ECE444: Software Engineering

Intro to Quality Assurance

Shurui Zhou

«;é* The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

%2 UNIVERSITY OF TORONTO

AAAAA

Learning Goals

* Understand process aspects of QA
* Describe the tradeoffs of QA techniques

e Select an appropriate QA technique for a given project and quality
attribute

* Apply testing and test automation for functional correctness

* Understand opportunities and challenges for testing quality
attributes; enumerate testing strategies to help evaluate the following
quality attributes: usability, reliability, security, robustness (both
general and architectural), performance, integration.

* Discuss the limitations of testing

%*i':ff The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

.;;?:gz UNIVERSITY OF TORONTO

QA is Hard

The Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

&gg UNIVERSITY OF TORONTO

“We had initially scheduled time to write tests for both front and back end
systems, although this never happened.”

’fi"ri The Edward S. Rogers Sr. Department
) | ectrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

“Due to the lack of time, we could only conduct individual pages’ unit
testing. Limited testing was done using use cases. Our team felt that this
testing process was rushed and more time and effort should be allocated.”

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

“We failed completely to adhere to the initial [testing] plan. From
the onset of the development process, we were more concerned
with implementing the necessary features than the quality of our
implementation, and as a result, we delayed, and eventually, failed

to write any tests.”

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Time estimates (in hours):

Activity ____|Estimated Actual __

testing plans
unit testing
validation testing
test data

~ A~ W W
) N R O

"i‘i{;‘ﬁ The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

“One portion we planned for but were not able to
complete to our satisfaction was testing.”

’fi"é The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

,;;?:4 UNIVERSITY OF TORONTO

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

UNIVERSITY OF TORONTO

QA is Important (Duh!

The Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

%’?;g@ UNIVERSITY OF TORONTO

Cost

Relative Cost of Software Fault Propogation

1368 ’ =
400 | Relative |
350 ‘ Cost to
| Repair
300 1
250 |
200 ll
150 ’ |
100]&» Customer
Integration
>0 Test
0 Code
Design
& Requirements
Qg& & Ph
“1” Identifies S aseé
Phase Defect & Repaired
Introduced

he Edward S. Rogers Sr. Department

lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Cost

theguardian
News US World Sports Comment Culture Business Money Environment Science ~ Heartbleed bug 'will cost millions'
Technology > Heartbleed :ﬁH?ﬁs"’i?gflzirﬁ,e%ﬂmf:'Effﬁnyﬂ';fiﬂfffﬂifgfﬁ
services to website hosts
Heartbleed: developer who introduced B Share - 430
the error regrets 'oversight' M Tweet) 269
Submitted just seconds before new year in 2012, the bug 3+1 | 27
'slipped through' — but discovery 'validates' open source Share = 103
Email
Alex Hern E E

W Follow @alexhern 3 Follow @guardiantech
. . . Technology
; . I .
theguardian.com, Friday 11 April 2014 03.05 EDT Heartbleed - Open source

&J Jump to comments (108) - Programming - Software
- Internet - Hacking - Data
and computer security A Image: Codenomicon

More news

More on this story

B | A

he Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%\g UNIVERSITY OF TORONTO

QA has many facets

The Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

%’?;g@ UNIVERSITY OF TORONTO

How do you know that your Program works?

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Questions

* How can we ensure that the specifications are correct?
* How can we ensure a system meets its specification?
* How can we ensure a system meets the needs of its users?

* How can we ensure a system does not behave badly?

Two kinds of analysis questions

* Verification: Does the system meet its specification?
* i.e. did we build the system correctly?

* Verification: are there flaws in design or code?
* i.e. are there incorrect design or implementation decisions?

 Validation: Does the system meet the needs of users?
* i.e. did we build the right system?

 Validation: are there flaws in the specification?
* i.e., did we do requirements capture incorrectly?

%*i‘fr,? The Edward S. Rogers Sr. Department
& | of Electrical & Computer Engineering

+®) UNIVERSITY OF TORONTO

Software Errors

* Functional errors * Design defects

* Performance errors Versioning and configuration errors
e Deadlock * Hardware errors

* Race conditions * State management errors

* Boundary errors * Metadata errors

Error-handling errors
* Integration errors User interface errors
Usability errors APl usage errors
Robustness errors

* Load errors

Buffer overflow

= | a Computer Engineering

OF TORONTO

“‘ lectr
4% UNIVERSITY

o

Definition: software analysis

The systematic examination of a software artifact to determine its
properties.

Definition: software analysis

The systematic examination of a software artifact to determine its
properties.

* Attempting to be comprehensive, as measured by, as examples:

Test coverage, inspection checklists, exhaustive model checking.

Definition: software analysis

The systematic examination of a software artifact to determine its
properties.

* Automated: Regression testing, static analysis, dynamic analysis

* Manual: Manual testing, inspection, modeling

Definition: software analysis

The systematic examination of a software artifact to determine its
properties.

* Code, system, module, execution trace, test case, design or
requirements document.

Definition: software analysis

The systematic examination of a software artifact to determine its
properties.

* Functional: code correctness

* Non-functional: evolvability, safety, maintainability, security, reliability,
performance, ...

VERY IMPORTANT

* There is no one analysis technique that can perfectly address all
quality concerns.

* Which techniques are appropriate depends on many factors, such as

the system in question (and its size/complexity), quality goals,
available resources, safety/security requirements, etc etc...

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Principle technigues

* Dynamic:
* Testing: Direct execution of code on test data in a controlled environment.
* Analysis: Tools extracting data from test runs.

e Static:

 Inspection: Human evaluation of code, design documents (specs and models),
modifications.

* Analysis: Tools reasoning about the program without executing it.

Error Reported True positive False positive
(correct analysis
result)
No Error Reported False negative True negative
(correct analysis
result)

Sound Analysis:
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
-> no false positives
typically underapproximated

e Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

**mi‘ UNIVERSITY OF TORONTO

Classic Testing
Functional Correctness

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%%“ UNIVERSITY OF TORONTO

Testing

* Executing the program with selected inputs in a controlled environment (dynamic
analysis)

* Goals:
* Reveal bugs (main goal)
» Assess quality (hard to quantify)
* Clarify the specification, documentation

* Verify contracts

"Testing shows the presence,

not the absence of bugs
Edsger W. Dijkstra 1969

Specifications

e Textual
* Assertions

* Formal specifications

Algorithms.shortestDistance(g, "Tom", "Anne");

> ArrayOutOfBoundsException

Algorithms.shortestDistance(g, "Tom", "Anne");

-1

class Algorithms {

int shortestDistance(..) {..}

class Algorithms {

int shortestDistance(..) {..}

public int debit(int amount) {

}

e JML (Java modeling language specification)

public int read(byte[] buf) throws IOException
{

return read(buf, 0, buf.length);

}

* Textual specification with JavaDoc

e Edward S. Rogers Sr. Department
3 Electrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

Benefits of Specification

* Exact specification of what should be implemented

* Decompose a system into its parts, develop and test parts
independently

* Accurate blame assignments and identification of buggy behavior
» Useful for test generation and as test oracle

’fi}j The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Testing Levels

* Unit testing
* Integration testing

* System testing

Test Driven Develop

ment

———————————————————— —Repeat- — —

Test
succeeds

Tests first!

Popular
agile technique

Write tests as
specifications before code

Never write code without
a failing test

Claims:

* Design approach toward testable design d-
* Think about interfaces first

e Avoid writing unneeded code

* Higher product quality (e.g. better code, less defects)

* Higher test suite quality
* Higher overall productivity

http://en.wikipedia.org/wiki/User:Excirial

3

Packages Coverage Report - All Packages
Al

net.sourceforge.cobertura.ant Package / #Classes Line Coverage Branch Coverage Complexity
S ——— Al Packages 55 o [s s [ararSH 2319
net.sourceforge.cobertura.check
net.sourceforge.cobertura.coveragedal el e u . _ e _ 1548
net.sourceforge.cobertura.instrument Lelscuiceforge.coberluia.check 3 o _ o _ 2429
net sourceforge cobertura.merge Leboslepboopciie s chvtaoily 13 na[wa] nal NA] 2277
net.sourceforge.cobertura.reporting et suwoetorge. cobecha instrument 10 oo seoisio | 1854
net.sourceforge.cobertura.reporting.h net.sourceforge cobertura. merge 1 86% _ 85% _ 5.5
net.sourceforz.cobertura.rezrﬁi.hﬂ net.sourceforge cobertura reporting 3 s [| 2.882
net.sourceforge. cobertura.reporting. Xt net.sourceforge.cobertura.reporting.html 4 o1 [EEES e [4.444
net.sourceforge.cobertura. util ~ net.sourceforge.cobertura.reporting. htmi.files 1 87% _ 62% _ 45
. . net.sourceforge.cobertura.reporting.xml 1 100w [o5 (2 1524
CEEEE T) || netsourceforge copertura ut 9 oo [i sove [vorsoz I 289
All Packages | 1 s [N/A 12
Report generated by Cobertura 1.9 on 6/9/07 12:37 AM.
Classes
AntUtil (88%)
Archive (100%)
ArchiveUtil (80%)
BranchCoverageData (N/A)
CheckTask (0%)
ClassData (N/A)
Classinstrumenter (94%)
ClassPattern (100%)
CoberturaFile (73%)
CommandLineBuilder (96%)

CommonMatchingTask (88%)
ComplexityCalculator (100%)
ConfigurationUtil (50%)

CopyFiles (87%)

CoverageData (N/A)
CoverageDataContainer (N/A)
CoverageDataFileHandler (N/A)
CoverageRate (0%)

ExcludeClasses (100%)

EileFinder (96%)

FileLocker (0%)
EirstPassMethodInstrumenter (100%)
HTMLReport (94%)
HasBeenlnstrumented (N/A)

Header (80%)

10Util (6296)

lgnore (100%)

lgnoreBranches (0%) v

[o —— S K >

‘II

“Traditional” coverage

e Statement: Has each statement in the program been executed?
* Branch: Has each of each control structure been executed?
* Function: Has each function in the program been called?

* Path: requires that all paths through the Control Flow Graph are covered.

We can measure coverage on almost anything

Nhr (0 ot Apiic GEIGH = TOvaWaS) ™ ~ T bt snemm.

B[tk e vow brow object wry [she | &

J New Ctri4d | w
0= o Rln
S e G -_414 28

Close

Jd J New CtraN

:J G Open.. CHO

Sav

==
(574 B Drawch Apgplication - [}

" i gt S . Al D yew Chebak 3|l |Ee wow o
) B BN B e s e o s sy et eR g B0 e ;

et e o AL e T em—— T

it Wew Drow

et

A. Zeller, Testing and Debugging Advanced course, 2010

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%,a?mga UNIVERSITY OF TORONTO

We can measure coverage on almost anything

« Common adequacy criteria for testing approximate full “coverage”
of the program execution or specification space.

* Measures the extent to which a given verification activity has
achieved its objectives; approximates adequacy of the activity.
e Can be applied to any verification activity, although most frequently
applied to testing.
* Expressed as a ratio of the measured items executed or evaluated

at least once to the total number of measured items; usually
expressed as a percentage.

L TheEi ard S. Rog sD}
M of Electrical & Cor mput ‘i

- HU
% UNIVERSITY OF TORONTO

What is testing?

* Direct execution of code on test data in a controlled environment

* Principle goals:
* Validation: program meets requirements, including quality attributes.

e Other goals:

 Clarify specification: Testing can demonstrate inconsistency; either spec or
program could be wrong

* Learn about program: How does it behave under various conditions?
Feedback to rest of team goes beyond bugs

* Verify contract, including customer, legal, standards

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

What are we covering?

* Program/system functionality:
* Execution space (white box!).
* Input or requirements space (black box!).

* The expected user experience (usability).
* GUI testing, A/B testing

* The expected performance envelope (performance, reliability,
robustness, integration).
e Security, robustness, fuzz, and infrastructure testing.
* Performance and reliability: soak and stress testing.
* Integration and reliability: APl/protocol testing

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
%ﬁ, UNIVERSITY e TORONTO

White box testing f'[m%

Tests internal structures or workings of an application, as opposed to its
functionality.

e Unit Test

* Testing for Memory Leaks

* Penetration Testing

* “What would a cybercriminal do to harm my organization’ computer
systems, applications, and network?”

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Black box testing o) [)

* Functionality of application is tested without looking at the
implementation details

* Types
* Functional Testing
* Smoke Testing
* Regression Testing
* Non-Functional Testing

* Performance Testing
e Compatibility Testing

* Stress Testing

Regression testing

* Ensure that a small change in one part of the system does not break
existing functionality elsewhere in the system.

Regression testing

* Ensure that a small change in one part of the system does not break
existing functionality elsewhere in the system.

* Application scenario:

* When new functionalities are added
In case of change requirements
When there is a defect fix
When there are performance issues
In case of environment changes
When there is a patch fix

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Regression testing

* Unit Test
* Progressive Test

* Selective Test
* Retest-All Testing
* Complete Testing

What are we covering?

* Program/system functionality:
* Execution space (white box!).
* Input or requirements space (black box!).

=P « The expected user experience (usability).
* GUI testing, A/B testing

* The expected performance envelope (performance, reliability,
robustness, integration).
e Security, robustness, fuzz, and infrastructure testing.
* Performance and reliability: soak and stress testing.
* Integration and reliability: APl/protocol testing

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
%ﬁ, UNIVERSITY e TORONTO

Manual Testing?

GENERIC TEST CASE: USER SENDS MMS WITH PICTURE ATTACHED.

Step ID | User Action System Response
1 Go to Main Menu Main Menu appears
2 Go to Messages Menu Message Menu appears
3 Select “Create new Mes- | Message Editor screen
sage” opens
4 Add Recipient Recipient 1s added
5 Select “Insert Picture” Insert Picture Menu opens
6 Select Picture Picture 1s Selected
7 Select “Send Message” Message 1s correctly sent

* Live System?
* Extra Testing System?

* Check output / assertions?
e Effort, Costs?
Reproducible?

e Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

N/ NIVERSITY OF TORONTO

Automating GUI/Web Testing

* First: why is this hard?
e Capture and Replay Strategy

* mouse actions
* system events

 Test Scripts: (click on button
labeled "Start" expect value X
in fieldY)

e Lots of tools and frameworks

e e.g. JUnit + Jemmy for
Java/Swing

e (Avoid load on GUI testing by
separating model from GUI)

"iﬁré The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

5‘% UNIVERSITY OF TORONTO

Usability: A/B testing

* Controlled randomized experiment with two variants, A and B, which
are the control and treatment.

* One group of users given A (current system); another random group
presented with B; outcomes compared.

e Often used in web or GUI-based applications, especially to test
advertising or GUI element placement or design decisions.

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

Example

* A company sends an advertising email to its customer database,
varying the photograph used in the ad...

’fi"ri The Edward S. Rogers Sr. Department
) | ectrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

Example: group A (99% of users)

eAct now! Sale
ends soon!

Example: group B (1%

eAct now! Sale
ends soon!

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

Mé@ UNIVERSITY OF TORONTO

Usability: A/B testing

* However, it cannot..
* Tell you why
* Let you test drastic redesigns of your website or app.
* Tell you if you’re solving the right/wrong problem.

dward S. Rogers Sr. Department
ectrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

What are we covering?

* Program/system functionality:
* Execution space (white box!).
* Input or requirements space (black box!).

* The expected user experience (usability).
* GUI testing, A/B testing

==» « The expected performance envelope (performance, reliability,
robustness, integration).
e Security, robustness, fuzz, and infrastructure testing.
* Performance and reliability: soak and stress testing.
* Integration and reliability: APl/protocol testing

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
%ﬁ, UNIVERSITY e TORONTO

Performance Testing

* Specification? Oracle?

e Test harness? Environment?
* Nondeterminism?

* Unit testing?

* Automation?

* Coverage?

Unit and regression testing for performance

* Measure execution time of critical components
* Log execution times and compare over time

Jenkins gatling_load_test Gatling

A Back to Dashboard gatling_load_test - Performance Trend

O, Status

— 99th percentile response time
=+ Changes 1200 ms

7 Workspace

£) Build Now 1000 ms
.]
 Delete Project
.. Configure 800 ms
@yﬁ Gatling o
600 ms
Build History trend =
o #18 28-Apr-2015 11:33 400 ms
O #17 28-Apr-2015 11:32
@ #16 28-Apr-2015 11:31 200 ms y e
S e ~ “G—
@ #15 28-Apr-2015 11:30
O #14 28-Apr-2015 11:29 0ms
#6 #7 #8 #9 #10 #11 #12 #13

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

