
ECE444: Software Engineering
QA 2: Performance Testing, Chaos Engineering,

Static&Dynamic Analysis

Shurui Zhou

Learning Goals

• Understand opportunities and challenges for testing quality
attributes; enumerate testing strategies to help evaluate the following
quality attributes: usability, reliability, security, robustness (both
general and architectural), performance, integration.

• Discuss the limitations of testing
• Give a one sentence definition of static&dynamic analysis.

3

What is testing?

• Direct execution of code on test data in a controlled environment
• Principle goals:
• Validation: program meets requirements, including quality attributes.

• Other goals:
• Clarify specification: Testing can demonstrate inconsistency; either spec or

program could be wrong
• Learn about program: How does it behave under various conditions?

Feedback to rest of team goes beyond bugs
• Verify contract, including customer, legal, standards

4

What are we covering?
• Program/system functionality:
• Execution space (white box!).
• Input or requirements space (black box!).

• The expected user experience (usability).
• GUI testing, A/B testing

• The expected performance envelope (performance, reliability,
robustness, integration).
• Security, robustness, fuzz, and infrastructure testing.
• Performance and reliability: soak and stress testing.
• Integration and reliability: API/protocol testing

5

White box testing Black box testing

Regression testing

• Ensure that a small change in one part of the system does not break
existing functionality elsewhere in the system.

The Oracle Problem

Parameters

Input
generator SUT

Golden
standard

Comparator

Fail

Pass

ObserverInput
generator SUT Exception

Normal

Parameters

Crash

Input
generator SUT

Pass

Parameters

Fails

Assertions

System under test (SUT)

What are we covering?
• Program/system functionality:
• Execution space (white box!).
• Input or requirements space (black box!).

• The expected user experience (usability).
• GUI testing, A/B testing

• The expected performance envelope (performance, reliability,
robustness, integration).
• Security, robustness, fuzz, and infrastructure testing.
• Performance and reliability: soak and stress testing.
• Integration and reliability: API/protocol testing

9

Quality Attributes

Performance Testing

• Specification? Oracle?
• Test harness? Environment?
• Nondeterminism?
• Unit testing?
• Automation?
• Coverage?

14

Specifications
• Textual
• Assertions
• Formal specifications

15

Test harness

Software system that contains test drivers, test scripts and other
supporting tools that are required for the execution of any test case.
• Automation testing
• Integration Testing

Zander, Justyna & Mosterman, Pieter & Schieferdecker, Ina.
(2008). Quality of test specification by application of patterns.

Performance Testing

• Specification? Oracle?
• Test harness? Environment?
• Nondeterminism?
• Unit testing?
• Automation?
• Coverage?

17

Unit and regression testing for performance
• Measure execution time of critical components
• Log execution times and compare over time

18

Profiling

• Finding bottlenecks in
execution time and
memory

19

Profiling
• Memory profile as a function of time memory-profile package

https://pypi.org/project/memory-profiler/

Robustness: Stress Testing

• Robustness testing technique: test beyond the limits of normal
operation.

• Can apply at any level of system granularity.
• Stress tests commonly put a greater emphasis on robustness,

availability, and error handling under a heavy load, than on what
would be considered “correct” behavior under normal circumstances.

Soak testing

• Problem: A system may behave exactly as expected under artificially
limited execution conditions.
• E.g., Memory leaks may take longer to lead to failure

• Soak testing: testing a system with a significant load over a significant
period of time

• Used to check reaction of a subject under test under a possible
simulated environment for a given duration and for a given threshold.

22

Reliability: Fuzz testing

• The purpose of fuzzing is to send anomalous data to a system in order
to crash it, therefore revealing reliability problems.

• Programs and frameworks that are used to create fuzz tests or
perform fuzz testing are commonly called fuzzers.

• Also known as fuzzing or monkey testing

Reliability: Fuzz testing
• Negative software testing method that feeds malformed and unexpected

input data to a program, device, or system with the purpose of finding
security-related defects, or any critical flaws leading to denial of service,
degradation of service, or other undesired behavior

• black-box testing

25

Fuzzing Process

System under test (SUT)

Reliability: Fuzz testing

27

(A. Takanen et al, Fuzzing for Software Security Testing and
Quality Assurance, 2008)

Performance testing tools: JMeter

http://jmeter.apache.org

http://jmeter.apache.org/

Performance testing tools: Locust
https://github.com/locustio/locust

Chaos Engineering

Principle of Chaos Engineering

Proactively inject failures in order to be prepared when disaster
strikes.

“Chaos Engineering is the discipline of experimenting on a distributed system in
order to build confidence in the system’s capability to withstand turbulent
conditions in production.”

Goal: To intentionally break things, compare measured with expected
impact, and correct any problems uncovered this way.

32

Chaos monkey/Simian army

• A Netflix infrastructure testing system.
• “Malicious” programs randomly trample on components, network,

datacenters, AWS instances…
• Chaos monkey was the first – disables production instances at random.
• Other monkeys include Latency Monkey, Doctor Monkey, Conformity Monkey,

etc… Fuzz testing at the infrastructure level.
• Force failure of components to make sure that the system architecture is

resilient to unplanned/random outages.

• Netflix has open-sourced their chaos monkey code.

33

https://github.com/dastergon/awesome-chaos-engineering

https://www.youtube.com/watch?v=VUwi5Jtw3ow&feature=youtu.be

Limits of Testing
• Cannot find bugs in code not executed, cannot assure

absence of bugs
• Oracle problem
• Nondeterminism, flaky tests

• Certain kinds of bugs occur only under very unlikely
conditions

• Hard to observe/assert specifications
• Memory leaks, information flow, …

• Potentially expensive, long run times
• Potentially high manual effort
• Verification, not validation
• …

37

Summary

• Quality assurance is important, often underestimated
• Many forms of QA, testing popular
• Testing beyond functional correctness

39

Definition: software analysis

The systematic examination of a software artifact to determine its
properties.

Principle techniques

• Dynamic:
• Testing: Direct execution of code on test data in a controlled environment.
• Analysis: Tools extracting data from test runs.

• Static:
• Inspection: Human evaluation of code, design documents (specs and models),

modifications.
• Analysis: Tools reasoning about the program without executing it.

41

What’s a memory leak?

How can we tackle this problem?

• Testing:

• Inspection:

• Static analysis:

Wouldn’t it be nice if we could learn about the
program’s memory usage as it was running?

45

Common dynamic analyses

• Coverage
• Performance
• Memory usage
• Security properties
• Concurrency errors
• Invariant checking
• Fault localization
• Anomaly detection

47

Collecting execution info

• Instrument at compile time
• e.g., Aspects, logging, bytecode rewriting

• Run on a specialized VM
• e.g., valgrind

• Instrument or monitor at runtime
• also requires a special VM
• e.g., hooking into the JVM using debugging symbols to profile/monitor

(VisualVM)

48

Collecting execution info

• Instrument at compile time
• e.g., Aspects, logging

• Run on a specialized VM
• e.g., valgrind

• Instrument or monitor at runtime
• also requires a special VM
• e.g., hooking into the JVM using debugging symbols to profile/monitor

(VisualVM)

Avoid mixing up static things done to
collect info and the dynamic
analyses that use the info.

Note: some of these methods
require a static pre processing step!

49

Example: Test Coverage

• Statement: Has each statement in the program been executed?
• Branch: Has each of each control structure been executed?
• Function: Has each function in the program been called?
• Path: requires that all paths through the Control Flow Graph are covered.
• ...

Instrumentation: a simple example

• How might tools that compute test suite coverage work?
• One option: instrument the code to track a certain type of data as the

program executes.
• Instrument: add of special code to track a certain type of information as a

program executes.
• Rephrase: insert logging statements (e.g., at compile time).

• What do we want to log/track for branch coverage computation?

51

1. int foobar(a,b) {

2. if (a > 0) {

3. b -= 5;

4. a -= 10;

5. }

6. if(a > 0) {

7. if (b > 0)

8. return 1;

9. }

10. return 0;

11. }

if (a > 0)

b -= 5
a -= 10

if (a > 0)

if (b > 0)

return 1 return 0

(entry)

(exit)

Branch #1

Branch #2

Branch #3

52

b -= 5
a -= 10

③ if (b > 0)

return 1 return 0

(exit)

log(“branch 1:
true”)

log(“branch 1: false”)

log(“branch 2:
true”)

log(“branch 2: false”)

log(“branch 3:
true”)

log(“branch 3: false”)

① if (a > 0)

② if (a > 0)

(entry)

53

b -= 5
a -= 10

③ if (b > 0)

return 1 return 0

(exit)

① if (a > 0)

② if (a > 0)

(entry)

b -= 5
a -= 10

printf(“1:t”)

printf(“1:f”)

return 0

③ if (b > 0)

printf(“2:t”)

printf(“2:f”)

return 1

54

1. int foobar(a,b) {

2. if (a > 0) {

3. b -= 5;

4. a -= 10;

5. }

6. if(a > 0) {

7. if (b > 0)

8. return 1;

9. }

10. return 0;

11. }

① if (a > 0)

② if (a > 0)

return 0

(entry)

(exit)

printf(“1:f”)
b -= 5
a -= 10

printf(“1:t”)

③ if (b > 0)

printf(“2:t”)

printf(“2:f”)

return 1

printf(“3:t”) printf(“3:f”)

55

① if (a > 0)

② if (a > 0)

return 0

(entry)

(exit)

printf(“1:f”)
b -= 5
a -= 10

printf(“1:t”)

③ if (b > 0)

printf(“2:t”)

printf(“2:f”)

return 1

printf(“3:t”) printf(“3:f”)

56

1.int foobar(a,b) {

2. if (a > 0) {

3. printf(“1:t”);

4. b -= 5;

5. a -= 10;

6. } else {

7. printf(“1:f”);

8. }

9. if(a > 0) {

10. printf(“2:t”);

11. if (b > 0) {

12. printf(“3:t”);

13. return 1;

14. } else {

15. printf(“3:f”);

16. }

17. } else {

18. printf(“2:f”);

19. }

20. return 0;

21.}

• Test cases: (0,0), (1,0), (11,0), (11,6)
• foobar(0,0): “1:f 2:f ”
• foobar(1,0): “1:t 2:f ”
• foobar(11,0): “1:t 2:t 3:f ”
• foobar(11,6): “1:t 2:t 3:t “

Assuming we saved how many branches
were in this method when we

instrumented it, we could now process
these logs to compute branch coverage.

1.int foobar(a,b) {

2. if (a > 0) {
3. printf(“1:t ”);
4. b -= 5;
5. a -= 10;
6. } else {
7. printf(“1:f ”);
8. }
9. if(a > 0) {
10. printf(“2:t ”);
11. if (b > 0) {
12. printf(“3:t ”);
13. return 1;
14. } else {
15. printf(“3:f ”);
16. }
17. } else {
18. printf(“2:f ”);
19. }
20. return 0;
21.}

57

Common dynamic analyses

• Coverage
• Performance
• Memory usage
• Security properties
• Concurrency errors
• Invariant checking
• Fault localization
• Anomaly detection

58

Profiling

• Finding bottlenecks in
execution time and
memory

59

Limitation: Dynamic analysis

• Cost
Performance overhead for recording
• Acceptable for use in testing?
• Acceptable for use in production?

Very input dependent

• Good if you have lots of tests!
• Can also use logs from live software runs that include actual user

interactions (sometimes, see next slides).
• Or: specific inputs that replicate specific defect scenarios (like

memory leaks).

63

Heisenbugs

• Heisenbugs occur because common
attempts to debug a program, such
as inserting output statements or
running it with a debugger, usually
have the side-effect of altering the
behavior of the program in subtle
ways, such as changing the memory
addresses of variables and the
timing of its execution.

https://www.testing-whiz.com/blog/heisenbug-elusive-bug

Heisenbuggy behavior

• Instrumentation and monitoring can change the behavior of a
program.
• e.g., slowdown, memory overhead.

• Important question 1: can/should you deploy it live?
• Or possibly just deploy for debugging something specific?

• Important question 2: Will the monitoring meaningfully change the
program behavior with respect to the property you care about?

65

Too much data

• Logging events in large and/or long-running programs (even for just
one property!) can result in HUGE amounts of data.

• How do you process it?
• Common strategy: sampling

66

Lifecycle

• During QA
• Instrument code for tests
• Let it run on all regression tests
• Store output as part of the regression

• During Production
• Only works for web apps
• Instrument a few of the servers

• Use them to gather data
• Statistical analysis, similar to seeding defects in code reviews

• Instrument all of the servers
• Use them to protect data

67

Summary

• Dynamic analysis: selectively record data at runtime
• Data collection through instrumentation
• Integrated tools exist (e.g., profilers)
• Analyzes only concrete executions, runtime overhead

68

