
ECE444: Software Engineering

Introduction to Process

Shurui Zhou

Administrivia

• Proj1_Milestone0 due 9/16 11:59pm EST
• team name
• project proposal

• Vote for idea due 9/17 11:59pm EST
• About Lab
• tutorial by TA
• lab task, submitting by Friday (participation)
• Q&A, group meeting (not required to stay for the whole session)

Why did you pick this class?

• I'm planning to work in industry after graduation
• To get strong first-hand experience
• improve my project management and programming skills
• To find a way to better understanding and editing the code written by others
• I am interested in web page design.
• It is a hot topic!

What do you want to learn?

0

2

4

6

8

10

12

14

16

web app

open so
urce

devops

practi
ca

l e
xp

erie
nce

SE
4AI

Proce
ss

teamwork

arch
ite

ctu
re

syste
m desig

n

project
man

ag
ement

back-
end

docke
r

arch
ite

cu
tre

desig
n patte

rns

lar
ge

 sc
ale so

ftw
are

fro
nt-e

nd

desig
n patte

rn

 clo
ud arch

ite
ctu

re

functi
onal p

rogra
mming vs

…

Kubernetes
aws

agil
e

ch
aos e

ngin
eerin

g
NLP AI

ruby

dist
rib

uted sy
ste

m

 le
gal

im
plica

tio
ns o

f…

Chart Title

Office Hour

• 68 replied
• Friday 4-5pm EST
• By appointment

Learning Goals

• Recognize the Importance of process
• Understand the difficulty of measuring progress
• Use milestones for planning and progress measurement
• Understand backlogs and user stories

2013

• 2M people working on 300K software projects in the US
• 1/3 - 2/3 exceed schedule and budget targets before delivery
• Of the most expensive software projects, about half will eventually be

canceled for being out of control.

https://ptgmedia.pearsoncmg.com/images/9781572316218/samplepages/9781572316218.pdf

8

https://ptgmedia.pearsoncmg.com/images/9781572316218/samplepages/9781572316218.pdf

Software projects succeed or fail based
on how carefully they are planned and
how deliberately they are executed

Process

10

How to develop software?

1. Discuss the software that needs to be written
2. Write some code
3. Test the code to identify the defects
4. Debug to find causes of defects
5. Fix the defects
6. If not done, return to step 1

11

Software Process

The set of activities and associated results that produce a software product

13

Example of Process Decisions

14

• Writing down all requirements

Example of Process Decisions
• Writing down all requirements
• Require approval for all changes to requirements

15

Example of Process Decisions

• Writing down all requirements
• Require approval for all changes to requirements
• Use version control for all changes

Example of Process Decisions
• Writing down all requirements
• Require approval for all changes to requirements
• Use version control for all changes
• Track all reported bugs
• Review requirements and code
• Break down development into smaller tasks and schedule and monitor

them
• Planning and conducting quality assurance
• Have daily status meetings
• Use Docker containers to push code between developers and operation

17

Example of Process Decisions
• Writing down all requirements
• Require approval for all changes to requirements
• Use version control for all changes
• Track all reported bugs
• Review requirements and code
• Break down development into smaller tasks and schedule and monitor

them
• Planning and conducting quality assurance
• Have daily status meetings
• Use Docker containers to push code between developers and operation

18

19

Percent of Effort

TimeProject beginning Project end

100%

0%

20

Percent of Effort

TimeProject beginning Project end

100%

0%

Trashing / Rework

Productive Coding

21

Trashing / Rework

Productive Coding

Process: Cost and Time estimates, Writing Requirements,
Design, Change Management, Quality Assurance Plan,

Development and Integration Plan

Percent of Effort

TimeProject beginning Project end

100%

0%

22

Productive Coding

Trashing / Rework

Process

Percent of Effort

TimeProject beginning Project end

100%

0%

Survival Mode

• Missed deadlines -> "solo development mode" to meet own
deadlines
• Ignore integration work
• Stop interacting with testers, technical writers, managers, …

23

24

Productive Coding

Trashing / Rework

Process

Percent of Effort

TimeProject beginning Project end

100%

0%

Example process issues
• Change Control: Mid-project informal agreement to changes suggested by

customer or manager. Project scope expands 25-50%
• Quality Assurance: Late detection of requirements and design issues. Test-

debug-reimplement cycle limits development of new features. Release with
known defects.
• Defect Tracking: Bug reports collected informally, forgotten
• System Integration: Integration of independently developed components at

the very end of the project. Interfaces out of sync.
• Source Code Control: Accidentally overwritten changes, lost work.
• Scheduling: When project is behind, developers are asked weekly for new

estimates.

27

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Productive Coding

Process

Trashing / Rework

Real world cases

Organizations that have explicitly focused on improving their
development processes have, over several years, cut their time-to-
market by about one-half and reduced their costs and defects by
factors of 3 to 10.

5 yr, cost -75%, time - 40%, defects - 90%

8 yr, cost -50%, defects - 75%

Planning

32

Task: Estimate Time

• a web application of Trip guide (booking, scheduling, route planning...)

Estimate in 8h days (20 work days in a month, 220 per year)

33

Revise Time Estimate

• Remember the GIS system experience?
• Is GIS similar/different/easier/more challenging/reusable?
• How much design did you do?
• Break down the task into ~5 smaller tasks and estimate them.
• Revise your overall estimate if necessary

• 2 Types of Projects
• Projects having an accurate target, technical inquiry and deadlines.
• Projects having a general idea and no accurate visualization of further

development, like products for startups or Time & Material projects.

https://www.codica.com/blog/how-to-get-better-estimates/

https://www.codica.com/blog/how-to-get-better-estimates/

https://www.codica.com/blog/how-to-get-better-estimates/

“It is important to concentrate
on the scale of complexity, not
the amount of further work.”

https://www.codica.com/blog/how-to-get-better-estimates/

Measuring Progress?

“I’m almost done with the app. The frontend is almost fully

implemented. The backend is fully finished except for the one stupid bug

that keeps crashing the server. I only need to find the one stupid bug,

but that can probably be done in an afternoon. We should be ready to

release next week.”

Measuring Progress?

• Developer judgment: x% done
• Lines of code?
• Functionality?
• Quality?

Milestones and Deliverables

• Making progress observable, especially for software
• Milestone: clear end point of a (sub)tasks
• For project manager
• Reports, prototypes, completed subprojects
• "80% done" not a suitable milestone

• Deliverable: Result for customer
• Similar to milestone, but for customers
• Reports, prototypes, completed subsystems

Project Planning
Identify

constraints

Estimate project
parameters

Define milestones

Create schedule

activities begin

Check progress

Reestimate project
parameter

Refine schedule

renegotiate
constraints Technical review

Problem?

no

yes

Done? yes
no

Abort?

Budget,
Personal,
Deadlines

eve
ry

2-3 w
eeks

new
feature

requests

Gantt Diagrams

Brief intro to Scrum

Elements of Scrum

• Products:
• Product Backlog
• Sprint Backlog

• Process:
• Sprint Planning Meeting
• Daily Scrum Meeting
• Sprint Retrospective
• Sprint Review Meeting

Product Backlog/Sprint Backlog

• The product backlog is all the features for the product
• The sprint backlog is all the features that will be worked on for that

sprint. These should be broken down into discrete tasks:
• Fine-grained
• Estimated
• Assigned to individual team members
• Acceptance criteria should be defined

• User Stories are often used

Backlog – information radiators

Scrum meetings

• Sprint Planning Meeting
• Entire Team decides together what to tackle for that sprint

• Daily Scrum Meeting
• Quick Meeting to touch base on :

• What have I done? What am I doing next? What am I stuck on/need help?

• Sprint Retrospective
• Review sprint process

• Sprint Review Meeting
• Review Product

Planning

• Time estimation
• Tools
• Agile
• User stories

User Stories

User Stories

The conversation

• An open dialog between everyone
working on the project and the client
• Split up Epic Stories if needed

The Card
As a < type of user >,
I want < some goal >
so that < some reason >.

The Confirmation

• A confirmation criteria that will show when the task is completed
• Could be automated or manual

Exercise

How to evaluate user study?

Independent

• Schedule in any order.
• Not overlapping in concept
• Not always possible

• Details to be negotiated during development
• Good Story captures the essence, not the details

• This story needs to have value to someone (hopefully the
customer)
• Especially relevant to splitting up issues

• Helps keep the size small
• Ensure we negotiated correctly
• “Plans are nothing, planning is everything” -Dwight D. Eisenhower

• Fit on 3x5 card
• At most two person-weeks of work
• Too big == unable to estimate

• Ensures understanding of task
• We know when we can mark task “Done”
• Unable to test == do not understand

Planning

• Time estimation
• Tools
• Agile
• User stories

Further Reading

• McConnell. Software Project Survival Guide.
Microsoft Press 1998, Chapter 3 (link)
• Sommerville. Software Engineering. 8th Edition.

Addison-Wesley 2007. Chapters 5 "Project Planning"
and 26 "Software Cost Estimation"

https://ptgmedia.pearsoncmg.com/images/9781572316218/samplepages/9781572316218.pdf

Teamwork (Student Teams)
More on teams in real projects in the course

67

Expectation

• Meet initially and then regularly
• Review team policy
• Divide work and integrate
• Establish a process
• Set and document clear responsibilities and expectations
• Possible Roles: Coordinator, Scribe, Checker, Monitor
• Rotate roles every assignment

• Every team member should understand the entire solution

Dealing with problems

• Openly report even minor team issues in individual part of
the milestone report
• In-class discussions and case studies
• Additional material throughout semester
• We will attend one team meeting

Planning and In-Team Communication

• Asana, Trello, Microsoft Project, …
• Github Wiki, Google docs, …
• Email, Slack, Facebook groups, …

Meet your teammates!

