventory |
| : : management |
I | | I
I | | I
I | | I
: | | |
| Order ' | <<service>> :
| management : : Order |
I | | management |
I | . I
I | | I
I | ; I
: Delivery | | <<service>> :
| management ' | Delivery |
| : : management |
I | | I
: | | !
I

[[|

How to decompose the application into
services?

Single responsibility
principle

Open/closed principle

* Decompose by business capability
* Decompose by verb or use case

Liskov substitution principle

° Decompose DY by NOouUNS or resources

Interface segregation
principle

Dependency inversion
principle

How to maintain data consistency?

f Distributed Transaction (2PC)

“ 2PC (Two-phase commlt) ordr Customer

Service Service
Saga
Order Customer Order
Service Message/event Service Message/event Service
» »
Local Local Local
Transaction Transaction Transaction

saga — a sequence of local transaction

Saga Pattern

The master process called “Saga Execution Coordinator” or SEC.

 two ways to achieve sagas

* Choreography : each local transaction publishes domain events that trigger
local transactions in other services.

* Orchestration : an orchestrator (object) tells the participants what local
transactions to execute.

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Orchestration

) N Message Broker

Order |+ T

Service
Execute Payment CMD

Payment Channel
—

Payment Order Payment Stock Delivery
Service Service Service Service Service

Payment Executed
Reply
CreateOrderTX

0
Prepare Order CMD
Order Channel
~

Stock
Service

createOrder

Out of Stock
Reply

N\ executePayment
Refund Client CMD

Payment Channel

prepareOrder
J

SEC

deliveryOrder

concludeOrder

Order Saga
Reply Channel

The Edward S. Rogers Sr. Department
| of Electrical & Computer Engineering

%,Ag;g UNIVERSITY OF TORONTO

3 personas

Example

—>
POST /order
GET /order i . mongodb
GET /menu ,]pro(iuc:ee | _
waiter J —»| topic: foods |« cooker
i | conskgﬁ 2 produces
client —»| topic: drinks [« bartender
: ' \ J
consumes ! |
f) topic: baicony | ! —>
[_____‘_‘____j mongodb

https://github.com/victoramsantos/saga-pattern-example

he Edward S. Rogers Sr. Department
f Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

https://github.com/victoramsantos/saga-pattern-example/releases/tag/v1.0.0

Other examples and platforms

;_?C tuat Eventuate example microservices
€ventuate applications

Eventuate™ is a platform that solves the distributed data management problems inherent in the

microservice architecture.
Eventuate™ consists of two frameworks:

« Eventuate Tram for microservices that use traditional JDBC/JPA-based persistence.
« Eventuate Local for microservices that use Event Sourcing.

How are services packaged and deployed?

* Container g
* Serverless deployment
* Platform as a Service (PaaS)

kubernetes

CLOUD F@UNDRY
AWS Elastic Beanstalk A‘

Easy to begin, Impossible to outgrow AWS Lambda

The 2019 Microservices Ecosystem

Security

Twistlock
Tigera

Aporeto

Aqua

Monitoring

Q)

AppDynamics

New Relic

Instana

Datadog

=

LightStep

Prometheus

SignalFx

SignalFx

%

Dynatrace

https://glasnostic.com/blog/the-2019-microservices-ecosystem

The Edward S. Rogers Sr. Department
| of Electrical & Computer Engineering

%,Ag;g UNIVERSITY OF TORONTO

AP| Gateways

i1
L B

AWS API Gateway

apigee

Apigee

Sentinel

»

\

Express Gateway

Infrastructure

aws

Amazon Web Services

A

Kong
Ambassador
MuleSoft

“Tyk

Tyk.io

A

Microsoft Azure

Service Middleware

&

Envoy

NGiNX

Nginx

NETFLIX

Netflix 0SS

HAProxy

2

Google Cloud Platform

iy
—

IBM Cloud

Applications & Services

Orchestration

&

Kubernetes

Q

OpenShift

K

Mesosphere

O,

Cloud Foundry

ORACLE

Oracle Cloud

Service Mesh

A

Istio

[|

Linkerd

AWS App Mesh

®

Pivotal Web Services

Cloud Traffic Control

QW
d

Glasnostic

Serverless

AWS Lambda

<&

Azure Functions

@

Google Cloud Functions

Knative

(On Premise)

Technology Stacks

Awesome Microservices i«

A curated list of Microservice Architecture related principles and technologies.

https://github.com/mfornos/awesome-microservices

ele}EiiR s St. Depar

-‘ f Electrical & puter Enomeetino
;g,” UNIVE RSITY OF TORONTO

https://github.com/mfornos/awesome-microservices

Discussion of Microservices

Are they really “new”?

* Do microservices solve problems, or push them down the line?
What are the impacts of the added flexibility?

* Beware “cargo cult”

* “If you can’t build a well-structured monolith, what makes you
think microservices is the answer?” — Simon Brown

Leads to more API design decisions

A
APIS EVERYWHERE

e Edward S. Rog SD} artment
Electrical & Cor }t r Engineering

a@,”é« UNIVERSITY OF TORONTO

he Edward S. Rogers Sr. Department

of Electrical & Computer Engineer

UNIVERSITY OF TORONTO

