
ECE444: Software Engineering

Intro to Quality Assurance

Shurui Zhou

Learning Goals

• Understand process aspects of QA
• Describe the tradeoffs of QA techniques
• Select an appropriate QA technique for a given project and quality

attribute
• Apply testing and test automation for functional correctness
• Understand opportunities and challenges for testing quality

attributes; enumerate testing strategies to help evaluate the following
quality attributes: usability, reliability, security, robustness (both
general and architectural), performance, integration.
• Discuss the limitations of testing

2

QA is Hard

3

“We had initially scheduled time to write tests for both front and back end
systems, although this never happened.”

4

“Due to the lack of time, we could only conduct individual pages’ unit
testing. Limited testing was done using use cases. Our team felt that this

testing process was rushed and more time and effort should be allocated.”

5

“We failed completely to adhere to the initial [testing] plan. From
the onset of the development process, we were more concerned
with implementing the necessary features than the quality of our
implementation, and as a result, we delayed, and eventually, failed
to write any tests.”

6

Time estimates (in hours):

Activity Estimated Actual
testing plans 3 0
unit testing 3 1
validation testing 4 2
test data 1 1

7

“One portion we planned for but were not able to
complete to our satisfaction was testing.”

8

9

QA is Important (Duh!)

10

Cost

11

Cost

13

QA has many facets

14

How do you know that your Program works?

Questions

• How can we ensure that the specifications are correct?
• How can we ensure a system meets its specification?
• How can we ensure a system meets the needs of its users?
• How can we ensure a system does not behave badly?

16

Two kinds of analysis questions

• Verification: Does the system meet its specification?
• i.e. did we build the system correctly?

• Verification: are there flaws in design or code?
• i.e. are there incorrect design or implementation decisions?

• Validation: Does the system meet the needs of users?
• i.e. did we build the right system?

• Validation: are there flaws in the specification?
• i.e., did we do requirements capture incorrectly?

Software Errors

• Functional errors
• Performance errors
• Deadlock
• Race conditions
• Boundary errors
• Buffer overflow
• Integration errors
• Usability errors
• Robustness errors
• Load errors

• Design defects
• Versioning and configuration errors
• Hardware errors
• State management errors
• Metadata errors
• Error-handling errors
• User interface errors
• API usage errors
• …

Definition: software analysis

The systematic examination of a software artifact to determine its
properties.

Definition: software analysis

The systematic examination of a software artifact to determine its
properties.
• Attempting to be comprehensive, as measured by, as examples:

Test coverage, inspection checklists, exhaustive model checking.

Definition: software analysis

The systematic examination of a software artifact to determine its
properties.
• Automated: Regression testing, static analysis, dynamic analysis
• Manual: Manual testing, inspection, modeling

Definition: software analysis

The systematic examination of a software artifact to determine its
properties.
• Code, system, module, execution trace, test case, design or

requirements document.

Definition: software analysis

The systematic examination of a software artifact to determine its
properties.
• Functional: code correctness
• Non-functional: evolvability, safety, maintainability, security, reliability,

performance, …

VERY IMPORTANT

• There is no one analysis technique that can perfectly address all
quality concerns.
• Which techniques are appropriate depends on many factors, such as

the system in question (and its size/complexity), quality goals,
available resources, safety/security requirements, etc etc…

25

Principle techniques

• Dynamic:
• Testing: Direct execution of code on test data in a controlled environment.
• Analysis: Tools extracting data from test runs.

• Static:
• Inspection: Human evaluation of code, design documents (specs and models),

modifications.
• Analysis: Tools reasoning about the program without executing it.

26

Error exists No error exists

Error Reported True positive
(correct analysis
result)

False positive

No Error Reported False negative True negative
(correct analysis
result)

Sound Analysis:
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
-> no false positives
typically underapproximated

27

Classic Testing
(Functional Correctness)

28

Testing

• Executing the program with selected inputs in a controlled environment (dynamic
analysis)
• Goals:

• Reveal bugs (main goal)
• Assess quality (hard to quantify)
• Clarify the specification, documentation
• Verify contracts

"Testing shows the presence,
not the absence of bugs

Edsger W. Dijkstra 1969

Specifications
• Textual
• Assertions
• Formal specifications

30

• JML (Java modeling language specification)

• Textual specification with JavaDoc

Benefits of Specification

• Exact specification of what should be implemented
• Decompose a system into its parts, develop and test parts

independently
• Accurate blame assignments and identification of buggy behavior
• Useful for test generation and as test oracle

Testing Levels

• Unit testing
• Integration testing
• System testing

34

Test Driven Development
• Tests first!
• Popular

agile technique
• Write tests as

specifications before code
• Never write code without

a failing test
• Claims:

• Design approach toward testable design
• Think about interfaces first
• Avoid writing unneeded code
• Higher product quality (e.g. better code, less defects)
• Higher test suite quality
• Higher overall productivity

(CC BY-SA 3.0)
Excirial

http://en.wikipedia.org/wiki/User:Excirial

36

“Traditional” coverage

• Statement: Has each statement in the program been executed?
• Branch: Has each of each control structure been executed?
• Function: Has each function in the program been called?
• Path: requires that all paths through the Control Flow Graph are covered.
• ...

37

We can measure coverage on almost anything

38

A. Zeller, Testing and Debugging Advanced course, 2010

We can measure coverage on almost anything

• Common adequacy criteria for testing approximate full “coverage”
of the program execution or specification space.
• Measures the extent to which a given verification activity has

achieved its objectives; approximates adequacy of the activity.
• Can be applied to any verification activity, although most frequently

applied to testing.
• Expressed as a ratio of the measured items executed or evaluated

at least once to the total number of measured items; usually
expressed as a percentage.

39

What is testing?

• Direct execution of code on test data in a controlled environment
• Principle goals:
• Validation: program meets requirements, including quality attributes.

• Other goals:
• Clarify specification: Testing can demonstrate inconsistency; either spec or

program could be wrong
• Learn about program: How does it behave under various conditions?

Feedback to rest of team goes beyond bugs
• Verify contract, including customer, legal, standards

41

What are we covering?
• Program/system functionality:
• Execution space (white box!).
• Input or requirements space (black box!).

• The expected user experience (usability).
• GUI testing, A/B testing

• The expected performance envelope (performance, reliability,
robustness, integration).
• Security, robustness, fuzz, and infrastructure testing.
• Performance and reliability: soak and stress testing.
• Integration and reliability: API/protocol testing

42

White box testing

Tests internal structures or workings of an application, as opposed to its
functionality.
• Unit Test
• Testing for Memory Leaks
• Penetration Testing
• “What would a cybercriminal do to harm my organization’ computer

systems, applications, and network?”

Black box testing

• Functionality of application is tested without looking at the
implementation details
• Types
• Functional Testing

• Smoke Testing
• Regression Testing
• ...

• Non-Functional Testing
• Performance Testing
• Compatibility Testing
• Stress Testing

Regression testing

• Ensure that a small change in one part of the system does not break
existing functionality elsewhere in the system.

Regression testing

• Ensure that a small change in one part of the system does not break
existing functionality elsewhere in the system.
• Application scenario:
• When new functionalities are added
• In case of change requirements
• When there is a defect fix
• When there are performance issues
• In case of environment changes
• When there is a patch fix

Regression testing

• Unit Test
• Progressive Test
• Selective Test
• Retest-All Testing
• Complete Testing

What are we covering?
• Program/system functionality:
• Execution space (white box!).
• Input or requirements space (black box!).

• The expected user experience (usability).
• GUI testing, A/B testing

• The expected performance envelope (performance, reliability,
robustness, integration).
• Security, robustness, fuzz, and infrastructure testing.
• Performance and reliability: soak and stress testing.
• Integration and reliability: API/protocol testing

49

Manual Testing?

• Live System?
• Extra Testing System?
• Check output / assertions?
• Effort, Costs?
• Reproducible?

Automating GUI/Web Testing

• First: why is this hard?
• Capture and Replay Strategy

• mouse actions
• system events

• Test Scripts: (click on button
labeled "Start" expect value X
in field Y)
• Lots of tools and frameworks

• e.g. JUnit + Jemmy for
Java/Swing

• (Avoid load on GUI testing by
separating model from GUI)

51

Usability: A/B testing

• Controlled randomized experiment with two variants, A and B, which
are the control and treatment.
• One group of users given A (current system); another random group

presented with B; outcomes compared.
• Often used in web or GUI-based applications, especially to test

advertising or GUI element placement or design decisions.

52

Example

• A company sends an advertising email to its customer database,
varying the photograph used in the ad...

53

Example: group A (99% of users)

•Act now! Sale
ends soon!

54

Example: group B (1%)

•Act now! Sale
ends soon!

55

Usability: A/B testing

• However, it cannot..
• Tell you why
• Let you test drastic redesigns of your website or app.
• Tell you if you’re solving the right/wrong problem.

56

What are we covering?
• Program/system functionality:
• Execution space (white box!).
• Input or requirements space (black box!).

• The expected user experience (usability).
• GUI testing, A/B testing

• The expected performance envelope (performance, reliability,
robustness, integration).
• Security, robustness, fuzz, and infrastructure testing.
• Performance and reliability: soak and stress testing.
• Integration and reliability: API/protocol testing

57

Performance Testing

• Specification? Oracle?
• Test harness? Environment?
• Nondeterminism?
• Unit testing?
• Automation?
• Coverage?

60

Unit and regression testing for performance
• Measure execution time of critical components
• Log execution times and compare over time

61

