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Learning Goals

• Understand opportunities and challenges for testing quality 
attributes; enumerate testing strategies to help evaluate the following 
quality attributes: usability, reliability, security, robustness (both 
general and architectural), performance, integration.

• Discuss the limitations of testing
• Give a one sentence definition of static&dynamic analysis.
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What is testing?

• Direct execution of code on test data in a controlled environment 
• Principle goals:
• Validation: program meets requirements, including quality attributes.

• Other goals:
• Clarify specification: Testing can demonstrate  inconsistency; either spec or 

program could be wrong 
• Learn about program: How does it behave under various conditions? 

Feedback to rest of team goes beyond bugs 
• Verify contract, including customer, legal, standards 

4



What are we covering?
• Program/system functionality:
• Execution space (white box!).
• Input or requirements space (black box!). 

• The expected user experience (usability).
• GUI testing, A/B testing

• The expected performance envelope (performance, reliability, 
robustness, integration).
• Security, robustness, fuzz, and infrastructure testing.
• Performance and reliability: soak and stress testing.
• Integration and reliability: API/protocol testing
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White box testing Black box testing



Regression testing

• Ensure that a small change in one part of the system does not break 
existing functionality elsewhere in the system.



The Oracle Problem
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Quality Attributes



Performance Testing

• Specification? Oracle?
• Test harness? Environment?
• Nondeterminism?
• Unit testing?
• Automation?
• Coverage?
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Specifications
• Textual
• Assertions
• Formal specifications
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Test harness

Software system that contains test drivers, test scripts and other 
supporting tools that are required for the execution of any test case.
• Automation testing
• Integration Testing

Zander, Justyna & Mosterman, Pieter & Schieferdecker, Ina. 
(2008). Quality of test specification by application of patterns. 



Performance Testing

• Specification? Oracle?
• Test harness? Environment?
• Nondeterminism?
• Unit testing?
• Automation?
• Coverage?

17



Unit and regression testing for performance
• Measure execution time of critical components
• Log execution times and compare over time
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Profiling

• Finding bottlenecks in 
execution time and 
memory
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Profiling
• Memory profile as a function of time memory-profile package

https://pypi.org/project/memory-profiler/


Robustness: Stress Testing

• Robustness testing technique: test beyond the limits of normal 
operation.

• Can apply at any level of system granularity.
• Stress tests commonly put a greater emphasis on robustness, 

availability, and error handling under a heavy load, than on what 
would be considered “correct” behavior under normal circumstances.



Soak testing

• Problem: A system may behave exactly as expected under artificially 
limited execution conditions.
• E.g., Memory leaks may take longer to lead to failure 

• Soak testing: testing a system with a significant load over a significant 
period of time

• Used to check reaction of a subject under test under a possible 
simulated environment for a given duration and for a given threshold. 
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Reliability: Fuzz testing

• The purpose of fuzzing is to send anomalous data to a system in order 
to crash it, therefore revealing reliability problems.

• Programs and frameworks that are used to create fuzz tests or 
perform fuzz testing are commonly called fuzzers.

• Also known as fuzzing or monkey testing



Reliability: Fuzz testing
• Negative software testing method that feeds malformed and unexpected 

input data to a program, device, or system with the purpose of finding 
security-related defects, or any critical flaws leading to denial of service, 
degradation of service, or other undesired behavior 

• black-box testing
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Fuzzing Process

System under test (SUT)



Reliability: Fuzz testing
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(A. Takanen et al, Fuzzing for Software Security Testing and 
Quality Assurance, 2008)



Performance testing tools: JMeter

http://jmeter.apache.org

http://jmeter.apache.org/


Performance testing tools: Locust
https://github.com/locustio/locust



Chaos Engineering



Principle of Chaos Engineering

Proactively inject failures in order to be prepared when disaster 
strikes.

“Chaos Engineering is the discipline of experimenting on a distributed system in 
order to build confidence in the system’s capability to withstand turbulent 
conditions in production.”

Goal: To intentionally break things, compare measured with expected 
impact, and correct any problems uncovered this way.
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Chaos monkey/Simian army

• A Netflix infrastructure testing system.
• “Malicious” programs randomly trample on components, network, 

datacenters, AWS instances…
• Chaos monkey was the first – disables production instances at random.
• Other monkeys include Latency Monkey, Doctor Monkey, Conformity Monkey, 

etc… Fuzz testing at the infrastructure level.
• Force failure of components to make sure that the system architecture is 

resilient to unplanned/random outages.

• Netflix has open-sourced their chaos monkey code.
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https://github.com/dastergon/awesome-chaos-engineering



https://www.youtube.com/watch?v=VUwi5Jtw3ow&feature=youtu.be





Limits of Testing
• Cannot find bugs in code not executed, cannot assure 

absence of bugs
• Oracle problem
• Nondeterminism, flaky tests

• Certain kinds of bugs occur only under very unlikely 
conditions

• Hard to observe/assert specifications
• Memory leaks, information flow, … 

• Potentially expensive, long run times
• Potentially high manual effort
• Verification, not validation
• …
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Summary

• Quality assurance is important, often underestimated
• Many forms of QA, testing popular
• Testing beyond functional correctness
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Definition: software analysis

The systematic examination of a software artifact to determine its 
properties.



Principle techniques

• Dynamic:
• Testing: Direct execution of code on test data in a controlled environment.
• Analysis: Tools extracting data from test runs.

• Static:
• Inspection: Human evaluation of code, design documents (specs and models), 

modifications.
• Analysis: Tools reasoning about the program without executing it.
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What’s a memory leak?



How can we tackle this problem?

• Testing:

• Inspection:

• Static analysis:

Wouldn’t it be nice if we could learn about the 
program’s memory usage as it was running?
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Common dynamic analyses

• Coverage
• Performance
• Memory usage
• Security properties
• Concurrency errors
• Invariant checking
• Fault localization
• Anomaly detection
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Collecting execution info

• Instrument at compile time 
• e.g., Aspects, logging, bytecode rewriting

• Run on a specialized VM 
• e.g., valgrind

• Instrument or monitor at runtime 
• also requires a special VM
• e.g., hooking into the JVM using debugging symbols to profile/monitor 

(VisualVM)
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Collecting execution info

• Instrument at compile time 
• e.g., Aspects, logging

• Run on a specialized VM 
• e.g., valgrind

• Instrument or monitor at runtime 
• also requires a special VM
• e.g., hooking into the JVM using debugging symbols to profile/monitor 

(VisualVM)

Avoid mixing up static things done to 
collect info and the dynamic 
analyses that use the info. 

Note: some of these methods 
require a static pre processing step!  
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Example: Test Coverage

• Statement: Has each statement in the program been executed?
• Branch: Has each of each control structure been executed?
• Function: Has each function in the program been called?
• Path: requires that all paths through the Control Flow Graph are covered. 
• ...



Instrumentation: a simple example

• How might tools that compute test suite coverage work? 
• One option: instrument the code to track a certain type of data as the 

program executes.
• Instrument: add of special code to track a certain type of information as a 

program executes.
• Rephrase: insert logging statements (e.g., at compile time).

• What do we want to log/track for branch coverage computation?
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1. int foobar(a,b) {

2. if (a > 0) {

3. b -= 5;

4. a -= 10;

5. }

6. if(a > 0) {

7. if (b > 0)

8. return 1;

9. }

10. return 0;

11. }

if (a > 0)

b -= 5
a -= 10

if (a > 0)

if (b > 0)

return 1 return 0

(entry)

(exit)

Branch   #1

Branch   #2

Branch   #3
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b -= 5
a -= 10

③ if (b > 0)

return 1 return 0

(exit)

log(“branch 1: 
true”)

log(“branch 1: false”)

log(“branch 2: 
true”)

log(“branch 2: false”)

log(“branch 3: 
true”)

log(“branch 3: false”)

① if (a > 0)

② if (a > 0)

(entry)
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b -= 5
a -= 10

③ if (b > 0)

return 1 return 0

(exit)

① if (a > 0)

② if (a > 0)

(entry)

b -= 5
a -= 10

printf(“1:t”)

printf(“1:f”)

return 0

③ if (b > 0)

printf(“2:t”)

printf(“2:f”)

return 1
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1. int foobar(a,b) {

2. if (a > 0) {

3. b -= 5;

4. a -= 10;

5. }

6. if(a > 0) {

7. if (b > 0)

8. return 1;

9. }

10. return 0;

11. }

① if (a > 0)

② if (a > 0)

return 0

(entry)

(exit)
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b -= 5
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printf(“1:t”)

③ if (b > 0)
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printf(“2:f”)
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① if (a > 0)

② if (a > 0)

return 0

(entry)

(exit)

printf(“1:f”)
b -= 5
a -= 10

printf(“1:t”)

③ if (b > 0)

printf(“2:t”)

printf(“2:f”)

return 1

printf(“3:t”) printf(“3:f”)
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1.int foobar(a,b) {

2. if (a > 0) {

3. printf(“1:t”);

4. b -= 5;

5. a -= 10;

6. } else {

7. printf(“1:f”);

8. }

9. if(a > 0) {

10. printf(“2:t”);

11. if (b > 0) {

12. printf(“3:t”);

13. return 1;

14. } else {

15. printf(“3:f”);

16. }

17. } else { 

18. printf(“2:f”);

19. }

20. return 0;

21.}



• Test cases: (0,0), (1,0), (11,0), (11,6)
• foobar(0,0): “1:f 2:f ”
• foobar(1,0): “1:t 2:f ”
• foobar(11,0): “1:t 2:t 3:f ”
• foobar(11,6): “1:t 2:t 3:t “

Assuming we saved how many branches 
were in this method when we 

instrumented it, we could now process 
these logs to compute branch coverage.

1.int foobar(a,b) {

2. if (a > 0) {
3. printf(“1:t ”);
4. b -= 5;
5. a -= 10;
6. } else {
7. printf(“1:f ”);
8. }
9. if(a > 0) {
10. printf(“2:t ”);
11. if (b > 0) {
12. printf(“3:t ”);
13. return 1;
14. } else {
15. printf(“3:f ”);
16. }
17. } else { 
18. printf(“2:f ”);
19. }
20. return 0;
21.}
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Common dynamic analyses

• Coverage
• Performance
• Memory usage
• Security properties
• Concurrency errors
• Invariant checking
• Fault localization
• Anomaly detection
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Profiling

• Finding bottlenecks in 
execution time and 
memory
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Limitation: Dynamic analysis

• Cost
Performance overhead for recording
• Acceptable for use in testing?
• Acceptable for use in production?



Very input dependent

• Good if you have lots of tests!
• Can also use logs from live software runs that include actual user 

interactions (sometimes, see next slides).
• Or: specific inputs that replicate specific defect scenarios (like 

memory leaks).
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Heisenbugs

• Heisenbugs occur because common 
attempts to debug a program, such 
as inserting output statements or 
running it with a debugger, usually 
have the side-effect of altering the 
behavior of the program in subtle 
ways, such as changing the memory 
addresses of variables and the 
timing of its execution.

https://www.testing-whiz.com/blog/heisenbug-elusive-bug



Heisenbuggy behavior

• Instrumentation and monitoring can change the behavior of a 
program.
• e.g., slowdown, memory overhead.

• Important question 1: can/should you deploy it live?
• Or possibly just deploy for debugging something specific?

• Important question 2: Will the monitoring meaningfully change the 
program behavior with respect to the property you care about?
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Too much data

• Logging events in large and/or long-running programs (even for just 
one property!) can result in HUGE amounts of data.

• How do you process it?
• Common strategy: sampling
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Lifecycle

• During QA
• Instrument code for tests
• Let it run on all regression tests
• Store output as part of the regression

• During Production
• Only works for web apps
• Instrument a few of the servers

• Use them to gather data
• Statistical analysis, similar to seeding defects in code reviews

• Instrument all of the servers 
• Use them to protect data

67



Summary

• Dynamic analysis: selectively record data at runtime
• Data collection through instrumentation
• Integrated tools exist (e.g., profilers)
• Analyzes only concrete executions, runtime overhead
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