ECE444: Software Engineering

QA 2: Performance Testing, Chaos Engineering,
Static&Dynamic Analysis

Shurui Zhou

«;é* The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering
a8 &

%2 UNIVERSITY OF TORONTO

AAAAA

Learning Goals

* Understand opportunities and challenges for testing quality
attributes; enumerate testing strategies to help evaluate the following
quality attributes: usability, reliability, security, robustness (both
general and architectural), performance, integration.

* Discuss the limitations of testing
* Give a one sentence definition of static&dynamic analysis.

?fi},? The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

What is testing?

* Direct execution of code on test data in a controlled environment
* Principle goals:
* Validation: program meets requirements, including quality attributes.

e Other goals:

 Clarify specification: Testing can demonstrate inconsistency; either spec or
program could be wrong

* Learn about program: How does it behave under various conditions?
Feedback to rest of team goes beyond bugs

* Verify contract, including customer, legal, standards
reminder

’% The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engineering
$ UNIVERSITY OF TORONTO

What are we covering?

- Program/system functionality:)
* Execution space (white box!). Justa
* Input or requirements space (black box!). L’eg"d""’

* The expected user experience (usability).
\ * GUI testing, A/B testing /

* The expected performance envelope (performance, reliability,
robustness, integration).
e Security, robustness, fuzz, and infrastructure testing.
* Performance and reliability: soak and stress testing.
* Integration and reliability: APl/protocol testing

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
%ﬁ, UNIVERSITY e TORONTO

_9
Input Output Input > Executable Output >

Program

White box testing Black box testing

Just a
reminder...

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Regression testing

* Ensure that a small change in one part of the system does not break
existing functionality elsewhere in the system.

The Oracle Problem

Parameters Fail
Parameters
T oace —> Normal
generator I t .
npu SUT Observer —> Exception
generator
— —> Crash
standard
Parameters Assertions

System under test (SUT)

Input
generator

he Edward S. Rogers Sr. Department

lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

What are we covering?

* Program/system functionality:
* Execution space (white box!).
* Input or requirements space (black box!).

* The expected user experience (usability).
* GUI testing, A/B testing

KThe expected performance envelope (performance, reIiabiIity,\
robustness, integration).
e Security, robustness, fuzz, and infrastructure testing.
* Performance and reliability: soak and stress testing.
* Integration and reliability: APl/protocol testing

_

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Quality Attributes

System Software
Product Quality

Maintainability Portability

Functional Performance
Reliability

suitability R Compatibility

Functional
completeness

el Maturity Confidentiality Modularity Adaptability

Time behavior Coexistence e
recognizability

Functional
correctness Resource - - —
utilization Interoperability Learnability Availability

Integrity Reusability Installability

Functional
appropriateness

Fault tolerance Nonrepudiation Analyzability Replaceability

Capacity Operability

U
p;seedri;ri:)onr Recoverability Accountability Modifiability
Just a
[]
remi nder"' User interface Authenticity e g

aesthetics

Accessibility

Performance Testing

* Specification? Oracle?

e Test harness? Environment?
* Nondeterminism?

* Unit testing?

* Automation?

* Coverage?

Specifications

e Textual
* Assertions

public int debit(int amount) {

* Formal specifications !

* JML (Java modeling language specification)

public int read(byte[] buf) throws IOException
{

Just a
reminder...

return read(buf, 0, buf.length);
}

* Textual specification with JavaDoc

Test harness

Software system that contains test drivers, test scripts and other
supporting tools that are required for the execution of any test case.

* Automation testing

* Integration Testing Test Data > SUT | Test | vdo
Generator Specification
‘ Test ‘__ -
Control |« -

Zander, Justyna & Mosterman, Pieter & Schieferdecker, Ina.
(2008). Quality of test specification by application of patterns.

Performance Testing

* Specification? Oracle?

e Test harness? Environment?
* Nondeterminism?

* Unit testing?

* Automation?

* Coverage?

Unit and regression testing for performance

* Measure execution time of critical components
* Log execution times and compare over time

Jenkins gatling_load_test Gatling

A Back to Dashboard gatling_load_test - Performance Trend

O, Status

— 99th percentile response time
=+ Changes 1200 ms

7 Workspace

£) Build Now 1000 ms
.]
 Delete Project
.. Configure 800 ms
@yﬁ Gatling o
600 ms
Build History trend =
o #18 28-Apr-2015 11:33 400 ms
O #17 28-Apr-2015 11:32
@ #16 28-Apr-2015 11:31 200 ms y e
S e ~ “G—
@ #15 28-Apr-2015 11:30
O #14 28-Apr-2015 11:29 0ms
#6 #7 #8 #9 #10 #11 #12 #13

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

[(5 VisualvM 1.2 L 2, i

Fiie Applncmons Vn_ew To_ols Wmdow Help

PrOfI|Iﬂg FIETTY

: Applications @ = || statpage =/ & Javaeno (pid 4376) x| Lir=](e)
5 B Local | [0 Overview | (8 Montor | (=) Thveads | (33 Sampler | () profier| @ [snapshot] 11:57:27 AM %
¢ ViouaM |)) ' ! ’
= s Java2Dems (pd 4376) < Java2Demo (pid 4376)
(& [snapshot] 11:57:27 AM o St
* Finding bottlenecks in | #: o @E A5
) -~y . |] .
Inding bottienecks In & s @ | ver: G EE QTS
. . d Cal Tree - Methed Time [%] v Tme Time (CPU) Invocations |B}
EXGCUtIOn t“ | |e a n - C AWT-EventQueus-0 T 2163 00 0523 ms 1 -
% jva.ant.EventDspatchthresd. NG 21555 ... (oo 0523 ms 110
m e m O ry -4 java.awt.EventDepatchThre G 215¢3... (1005 0523 ms 110
=3 sava.awt.EventOspatch [21563 ... (100 0523 ms 110
=9 re.awtevenso: G 21563 ... (00 20523 ms 110
5- 34 java.swt.Evertt I 21563 ... (1o0%: 0523 ms 10 ~
4 m ’
Mot Spots - Method Selftime ... v Seif time Seif ime (CPU) Inwocatons :l
sun javad, SurGraphics2D . drawString) [~ 16541 ... 07715 16793 ms 113 -
sun.Javald. SunGraphics20.fill 1 1447 s (600 135t ms 16
w-nx.samc.)Cmt.pantlmn;e&all 1218 ms (5.5% 978 ms 108
Sun.Java 2d, SunGraphics 20, draw | &30 ms (1.1 690 ms
java.awt.font. TextLayout. <init> | Dams (1% 404 ms
£ 0 Name Fit -

| B3 Cal Tree | B Mot Spots| [Combined | © Info|

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%"’?m$ UNIVERSITY OF TORONTO

Profiling

* Memory profile as a function of time

50000 1] 1 T i T ' 1

memory-profile package

fee o e o e - o o e e e e e e e e e e e e e e e e e e - e mn em e E e e s e E S e EE = e Ee e e e e

40000

|

I

30000

20000

memory used (in MiB)

10000

1

|
|
|
|
|
|
b
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|

r 9 "3

0 1 1 1 1 | 1] 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
time (in seconds)

Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

https://pypi.org/project/memory-profiler/

‘ Load

V/s

Robustness: Stress Testing

Stress

* Robustness testing technique: test beyond the limits of normal
operation.

e Can apply at any level of system granularity.

e Stress tests commonly put a greater emphasis on robustness,
availability, and error handling under a heavy load, than on what
would be considered “correct” behavior under normal circumstances.

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Soak testing

* Problem: A system may behave exactly as expected under artificially
limited execution conditions.

* E.g., Memory leaks may take longer to lead to failure

* Soak testing: testing a system with a significant load over a significant
period of time

* Used to check reaction of a subject under test under a possible
simulated environment for a given duration and for a given threshold.

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
%ﬁ, UNIVERSITY e TORONTO

Reliability: Fuzz testing

* The purpose of fuzzing is to send anomalous data to a system in order
to crash it, therefore revealing reliability problem:s.

* Programs and frameworks that are used to create fuzz tests or
perform fuzz testing are commonly called fuzzers.

* Also known as fuzzing or monkey testing ooy o mma

UR~- 0" tA>p a~zvz wEe*TFM \,
cv TFZ(G-R K"0+100" >R
1He Z . ﬁVI OF<G* OAh%e e 9 c

’1 iYé/ o
U&bdbiOAfa%o*
soqucsu< A7
S 1[

Reliability: Fuzz testing

* Negative software testing method that feeds malformed and unexpected
input data to a program, device, or system with the purpose of finding
security-related defects, or any critical flaws leading to denial of service,
degradation of service, or other undesired behavior

* black-box testing

’fﬁé The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

g:?:g UNIVERSITY OF TORONTO

Fuzzing Process

FUZZER

SUT System under test (SUT)

o
‘GET / HTIT/1.1
Aeocupt: dmoge/eil, irage/x->liteag,
tmago/joen, o/°
Azcepz- a*x:odmﬂ qzip, deflate — =
ASCopC - lan}.:x\o: en-ua HTIP/1.1 200 O
Coru'ac"x_n:):Mp Alive VALlD reqUESt Date: Wed, 07 Now 2007 09:44:49 0T
Server: MysebSerwers2.1 |Linux)
tasc-Modifled: Wed, ©7 Nov 2007 09:44:3¢6 OMT
S— Mocept-Fanges: byres
a ™ Cenitent-length: 120
VALID response Ccnrectica: clooe
'cmnlww 1 Centent -Type: toxt/Mel; charaet-UTF-8
.L::egt; inage/gif, lmage/x->Ditsap, J
1:.:::{1;:2;1:;"; qQzip, deflate r I
)f;cpl ~Larpunge: <n- u..) ANOMALOUS re uest
Connecticns l-:<p -Alhve 9 HiTP/3.1 404 Mot Found
Dote: Wed, 07 Now 2007 03:49:27 T
. Server: MyWebServer/2.1 |Linux)
— — ':cntcr.t-:/:n;tlln 234
Connectica: <lose
ERROR response Comtent -Typa: caxt/hrml;
GET tstatxtstsiststsisiats HTTP/1.1 chareet«12o-8359-1
Acc ";: imcll'qi.l. irage/x-xbitnep, >
irag=/jpeq. */*
Accept-Trocding: gzlip, deflate N
Aecope Lanquagd: Snctia ANOMALY sent
Connecticn: ¥eep-Allive
KTIP/3.1 509 Intormal Server Srror
- Doate ':‘u?. 01 Jan 1570 €&.00:00 GMT
Eoervers ()
— Centent-iengths -1
Coneent-Type: 7YY
——— @ ANOMALOUS response Bt
Aahadsdaraiaiadsraishalaiai: 0] ETTPS1.1
Accept: dmogc/olf, Lsage/A->Litewp, -
e i8] LB dorl)
SeiRC Eotoaion. giip, defiocs ANOMALY sent
Accopt-languane: on-us
Connocticn: ¥eep-Alive
~—
cesssnsns| NO RESPONSE] sssssssax
—

The Edward S. Rogers Sr. Dep-1rt1nent

of Electrical & Computer Engineering

“”é« UNIVERSITY OF TORONTO

ARTECH HOUSE

Reliability: Fuzz testing

for Software Security

Testing and
THE #1 PROGRAMMER EXCUSE Quality Assurance

FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S gwmﬁs

HEY! GET BACK
T0 UORK'

FUZZING!

N
w

A -
v i
] f -

ARITAKANEN « JARED D.DEMOTT
CHARLES MILLER

(A. Takanen et al, Fuzzing for Software Security Testing and
Quality Assurance, 2008)

?fi The Edward S. Rogers Sr. D}
;i: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

Performance testing tools: JMeter

@ @ HTTP DoS Attacker.jmx (/Users/jsg/Documents/MSE/Classes/17-699_S12/JMeter/apache-jmeter-2.7/bin/HTTP DoS Attacker.jmx) - Apache JMeter (2.7 r1342410)
File Edit Search Run Options Help
U@l °Ed &Dal +(=[4v[0 o % %% d4d ot =H 04 0/0r
v ;TestPlan
v [HTTP Dos Attacker HTTP Request

View Results in Table Name: HTTP Request
44 HTTP Request Defaults

Padi TP Request Comments:

Graph Results Web Server Timeouts (milliseconds)
(5] workBench Server Name or IP: www.mal.com Port Number: 80 Connect: Response:
HTTP Request
Implementation: C Protocol [http]: Method: CET S Content encoding:

Path:

Redirect Automatically v Follow Redirects Use KeepAlive Use multipart/form-data for POST

Send Parameters With the Request:

Browser-compatible headers

Name: Value Encode? Include Equals?
Detail Add Add from Clipboard Delete Up Down
Send Files With the Request:
File Path: Parameter Name: MIME Type:
Add Delete

http://jmeter.apache.org

The Edward S. Rogers Sr. Department
| of Electrical & Computer Engineering

%’?;g@ UNIVERSITY OF TORONTO

http://jmeter.apache.org/

Performance testing tools: Locust

An open source load testing tool.
https://github.com/locustio/locust
Define user behaviour with Python code, and swarm

your system with millions of simultaneous users.

¥ Tweet W Follow @locustio

EOST// X ?{TGTPEJJ:IING SLAVES RPS FAILURES - -
ttp://api.initech. 0, eset
@ LOCUST e 21400 users 6 240 e

Edit

Statistics Charts Failures Exceptions Download Data Slaves

Average Average size Current
(ms) (bytes) RPS

Requests # Fails
/ 5416 21 20336 441
/blog 1745 26 20370 13.7
/blog/[post-slug] 1824 15 19943
/groups/create 185 55 3273
/signin 26 19949

/signin 82 20030

Jusers/[username] 31 20194

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%’%\g UNIVERSITY OF TORONTO

Chaos Engineering

The Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

&gg UNIVERSITY OF TORONTO

o | | NETFLIX
Principle of Chaos Engineering

Proactively inject failures in order to be prepared when disaster
strikes.

“Chaos Engineering is the discipline of experimenting on a distributed system in
order to build confidence in the system’s capability to withstand turbulent
conditions in production.”

Goal: To intentionally break things, compare measured with expected
impact, and correct any problems uncovered this way.

NS

\

tNltN& =

s i

43

vf

o NETFLIX
Chaos monkey/Simian army

* A Netflix infrastructure testing system.

* “Malicious” programs randomly trample on components, network,
datacenters, AWS instances...
* Chaos monkey was the first — disables production instances at random.

e Other monkeys include Latency Monkey, Doctor Monkey, Conformity Monkey,
etc... Fuzz testing at the infrastructure level.

* Force failure of components to make sure that the system architecture is
resilient to unplanned/random outages.

* Netflix has open-sourced their chaos monkey code.

%*i‘fr,? The Edward S. Rogers Sr. Department

El of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

Awesome Chaos Engineering (&

A curated list of awesome Chaos Engineering resources.

https://github.com/dastergon/awesome-chaos-engineering

Your First Chaos Experiment

YOUR FIRST

Chaos Experiment

\
\
.....

e Edward S. Rog SD}t nt

Electrical & Cor I,t r Engine

‘&?ﬁ UNIVERSITY OF TORONTO

Use Gremlin fo validate

your monitoring.

https://www.youtube.com/watch?v=VUwi5Jtw3ow&feature=youtu.be

he Edward S. Rogers Sr. Department

Electrical & Computer Engineering

NIVERSITY OF TORONTO

* User
Acceptance
Testing

» Operational
Readiness Test

e Requirements
Verification

e Automation Strategy
e Test Schedule
* Resource Planning

Test Plans
Test Matrix
Test Scripts
Test Data

* Bug Tracking
* Bug Fixing
* Bug Verification

Defect
Management

» Defects
e Test Reports
e Test Metrics

Limits of Testing

e Cannot find bugs in code not executed, cannot assure
absence of bugs

* Oracle problem

* Nondeterminism, flaky tests

* Certain kinds of bugs occur only under very unlikely
conditions

* Hard to observe/assert specifications
* Memory leaks, information flow, ...

* Potentially expensive, long run times
* Potentially high manual effort
 Verification, not validation

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

But coverage has limitations.

— | — -
S i B o - " g — == —— -~
Are there still going
:,:,i ::JSZ:UP Do you have to be unexplainable
100 % bugs and reusability

29
passing: code coverage? issues?

Low coverage means
y insufficient testing.
(p Yep g
® © \)

R

Summary

e Quality assurance is important, often underestimated
* Many forms of QA, testing popular

* Testing beyond functional correctness

Definition: software analysis

The systematic examination of a software artifact to determine its
properties.

Just a
reminder...

Principle technigues

* Dynamic:
* Testing: Direct execution of code on test data in a controlled environment.
* Analysis: Tools extracting data from test runs.

e Static:

 Inspection: Human evaluation of code, design documents (specs and models),
modifications.

* Analysis: Tools reasoning about the program without executing it.

Just a
reminder...

e Edward S. Rog SD}t nt
Electrical & Cor I,t r Engine

‘&?ﬁ UNIVERSITY OF TORONTO

5. Problems @ Javadoc [, Declaration B Console 52 X xLESE 2E2-0-°

<terminated> ClassLoaderLeakExample [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_40.jdk/Contents/Home/bin/java (Oct 20, 2014, 4:15:32 PM)
java.lang.OutOfMemoryError: Java heap space
java.lang.OutOfMemoryError: Java heap space
java.lang.QutOfMemoryError: Java heap space
java.lang.OutOfMemoryError|: Java heap space
java.lang.OutOfMemoryError: Java heap space
java.lang.OutOfMemoryError: Java heap space
java.lang.OutOfMemoryError: Java heap space
java.lang.QutOfMemoryError: Java heap space
java.lang.0QutOfMemoryError: Java heap space
java.lang.OutOfMemoryError: Java heap space
java.lang.OutOfMemoryError: Java heap space
java.lang.QutOfMemoryError: Java heap space
java.lang.OutOfMemoryError: Java heap space
java.lang.OutOfMemoryError: Java heap space
java.lang.QutOfMemoryError: Java heap space
java.lang.OutOfMemoryError: Java heap space

What’s a memory leak?

he Edward S. Rogers Sr. Department
| of Electrical & Computer Engineering

%g}IJPJI\IEI{STTHT()F TORONTO

How can we tackle this problem?
* Testing:
* Inspection:

e Static analysis:

Wouldn’t it be nice if we could learn about the
program’s memory usage as it was running?

Common dynamic analyses

* Coverage

* Performance

* Memory usage

* Security properties
* Concurrency errors
* Invariant checking
* Fault localization

* Anomaly detection

Collecting execution info

* Instrument at compile time

e e.g., Aspects, logging, bytecode rewriting
* Run on a specialized VM

e e.g., valgrind

* Instrument or monitor at runtime

* also requires a special VM

 e.g., hooking into the JVM using debugging symbols to profile/monitor
(VisualVM)

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Collecting execution info

* |[nstr
Note: some of these methods
require a static pre processing step!

e e.g., valgrimo

nstrument or m@aitor at
Avoid mixing up static things done to
collect info and the dynamic

analyses that use the info.

e

o profile/monitor

o U

:iﬁ": idward S. Rogers Sr. Department

al & Computer Engineering

OF TORONTO

Example: Test Coverage

e Statement: Has each statement in the program been executed?
==» « Branch: Has each of each control structure been executed?
* Function: Has each function in the program been called?

* Path: requires that all paths through the Control Flow Graph are covered.

’fi}j The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Instrumentation: a simple example

* How might tools that compute test suite coverage work?

* One option: instrument the code to track a certain type of data as the
program executes.

* Instrument: add of special code to track a certain type of information as a
program executes.

* Rephrase: insert logging statements (e.g., at compile time).

* What do we want to log/track for branch coverage computation?

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
%ﬁ, UNIVERSITY e TORONTO

W 00 N o U1 b W N =
(]

=
N)
[] []

int foobar(a,b) {
if (a > 0) {

if(a > 0) {
if (b > 0)
return 1;

}

return 0;

Branch #1

(entry)

if (a > 0)

Branch #2

Branch #3

if (b > 0)

return 1

return 0

(exit)

52

i \ ®if (

og

log(“branch 1:

false”)

(entry)

a > 0)

\

Bl 0 -0

log(“branch 2:

log(

false”)

3) if (b > 0)

o

“branch 3:

false")

return 0

(exit)

53

printf(“1:t")

0 O
|
I

é

(entry)

D if (a > 0)
b -=5
a == 10 printf(“1:£")
0 \
T .
2 if (a > 0)

printf(“2:t")

\

3) if (b > 0)

printf(“2:£")

(3) if (b > 0)

return 1

return 1

return 0

(exit)

A\/4

return 0

54

1. int foobar(a,b) { (entry)
2. if (a > 0) {
3. b -= 5; ® if (a > 0)
4. a -= 10; printf(“1:t")
5. t v printf(“1:£")
6. if(a > 0) { b -=25
a -= 10
7. if (b > 0)
8. return 1;) if (a > 0)
9. } :
printf(“2:t")
10. return O0;
11.} (3) if (b > 0) printf(“2:£")
printf(“3:t") printf(“3:£")
return 1 return 0

—_— =

(exit)

1.
2
3
4.
5
6
7
8

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.}

int foobar(a,b) {

if (a > 0) {
printf(“1l:t"”);
b -=5;
a -= 10;
} else {
printf(“1:£");
}
if(a > 0) {
printf(“2:t");
if (b > 0) {
printf(“3:t");
return 1;
} else {
printf(“3:£");
}
} else {
printf(“2:£");
}

return 0;

(entry)

(1) if (a > 0)
printf(“1l:t")
! printf(“1:£")
b -= 5 :
a -= 10
) if (a > 0)
printf(“2:t")
() if (b > 0) printf(“2:£")
printf(“3:t") printf(“3:£")
return 1 return 0

(exit)

56

1.intffoobar(()a,b) { ® TeSt cases: (0,0), (1’0)’ (11’0)’ (11,6)
2. 1 >
3 pijntf(,)llft "y e foobar(0,0): “1:f 2:f”
4. b -= 5; e foobar(1,0): “1:t 2:f”
2- } ° 107 » foobar(11,0): “1:t 2:t 3:f”
. else
7 printf(“1:f); e foobar(11,6): “1:t 2:t3:t “
8. }
9. if(a > 0) {

0. printf(“2:t "); Assuming we saved how many branches

(b >0) Ao were in this method when we
12. printf(“3:t "); . .

13. return 1 instrumented it, we could now process
14. } else { these logs to compute branch coverage.
15. printf(“3:£f ");

16. }

17. } else {

18. printf(“2:£ ”);

19. }

20. return 0;
21.}

Common dynamic analyses

* Coverage

* Performance

* Memory usage

* Security properties
* Concurrency errors
* Invariant checking
* Fault localization

* Anomaly detection

[(5 VisualvM 1.2 L 2, i

Fiie Applncmons Vn_ew To_ols Wmdow Help

PrOfI|Iﬂg FIETTY

: Applications @ = || statpage =/ & Javaeno (pid 4376) x| Lir=](e)
5 B Local | [0 Overview | (8 Montor | (=) Thveads | (33 Sampler | () profier| @ [snapshot] 11:57:27 AM %
¢ ViouaM |)) ' ! ’
= s Java2Dems (pd 4376) < Java2Demo (pid 4376)
(& [snapshot] 11:57:27 AM o St
* Finding bottlenecks in | #: o @E A5
) -~y . |] .
Inding bottienecks In & s @ | ver: G EE QTS
. . d Cal Tree - Methed Time [%] v Tme Time (CPU) Invocations |B}
EXGCUtIOn t“ | |e a n - C AWT-EventQueus-0 T 2163 00 0523 ms 1 -
% jva.ant.EventDspatchthresd. NG 21555 ... (oo 0523 ms 110
m e m O ry -4 java.awt.EventDepatchThre G 215¢3... (1005 0523 ms 110
=3 sava.awt.EventOspatch [21563 ... (100 0523 ms 110
=9 re.awtevenso: G 21563 ... (00 20523 ms 110
5- 34 java.swt.Evertt I 21563 ... (1o0%: 0523 ms 10 ~
4 m ’
Mot Spots - Method Selftime ... v Seif time Seif ime (CPU) Inwocatons :l
sun javad, SurGraphics2D . drawString) [~ 16541 ... 07715 16793 ms 113 -
sun.Javald. SunGraphics20.fill 1 1447 s (600 135t ms 16
w-nx.samc.)Cmt.pantlmn;e&all 1218 ms (5.5% 978 ms 108
Sun.Java 2d, SunGraphics 20, draw | &30 ms (1.1 690 ms
java.awt.font. TextLayout. <init> | Dams (1% 404 ms
£ 0 Name Fit -

| B3 Cal Tree | B Mot Spots| [Combined | © Info|

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%"’?m$ UNIVERSITY OF TORONTO

Limitation: Dynamic analysis

* Cost

Performance overhead for recording
* Acceptable for use in testing?
* Acceptable for use in production?

Very input dependent

* Good if you have lots of tests!

* Can also use logs from live software runs that include actual user
interactions (sometimes, see next slides).

 Or: specific inputs that replicate specific defect scenarios (like
memory leaks).

THE RRT OF BUSFIXING

Heisenbugs

‘wrl .'-'.'i”‘d

* Heisenbugs occur because common
attempts to debug a program, such
as inserting output statements or
running it with a debugger, usually
have the side-effect of altering the
behavior of the program in subtle
ways, such as changing the memory
addresses of variables and the
timing of its execution.

DON'T LOOK
AT THE
SCREEN!!!!

How) TO DEBUG HEISENBUSS

https://www.testing-whiz.com/blog/heisenbug-elusive-bug

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Heisenbuggy behavior

* Instrumentation and monitoring can change the behavior of a
program.

* e.g., slowdown, memory overhead.

* Important question 1: can/should you deploy it live?
* Or possibly just deploy for debugging something specific?

* Important question 2: Will the monitoring meaningfully change the
program behavior with respect to the property you care about?

Too much data

* Logging events in large and/or long-running programs (even for just
one property!) can result in HUGE amounts of data.

* How do you process it?
e Common strategy: sampling

Lifecycle

* During QA
* Instrument code for tests
* Let it run on all regression tests
 Store output as part of the regression

e During Production
* Only works for web apps

* |Instrument a few of the servers

e Use them to gather data

 Statistical analysis, similar to seeding defects in code reviews
* |Instrument all of the servers

e Use them to protect data

Summary

* Dynamic analysis: selectively record data at runtime
e Data collection through instrumentation
* Integrated tools exist (e.g., profilers)

* Analyzes only concrete executions, runtime overhead

