
ECE444: Software Engineering

DevOps

Shurui Zhou

Administrivia
• About CoFM

Updated: 7.5 pt
(5) Group presentation

(1.5) Individual Peer evaluation
(1) Presentation Feedback

Milestone 4.5: (2pt) 2-week report (Individual)
Milestone 5: (35.5pt) [see rubrics in Files/Project1/Milestone5]
Group report 8pt

(4) final delivery
(4) Architecture report [rubric is coming soon]

Individual 27.5pt
(2.5) Peer evaluation

(8) Architecture report (individual)
(7) Reflection report

(10) Code Quality, process, practices

2

Administrivia
• Lab this week

• Deploy your Chef Co-Pilot app on Heroku (follow up on Lab 6&7)

• Deadline for the Milestone 5
• to adhere to the CoFM guidelines by having a final assessment for ECE444,

we move the final delivery deadline to the exam period assigned (Dec 19)
• No need to keep updating your project after 11/18 11:59pm EST. We don’t

evaluate your code/report changed after 11/18

3

Learning Goals

• Understand DevOps
• Understand CI/CD
• Integrate DevOps into your web application

Developers + Operators = DevOps

What Are the Challenges DevOps Solves?

• Dev is often unaware of QA and Ops roadblocks that prevent the
program from working as anticipated.
• QA and Ops are typically working across many features and have little

context of the business purpose and value of the software.
• Each group has opposing goals that can lead to inefficiency and finger

pointing when something goes wrong.

How often different companies deploy to the
release environment

Goal of DevOps

• Improve deployment frequency
• Achieve faster time to market
• Lower failure rate of new releases
• Shorten lead time between fixes
• Improve mean time to recovery

https://opensource.com/article/19/4/devops-pipeline

CI/CD

Continuous Integration
• Merging in small code changes frequently

Continuous Delivery

Continuous Deployment

• Add additional automation and testing, get the code nearly ready to
deploy with almost no human intervention

• Deploying all the way into production without any human
intervention.

Continuous Integration

• Quickly integrating newly developed code with the main body of code
that is to be released

Continuous Integration

https://martinfowler.com/articles/contin
uousIntegration.html

Tools - Continuous Integration

• Quickly integrating newly developed code with the main body of code
that is to be released

Continuous Testing

• Selenium

SCM-Source Control Mgmt

Version
Control

Build

Brian the Build Bunny http://www.woodwardweb.com/gadgets/000434.html

Web
app
server

• Lightweight virtualization
• Separate docker images for separate services (web

server, business logic, database, …)

Automated
Testing

Infrastructure/Configuration as Code
(IAC/CAC）
• Manage configuration files in version control system
• Consistent infrastructure setup for testing, development, and

deployment
• Configuration includes ports, target servers and routing, …

Automate all the things

https://solidstudio.io/blog/ci-cd-pipelines.html

https://blog.crisp.se/2013/02/05/yassalsundman/continuous-
delivery-vs-continuous-deployment

Continuous Deployment

Two sides to DevOps
• Operation-centric:

• Manage inventory of servers automatically
• Provisioned, configured automatically Monitoring, analysis,

automation of operations

• Developer centric:
• Continuous deployment
• Push code to production through pipeline

PRINCIPLES, WITH A LITTLE BIT OF
HISTORY...

Nightly Build

• Build code and run smoke test (Microsoft 1995)

• Benefits
• it minimizes integration risk.
• It reduces the risk of low quality
• It supports easier defect diagnosis
• It improves morale

FSE’16

Facebook process (until 2016)

• Release is cut Sunday 6pm
• Stabilize until Tuesday, canaries, release. Tuesday push is 12,000 diffs.

• Cherry pick: Push 3 times a day (Wed-Fri) 300-700 cherry picks / day.

37

Facebook quasi-continuous release

39

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Canary Deployment

40

Dark Launches at Instagram

• Early: Integrate as soon as possible. Find bugs early. Code can run in
production about 6 months before being publicly announced.
• Often: Reduce friction. Try things out. See what works. Push small

changes just to gather metrics, feasibility testing. Large changes just
slow down the team. Do dark launches, to see what performance is in
production, can scale up and down. "Shadow infrastructure" is too
expensive, just do in production.
• Incremental: Deploy in increments. Contain risk. Pinpoint issues.

41

Controlling feature flags

42

PRINCIPLE: EVERY FEATURE IS AN
EXPERIMENT

45

Netflix

• 60,000 configuration changes a day. 4000 commits a day.
• Every commit creates an Amazon Machine Imagine (AMI).
• AMI is automated deployed to a new RED/BLACK cluster.
• Have automated canary analysis, if okay, switch to new version, if not,

rollback commit.

47

https://thenewstack.io/netflix-devops-scale/

So who’s responsibility is all of this?

48

