What is testing?

* Direct execution of code on test data in a controlled environment
* Principle goals:
* Validation: program meets requirements, including quality attributes.

e Other goals:

 Clarify specification: Testing can demonstrate inconsistency; either spec or
program could be wrong

* Learn about program: How does it behave under various conditions?
Feedback to rest of team goes beyond bugs

* Verify contract, including customer, legal, standards
reminder

’% The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engineering
$ UNIVERSITY OF TORONTO

* User
Acceptance
Testing

» Operational
Readiness Test

e Requirements
Verification

e Automation Strategy
e Test Schedule
* Resource Planning

Test Plans
Test Matrix
Test Scripts
Test Data

* Bug Tracking
* Bug Fixing
* Bug Verification

Defect
Management

» Defects
e Test Reports
e Test Metrics

Principle technigues

* Dynamic:
* Testing: Direct execution of code on test data in a controlled environment.
* Analysis: Tools extracting data from test runs.

e Static:

 Inspection: Human evaluation of code, design documents (specs and models),
modifications.

* Analysis: Tools reasoning about the program without executing it.

Just a
reminder...

e Edward S. Rog SD}t nt
Electrical & Cor I,t r Engine

‘&?ﬁ UNIVERSITY OF TORONTO

Common dynamic analyses

* Coverage

* Performance

* Memory usage

* Security properties
* Concurrency errors
* Invariant checking
* Fault localization

* Anomaly detection

Instrumentation: a simple example

* How might tools that compute test suite coverage work?

* One option: instrument the code to track a certain type of data as the
program executes.

* Instrument: add of special code to track a certain type of information as a
program executes.

* Rephrase: insert logging statements (e.g., at compile time).

* What do we want to log/track for branch coverage computation?

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
%ﬁ, UNIVERSITY e TORONTO

1.
2
3
4.
5
6
7
8

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.}

int foobar(a,b) {

if (a > 0) {
printf(“1l:t"”);
b -=5;
a -= 10;
} else {
printf(“1:£");
}
if(a > 0) {
printf(“2:t");
if (b > 0) {
printf(“3:t");
return 1;
} else {
printf(“3:£");
}
} else {
printf(“2:£");
}

return 0;

(entry)

(1) if (a > 0)
printf(“1l:t")
! printf(“1:£")
b -= 5 :
a -= 10
) if (a > 0)
printf(“2:t")
() if (b > 0) printf(“2:£")
printf(“3:t") printf(“3:£")
return 1 return 0

(exit)

1.intffoobar(()a,b) { ® TeSt cases: (0,0), (1’0)’ (11’0)’ (11,6)
2. 1 >
3 pijntf(,)llft "y e foobar(0,0): “1:f 2:f”
4. b -= 5; e foobar(1,0): “1:t 2:f”
2- } ° 107 » foobar(11,0): “1:t 2:t 3:f”
. else
7 printf(“1:f); e foobar(11,6): “1:t 2:t3:t “
8. }
9. if(a > 0) {

0. printf(“2:t "); Assuming we saved how many branches

(b >0) Ao were in this method when we
12. printf(“3:t "); . .

13. return 1 instrumented it, we could now process
14. } else { these logs to compute branch coverage.
15. printf(“3:£f ");

16. }

17. } else {

18. printf(“2:£ ”);

19. }

20. return 0;
21.}

[(5 VisualvM 1.2 L 2, i

Fiie Applncmons Vn_ew To_ols Wmdow Help

PrOfI|Iﬂg FIETTY

: Applications @ = || statpage =/ & Javaeno (pid 4376) x| Lir=](e)
5 B Local | [0 Overview | (8 Montor | (=) Thveads | (33 Sampler | () profier| @ [snapshot] 11:57:27 AM %
¢ ViouaM |)) ' ! ’
= s Java2Dems (pd 4376) < Java2Demo (pid 4376)
(& [snapshot] 11:57:27 AM o St
* Finding bottlenecks in | #: o @E A5
) -~y . |] .
Inding bottienecks In & s @ | ver: G EE QTS
. . d Cal Tree - Methed Time [%] v Tme Time (CPU) Invocations |B}
EXGCUtIOn t“ | |e a n - C AWT-EventQueus-0 T 2163 00 0523 ms 1 -
% jva.ant.EventDspatchthresd. NG 21555 ... (oo 0523 ms 110
m e m O ry -4 java.awt.EventDepatchThre G 215¢3... (1005 0523 ms 110
=3 sava.awt.EventOspatch [21563 ... (100 0523 ms 110
=9 re.awtevenso: G 21563 ... (00 20523 ms 110
5- 34 java.swt.Evertt I 21563 ... (1o0%: 0523 ms 10 ~
4 m ’
Mot Spots - Method Selftime ... v Seif time Seif ime (CPU) Inwocatons :l
sun javad, SurGraphics2D . drawString) [~ 16541 ... 07715 16793 ms 113 -
sun.Javald. SunGraphics20.fill 1 1447 s (600 135t ms 16
w-nx.samc.)Cmt.pantlmn;e&all 1218 ms (5.5% 978 ms 108
Sun.Java 2d, SunGraphics 20, draw | &30 ms (1.1 690 ms
java.awt.font. TextLayout. <init> | Dams (1% 404 ms
£ 0 Name Fit -

| B3 Cal Tree | B Mot Spots| [Combined | © Info|

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%"’?m$ UNIVERSITY OF TORONTO

Limitation: Dynamic analysis

* Cost

Performance overhead for recording
* Acceptable for use in testing?
* Acceptable for use in production?

Very input dependent

* Good if you have lots of tests!

* Can also use logs from live software runs that include actual user
interactions (sometimes, see next slides).

 Or: specific inputs that replicate specific defect scenarios (like
memory leaks).

THE RRT OF BUSFIXING

Heisenbugs

‘wrl .'-'.'i”‘d

* Heisenbugs occur because common
attempts to debug a program, such
as inserting output statements or
running it with a debugger, usually
have the side-effect of altering the
behavior of the program in subtle
ways, such as changing the memory
addresses of variables and the
timing of its execution.

DON'T LOOK
AT THE
SCREEN!!!!

How) TO DEBUG HEISENBUSS

https://www.testing-whiz.com/blog/heisenbug-elusive-bug

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Heisenbuggy behavior

* Instrumentation and monitoring can change the behavior of a
program.

* e.g., slowdown, memory overhead.

* Important question 1: can/should you deploy it live?
* Or possibly just deploy for debugging something specific?

* Important question 2: Will the monitoring meaningfully change the
program behavior with respect to the property you care about?

%*i‘fr,? The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

+®) UNIVERSITY OF TORONTO

Too much data

* Logging events in large and/or long-running programs (even for just
one property!) can result in HUGE amounts of data.

* How do you process it?
e Common strategy: sampling

Lifecycle

* During QA
* Instrument code for tests
* Let it run on all regression tests
 Store output as part of the regression

e During Production
* Only works for web apps

* |Instrument a few of the servers
e Use them to gather data
 Statistical analysis, similar to seeding defects in code reviews

* |Instrument all of the servers
e Use them to protect data

Edward S. Rog SD}t nt

Hﬁ“ lectrical & Cor 1, uter Engin,

‘&:’ﬁ UNIVERSITY OF TORONTO

Summary

* Dynamic analysis: selectively record data at runtime
e Data collection through instrumentation
* Integrated tools exist (e.g., profilers)

* Analyzes only concrete executions, runtime overhead

Principle technigues

* Dynamic:
* Testing: Direct execution of code on test data in a controlled environment.
* Analysis: Tools extracting data from test runs.

e Static:

 Inspection: Human evaluation of code, design documents (specs and models),
modifications.

* Analysis: Tools reasoning about the program without executing it.

Just a
reminder...

e Edward S. Rog SD}t nt
Electrical & Cor I,t r Engine

‘&?ﬁ UNIVERSITY OF TORONTO

What is Static Analysis?

e Systematic examination of an abstraction of program state space.
* Does not execute code! (like code review)

* Abstraction: produce a representation of a program that is simpler to
analyze.

* Results in fewer states to explore; makes difficult problems tractable.

* Check if a particular property holds over the entire state space:
* Liveness: “something good eventually happens.”
e Safety: “this bad thing can’t ever happen.”

%*i‘fr,? The Edward S. Rogers Sr. Department

El of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

Syntactic Analysis

Find every occurrence of this pattern:

public foo() {

}

logger.debug(“We have ” + conn + “connections.”);

public foo() {

if (logger.inDebug()) {
logger.debug(“We have

}

}

" + conn + “connections.”);

grep "if \(logger\.inDebug" . -r

Type Analysis

. public void| foo() {

o int a = computeSomething();

X if (a.==."5")

P doMoreStuff():

Abstraction: abstract syntax tree

* Tree representation of the e Example: 5+ (2 + 3)
syntactic structure of source code.

* Parsers convert concrete syntax into
abstract syntax, and deal with /\
resulting ambiguities.
* Records only the semantically /\
relevant information.
* Abstract: doesn’t represent every

detail (like parentheses); these can
be inferred from the structure.

* (How to build one? Take
compilers!)

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

Type checking class X
__—

field method
logger foo
Logger _—
class X { if stmt
Logger logger;
public \foid f00() { /exp'ects boolean
method block
if (logger.inDebug()) { invoc.
logger.debug(“We have ” + __beolean~, N
conn + “connections.”); logger ||inDebug method
} } Logger | |->boolean invoc.
} logger || debug | | parameter
class Logger { Logger ..String
boolean /inDebug() {..} String -> void
void debug(String msg) {..}

= | a Computer Engineering
{

& ectr
% UNIVERSITY

The Edward S. Rogers Sr. Department
lectri

OF TORONTO

Structural Analysis

class X

__—

class X {
Logger logger;
public void foo() {
if (logger.inDebug()) {

11 . ’”
conn + connections.);

e
4

The Edward S. Rogers Sr. Department
lectrica Computer Engineering

f ectr
495 UNIVERSITY

: OF TORONTO
1 <

logger.debug(“We have ”

+

field method
logger foo
_——
if stmt
method block
invoc.
~N \
logger inDebug method
invoc.
_
logger debug parameter

Summary:
Syntactic/Structural Analyses

* Analyzing token streams or code structures (ASTs)
e Useful to find patterns
* Local/structural properties, independent of execution paths

’fﬁ'{t The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

File Edit Source Refactor Navigate Search Project Run Window Help
[Bi-@3-0-% Q- | BHG - |®5 || 4
5 | 873ava [Resource

Ej DefaultContext.java m CheckStyleTask.java @ DefaultConfigurat... 73

Tools

w Oliver Burn
" Stephane Bailliez</a
W aut lkuehne

“public class Checker extends AutomaticBean
implements MessageDispatcher

* Checkstyle

{
° M |. C JS P h /** maintains error count ¥*/
any Inte rS ()) yt On, ...) private final Iristsentence should end with a period.[PEET =
new Sev Press 'F2’ for focus|CvLevel . ERROR) ;
* Findb m | = veoton ot Tisveneca *
iIndbugs (some analyses /** vector of listeners *,
private final ArrayList mListeners = new ArrayList():
/*¥* vector of fileset checks ¥/
private final ArrayList mFileSetChecks = new ArrayList():
/** class loader to resolve classes with. *¥*/
private ClassLoader mLoader =
Thread.currentThread() .getContextClassLoader () M
«| | »
f:_ Problems &2 | Javadoc | Declaration | Error Log g ~ =0
11 errors, 89 warnings, 0 infos (Filter matched 100 of 8,682 items)
l Description l Resource I In Folder | Location | ﬂ
& '{ should be on the previous line. Checker.j... checkstyle/src/checkstyle/... line 52 1

~
>

First sentence should end with a peri... Checker.j... checkstyle/src/checkstyle/... line 53
First sentence should end with a peri... Checker.j... checkstyle/src/checkstyle/... line 57
First sentence should end with a peri... Checker.j... checkstyle/src/checkstyle/... line 60
First sentence should end with a peri... Checker.j... checkstyle/src/checkstyle/... line 67
First sentence should end with a peri... Checker.j... checkstyle/src/checkstyle/... line 70
First sentence should end with a peri... Checker.j... checkstyle/src/checkstyle/... line 72
First sentence should end with a peri... Checker.j... checkstyle/src/checkstyle/... line 75 LI

.
=

.
==

.
=

[

.
=

~
=

~
=

The Edward S. Rogers Sr. Department

(

of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO | : |

Writable Smart Insert 56:1

Linter

* js a tool that analyzes source code to flag programming errors, bugs,
stylistic errors, and suspicious constructs.

https://xkcd.com/1285/

https://xkcd.com/1285/

https://www.pylint.org/

Features

Coding Standard

» checking line-code's length,

» checking if variable names are well-formed
according to your coding standard

» checking if imported modules are used

Python's PEP8 style guide

Fully customizable

Modify your pylintrc to customize which errors

~yr AnaryrantiAanea ara irmmmardant +Aa vl Tha i

Pylint

Contribute

Error detection

» checking if declared interfaces are truly
implemented

» checking if modules are imported

» and much more (see the complete check list)

Full list of codes (wiki)

Editor integration

Run it in emacs , vim (pylint.vim, syntastic),

arlincae ot~

-<0-<0<<> Star your Python code!

Read the doc Install it

Get support

Refactoring help

Pylint detects duplicated code

About Refactoring (on wikipedia)

IDE integration

Pylint is integrated into various IDEs:

Control/Dataflow analysis

* Reason about all possible executions, via paths through a control flow
graph.
* Track information relevant to a property of interest at every program point.
* Including exception handling, function calls, etc

* Define an abstract domain that captures only the values/states
relevant to the property of interest.

* Track the abstract state, rather than all possible concrete values, for
all possible executions (paths!) through the graph.

%*i‘fr,? The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

Control flow graphs

* Atree/graph-based
representation of the flow
of control through the

l. a=5+ (2 + 3)
2. if (b > 10) {
3. a = 0;
4

program. }
« Captures all possible 5. return a;
execution paths.
e Each node is a basic block: (entry)
Nno jumps in or out.
a=5+(2+3
* Edges represent control (2%3)
flow options between if (b>10)
nodes.
* Intra-procedural: within a =0
one function. T~

return a;

 cf. inter-procedural

Data- vs. control-flow

e Dataflow: tracks abstract values for each of (some subset of) the
variables in a program.

e Control flow: tracks state global to the function in question.

Tools

* Dead-code detection in many compilers (e.g. Java)

* Instrumentation for dynamic analysis before and after decision
points; loop detection

ECE444: Software Engineering

QA 3: Quality Assurance Process, Case Studies

Shurui Zhou

«;é* The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

BS) B8y

%2 UNIVERSITY OF TORONTO

AAAAA

QA Process Considerations

* We covered several QA techniques:
* Formal verification
* Unit testing, test driven development

 Various forms of advanced testing for quality attributes (GUI testing, fuzz
testing, ...)

 Static analysis
* Dynamic analysis
* Formal inspections and other forms of code reviews

e But: When to use? Which techniques? How much? How to introduce?
Automation? How to establish a quality culture? How to ensure
compliance? Social issues? What about external components?

%*i‘fr,? The Edward S. Rogers Sr. Department

El of Electrical & Computer Engineering

+®) UNIVERSITY OF TORONTO

Learning Goals

* Understand process aspects of QA
* Describe the tradeoffs of QA techniques

 Select an appropriate QA technique for a given project and quality
attribute

* Decide the when and how much of QA
* Overview of concepts how to enforce QA techniques in a process

* Select when and how to integrate tools and policies into the process: daily
builds, continuous integration, test automation, static analysis, issue
tracking, ...

e Understand human and social challenges of adopting QA techniques

* Understand how process and tool improvement can solve the dilemma
between features and quality

%*i':ff The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

%?:gz UNIVERSITY OF TORONTO

QA Process

How to get developers to
[write tests|use static analysis|appreciate testers]

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

The Edward S. Rogers Sr. Department
| of Electrical & Computer Engineering

L/ UNIVERSITY OF TORONTO

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

@?mg UNIVERSITY OF TORONTO

Cost to
Correct

Phase Thata
Defect Is Created

Requirements \

Architecture

Detailed design \

o\ \ = N

Requirements Architecture Detailed Construction IMaintenance
design

Phase That a Defect Is Corrected

b S, Rosers Ss Demrtme opymght 1998 Steven C. e Connell. Reprinted wath pe rrussion
IR DA I 0. Soffware Project Survival Guide (Microsoft Press, 1998),

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Qualities and Risks

* What qualities are required? (requirements engineering)

* What risks are expected?

* Align QA strategy based on qualities and risks

Example:
Test plans linking development and testing

Requirements System System Detailed
Specification Specification Design Design

Y Y Y Y Y Y
System Sub-System Module and
Acceptance | : I : Unit Cod
Test Plan ntegration ntegration nit Coae
Test Plan Test Plan and Test

Acceptance System Sub-System
Test ntegratlon Test Integration Test

Sommerville. Software Engineering. Ed. 8, Ch 22

(3 ctrica gineering
az,” UNIVERSITY OF TORONTO

V-Model

Acceptance
test design

Requirement System test Acceptance

analysis design testing EX pe NS ive dan d

time-consuming
System Integration System

design test design testing

Architecture Unit test Integration
design design testing

Module Unit
design testing

Justa
Codin g reminder...

he Edward S. Rogers Sr. Department
f Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Use cases

Projects where failures and downtimes are unacceptable (e.g.,
medical software, aviation fleet management software).

’fﬁé The Edward S. Rogers Sr. Department
& | of Electrical & Computer Engineering

g:?:g UNIVERSITY OF TORONTO

Example:

HI, THIS 1S

WE'RE HAVING SOME
COMPUTER TROUBLE.

\%m

YOUR SONS SCHOOL.

SQL Injection Attacks

OH, DEAR - DID HE
BREAK SOMETHING?

IN AWAY /

S

http://xkcd.com/327/

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-- 7

~OH.YES LITNLE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I H(PE
-~ YOUVE LEARNED
t TOSANMZE YOUR
DATARASE INPUTS,

Which QA strategy is suitable?

Example: Scalability

Twitter is over capacity.

&
L
< @Q

"~
\
&
i e il

Which QA strategy is suitable?

[lectr: ering
%,’9!« UNIVERSITY OF TORONTO

Example: Usability

[6] Workspace]—*j Steven Bromley - Inbox... X] %-J Replication X] Sten

[Send]

Lotus Notes X|

\9/ Do you want to send this notice with these comments?
\ 2

Choose Yes to send as is.
To: Choose No to send without comments.
' Choose Cancel to continue editing.

-~
N Nt o

bee:
N

Yes No Cancel

Subj

Which QA strategy is suitable?

he Edward S. Rogers Sr. Department

Electrical & Computer Engineering

NIVERSITY OF TORONTO

QA Tradeoffs

e Understand limitations of QA approaches

e e.g. testing vs static analysis,
formal verification vs inspection, ...

* Mix and match techniques

* Different techniques for different qualities

Case Study: QA at Microsoft

== Microsoft

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

ag’é?mla UNIVERSITY OF TORONTO

problem has been detected and windows has been shut down to prevent damage
0 your computer.

HREAD_NOT_MUTEX_OWNER

If this is the first time you've seen this Stop error screen,
restart your computer. If this screen appears again, follow
hese steps:

heck to make sure any new hardware or software is properly installed.
If this is a new installation, ask your hardware or software manufacturer
or any windows updates you might need.

If problems continue, disable or remove any newly installed hardware
or software. Disable BIOS memory options such as caching or shadowing.
If you need to use sSafe Mode to remove or disable components, restart
our computer, press F8 to select Advanced Startup Options, and then
select safe mode.

echnical information:

WHk STOP: Ox00000011 (0x00234234,0x00005345,0x05345345, OXFFFFFFFF)

Y T4 80 B B OB L §-E §' 1§ B L L E R

How the World's Most Powerful Software Company
Creates Technology,
Shapes Markets,

and Manages People

MichaelA. CuSumano
Richard W. Selby

WIER A SEW PREFACE MY i

Edward S. Rogers Sr. Department
lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Throughout the case studies,
look for nontechnical challenges
and how they were addressed
(social issues, process issues, ...)

Microsoft's Culture

* Hiring the best developers

* “Microsoft can achieve with a few hundred top-notch developers for what
IBM would need thousands”

* Giving them freedom
e Teams for products largely independent

* Relatively short development cycles
* Version updates (eg. Excel 3->4) 1-2 month
* New products 1-4 years
* Driven by release date

* Little upfront specification, flexible for change and cutting features

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
%ﬁ, UNIVERSITY e TORONTO

Early Days (1984): Separate testing from
development

. g]}glrcc;omplaints over bugs from hardware manufacturers (eg. wrong computations in

e customers complained about products
* |IBM insisted that Microsoft improves process for development and quality control

e Serious data-destroying bug forced Microsoft to ship update of Multiplan to 20000 users
at 10S cost each

* Resistance from developers and some management (incl. Balmer): “developers could test
their own products, assisted on occasion by high school students, secretaries, and some

outside contractors”
* Hired outside testers
* Avoided bureaucracy of formal inspections, signoff between stages, or time logging

e Separate testing group; automated tests; code reviews for new people and critical
components

ectrical & Computer Engineering

%?:gz UNIVERSITY OF TORONTO

Early Days (1986): Testing groups

* “Developers got lazy”, relied on test team for QA

* “Infinite defects” - Testers find defects faster than developers can fix
them

 Late and large integrations (“big bang”) - long testing periods, delayed
releases

* Mac Word 3 desaster: 8 month late, hundreds of bugs, including
crashing and data destroying bugs; 1MS for free upgrades

* Pressure on delivering quality grew

%*i‘fr,? The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

1989 Retreat and “Zero defects”

* see memo

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%’l UNIVERSITY OF TORONTO

Microsoft Memo

To: Application developers and testers
From: Chris Mason

Date: 6/20/89

Subject: Zero-defects code

Ce: Mike Maples, Steve Ballmer, Applications Business Unit managers and
department heads

On May 12th and 13th, the applications development managers held a retreat with
some of their project leads, Mike Maples. and other representatives of Applications
and Languages. My discussion group investigated techniques for writing code with
no defects. This memo describes the conclusions which we reached. . . . There are

a lot of reasons why our products seem to get buggier and buggier. It's a fact that
they're getting more complex, but we haven't changed owr methods to respond to that
complexity. . . . The point of enumerating our problems is to realize that our current
methods, not our people, cause their own failure. . . . Our scheduling methods and
Microsoft's culture encourage doing the mimimum work necessary on a feature.
When it works well enough to demonstrate, we consider it done. everyone clse
considers it done, and the feature is checked off the schedule. The inevitable bugs
months later are seen as unrelated. . . . When the schedule is jeopardized, we start
cutting comers. . . . The reason that complexity breeds bugs is that we don't under-
stand how the pieces will work together. This is true for new products as well as for
changes to existing products. . . . I mean this literally: your goal should be to have a
working, nearly-shippable product every day. . . . Since human beings themselves are
not fully debugged yet, there will be bugs in your code no matter what you do. When
this happens, you must evaluate the problem and resolve it immediately. . . . Coding
1s the major way we spend our time. Writing bugs means we're failing in our major
activity. Hundreds of thousands of individuals and companies rely on our products.
bugs can cause a lot of lost time and money. We could conceivably put a company
out of business with a bug in a spreadsheet, database, or word processor. We have to
start taking this more seriously. [1talics added]

/ero-Defect Rules for Excel 4

* All changes must compile and link

* All changes must pass the automated quick tests on Mac and
Windows

* Any developer who has more than 10 open bugs assigned must fix
them before moving to new features

’fi}j The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Testing Buddies

* Development and test teams separate, roughly similar size
* Developers test their own code, run automated tests daily

* Individual testers often assigned to one developer

» Testing their private releases (branch), giving direct, rapid feedback by email
before code is merged

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Testers

* Encouraged to communicate with support team and customers,
review media evaluations

* Develop testing strategy for high-risk areas

* Many forms of testing (internally called): unstructured testing, ad hoc
testing, gorilla testing, free-form Fridays

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Early-mid 90s

e Zero defect goal (1989 memo)

* Milestones (first with Publisher 1.0 in 1988)

* Version control, branches, frequent integration

* Daily builds

* Automated tests (“quick autotest”) - must succeed before checkin
» Usability labs

e Beta testing (400000 beta testers for Win 95) with instrumentation
* Brief formal design reviews; selected code reviews

* Defect tracking and metrics

* Developers stay in product group for more than one release cycle

%*i‘fr,? The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

+®) UNIVERSITY OF TORONTO

Figure 6.1 Customer Input During Product Development

| Activity Based Planning Wish Lines Off-line Plus (Calls Data)

v

ANALYSIS & USER NEEDS DEFINITION
SPECIFICATION DEVELOPMENT
PRODUCT PROTOTYPING

.

Usability Lab Testing

v

ADDITIONAL PRODUCT DEVELOPMENT
INTERNAL ALPHA RELEASE
FEEDBACK ANALYSIS & PRODUCT REFINEMENTS

v

Beta Site Testing Product Supportable Testing
FEEDBACK ANALYSIS & f’RODUCT REFINEMENTS
EXTERNAL PROfUCT RELEASE

Developers on Phone Lines Situation Room Teleconferences
Customer Satisfaction Surveys Product Usage Studies
Instrumental Software Versions Marketing Studies

v

(REPEAT CYCLE)

Metrics

* Number of open bugs by severity
* Number of open bugs expected to decrease before milestone
* All know severe bugs need to be fixed before release

e Severity 1 (product crash), Severity 2 (feature crash), Severity 3 (bug with
workaround), Severity 4 (cosmetic/minor)

* Metrics tracked across releases and projects
* Performance metrics

* Bug data used for deciding when “ready to ship”
* Relative and pragmatic, not absolute view

* “The market will forgive us for being late, but they won't forgive us for being
buggy”

%*i‘fr,? The Edward S. Rogers Sr. Department

El of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

Challenges of Microsoft's Culture

* Little communication among product teams

* Developers and testers often “not so well read in with software-
engineering literature, reinventing the whee

* Long underestimated architecture, design, sharing of components, quality
metrics, ...

* Developers resistant to change and “bureaucracy”

I”

Project Postmortem

* |dentify systematic problems and good practices (10-150 page report)

* document recurring problems and practices that work well
* e.g.,

* breadth-first - depth-first & tested milestones

* insufficient specification

* not reviewing commits

* using asserts to communicate assumptions

 lack of adequate tools - automated tests

* instrumented versions for testers and beta releases

» zero defect rule not a priority for developers

* Circulate insights as memos, encourage cross-team learning

Process Audits

* Informal 1-week audits in problematic problems
* Analyzing metrics, interviewing team members

 Recommendations to pick up best practices from other teams
 daily builds, automated tests, milestones, reviews

The 2002
rustworthy Computing Memo

There are many changes Microsoft needs to make as a company to ensure and keep our
customers' trust at every level -- from the way we develop software, to our support efforts,
to our operational and business practices. As software has become ever more complex,
interdependent and interconnected, our reputation as a company has in turn become more
vulnerable. Flaws in a single Microsoft product, service or policy not only affect the quality

of our platform and services overall, but also our customers' view of us as a company.

http://news.microsoft.com/2012/01/11/memo-from-bill-gates/

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

%’%g« UNIVERSITY OF TORON"}O

Code Reviews

* Own code review tools (passaround style)
* Internal studies on how effective reviews are

* Internal tools to improve code reviews

SLAM/SDV (since 2000) N l

i'=node-x); I ++

Ocs,

* Goal: Reducing blue screens, often caused by drivers
* Driver verification tool for C
* Model checking technology

* Finds narrow class of protocol violations

» Use characteristics of drivers (not general C code)
* Found several bugs in Microsoft's well tested sample drivers

* Fully automated in Microsoft compiler suite
* Available for free

* Enforcement through driver certification program

Ball, Thomas, Vladimir Levin, and Sriram K. Rajamani. "A decade of software model checking
with SLAM." Communications of the ACM 54.7 (2011): 68-76.

SLAM

* Compelling business case: eliminated most blue screens

* Based on basic science of model checking: originated in university
labs with public funding

“Things like even software verification, this has been the Holy Grail of
computer science for many decades but now in some very key areas, for
example, driver verification we’re building tools that can do actual proof
about the software and how it works in order to guarantee the reliability.”
--- Bill Gates, April 18, 2002

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

2010: Agile

* Web-based services and C++ evolution requires faster iteration

* Embrace of agile methods

e Massive reduction of testing team (from two testers per developers
toward one): developers now expected to do their own testing

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Have Agile Techniques been the Silver Bullet for Software Development at Microsoft?

Brendan Murphy Christian Bird Thomas Zimmermann Laurie Williams
Microsoft Research Microsoft Research Microsoft Research NCSU
Cambridge, UK Redmond, USA Redmond, USA Raleigh, USA
bmurphy@microsoft.com cbird@microsoft.com tzimmer@microsoft.com williams@csc.ncsu.edu
Nachiappan Nagappan Andrew Begel
Microsoft Research Microsoft Research
Redmond, USA Redmond, USA
nachin@microsoft.com andrew.begel@microsoft.com

Table 1: Do you current Use Agile Development Techniques

2006 2007 2008 | 2009 | 2012
Using Agile 34% 51% 56% | 49% 57%

https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/Agile20Trends20ESEM20Master.pdf

Edward S. Rog SD}t nt

;’ﬁ“ lectrical & Cor 1, uter Engin,

‘&?ﬁ UNIVERSITY OF TORONTO

Case Study 2:
Static Analysis at Google

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

UNIVERSITY OF TORONTO

Integrate Static Analysis in Review Process

e Static analysis as bots in code review tool
e Automatically applied on each commit
* Results visible to author and reviewers

* Lightweight checkers, easy to add and modify
 Feedback buttons to indicate ineffective checkers

Sadowski, Caitlin, et al. "Tricorder: Building a program analysis ecosystem."
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.
Vol. 1. IEEE, 2015.

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

package com.google.devtools.staticanalysis;

public class Test {

~ Lint Missing a Javadoc comment.

1:02 AM, Aug 21

Please fix Not useful

public boolean foo() {

return getString() == "foo".toString():;

~ ErrorProne String comparison using reference equality instead of value equality

StringEquality (see hitp://code.google.com/p/error-prone/wiki/StringEquality)

1:03 AM, Aug 21

Please fix

Suggested fix attached: show Not useful

}

public String getString() {
return new String(“foo");
}
}

he Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

package com.google.devtools.staticanalysis;
public class Test {

~ Lint Missing a Javadoc comment.

1:02 AM, Aug 21

Please fix

Not useful

public boolean foo() {
return getString() == "foo".toString():;

~ ErrorProne

StringEquality

String comparison using reference equality instead of value equality
(see http://code.google.com/p/error-prone/wiki/StringEquality)

1:03 AM, Aug 21

Please fix

’ /ldepot/google3/java/com/google/devtools/staticanalysis/Test.java

package com.google.devtools.staticanalysis;

public class Test {
public beoolean foo() {
return getString() == "foo".toString();

}

public String getString() {
return new String("foo");

Cancel

package com.google.devtools.staticanalysis;
import java.util.Objects;

public class Test {
public boolean foo() {

return Objects.equals(getString(), "foo".toString()):;
}

public String getString() {
return new String("foo");
}
}

he Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%’%\g UNIVERSITY OF TORONTO

QA within the Process

The Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

%’?;g@ UNIVERSITY OF TORONTO

QA as part of the process

* Have QA deliverables at milestones (management policy)
* Inspection / test report before milestone

* Change development practices (req. developer buy-in)

e e.g., continuous integration, pair programming, reviewed checkins, zero-bug
static analysis before checking

e Static analysis part of code review (Google)
* Track bugs and other quality metrics

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
%ﬁ, UNIVERSITY e TORONTO

Defect tracking

* Issues: Bug, feature request, query

e Basis for measurement
* reported in which phase
e duration to repair, difficulty
* categorization
-> root cause analysis
* Facilitates communication
e questions back to reporter

* ensures reports are not
forgotten

e Accountability

Bug List: (48 of 200) First Last Prev Next Show last search results Search page Enter new bug

[Echpse:] 160502 Hardware: IPC 'I Reporter: Clare Carty .
Bug#: « [T = <ccarty@cadbm.com>
0S: |L|nux j
Product: IPIatfurm R Add CC: |

Version: |342.1 'I
Prionty: |P3 'I
Severity: Iblocker 'I

. . T: 'get
platform-runtime-inbox . . aree I— ‘l
. . Milestone:

Assioned To: <platform-runtime-

nbox@eclipse.org>
QA Contact: |
URL |
Summary: |JVM crash atrandom intervals on SUSE 9 with Sun JRE 15

Component: IRuntime 'I

Status: REOPENED
Resolution:

CC: |ccarty@ca.ibm.com
john_arthome@ca.ibm.cor

[Remove selected CCs

Status I
Whiteboard:

Kevywords: |vm

Attachment Type Created Size Actions
screenshot of crash | imagefjpeg | 2006-10-11 12:14 | 131.55 KB | Edit

View All

Create a New Attachment (proposed patch, testcase, etc.)

Bug 160502 depends on: |
Bug 160502 blocks: |
Votes: 0 Show votes for this bug Vote for this bug

Show dependency tree

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

4 UNIVERSITY OF TORONTO

Enforcement

Microsoft: check in gates

e Cannot check in code unless analysis suite has been run and produced no errors (test coverage,

dependency violation, insufficient/bad design intent, integer overflow, allocation arithmetic, buffer overruns,
memory errors, security issues)

eBay: dev/QA handoff

* Developers run FindBugs on desktop
* QA runs FindBugs on receipt of code, posts results, require high-priority fixes.

Google: static analysis on commits, shown in review

Requirements for success
* Low false positives
* A way to override false positive warnings (typically through inspection).
* Developers must buy into static analysis first

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

‘&?ﬁ UNIVERSITY OF TORON"}O

Reminder: Continuous Integration

(? admin | log out

he Edward S. Rogers Sr. Department

‘ of Electrical & Computer Engineering

@?mg UNIVERSITY OF TORONTO

Jenkins

=

* New Job

&" People
! Build History

L)

. Project Relationship

4™ | Check File Fingerprint

p Manage Jenkins
&" My Views

__g Disk usage

Build Queue

No builds in the queue.

Build Executor Status
Status
1 Idle

E Help us localize this page

7]
3

a1 N

<

COe

Icon: SML

bt

VM

IVMBranch

IVMBranchEval

IVMBranchTest

IVMTest

TypeChef

variational

Last Success

1 hr 40 min (£186)

2 days 19 hr (£288)

3 mo 19 days (#139)

3 mo 24 days (£70)

2 days 19 hr (£160)

21 days (£354)

1yr2mo (£11)

Last Failure

6 days 8 hr (#164)

12 days (£279)

3 mo 25 days (£125)

3 mo 28 days (#57)

3 mo 19 days (#118)

10 days (£155)

7 hr 54 min (£357)

1yr2mo (£3)

ENABLE AUTO REFRESH

[#fadd description

Last Duration

47 sec

o

4 min 35 sec @

4 min 27

12 min

11 min

12 min

16 min

3 min 43 sec @

Legend [RSS for all [\ RSS for failures [\ RSS for just latest builds

Page generated:

Jan 29

REST API

Jenkins ver. 1.500

Automating Test Execution

ckaestne@kastner-desktop:~/work/TypeChef/TypeChef$ sbt "project FeatureExprLib" test

Detected sbt version 0.12.2

[info] Loading global plugins from /usr@/home/ckaestne/.sbt/plugins

[info] Loading project definition from /usr@/home/ckaestne/work/TypeChef/TypeChef/project/project

[info] Loading project definition from /usr®/home/ckaestne/work/TypeChef/TypeChef/project

[info] Set current project to TypeChef (in build file:/usr@/home/ckaestne/work/TypeChef/TypeChef/)

[info] Set current project to FeatureExprLib (in build file:/usr@/home/ckaestne/work/TypeChef/TypeChef/)

[info] Compiling 10 Scala sources to /usr®/home/ckaestne/work/TypeChef/TypeChef/FeatureExprLib/target/scala-2.10/test
-classes.

[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]

FeatureExpr.parse(print(x))==x: OK, passed 100 tests.

FeatureExpr.andl: OK, passed 100 tests.

FeatureExpr.and®: OK, passed 100 tests.

FeatureExpr.andSelf: OK, passed 100 tests.

FeatureExpr.orl: OK, passed 100 tests.

FeatureExpr.or®: OK, passed 100 tests.

FeatureExpr.orSelf: OK, passed 100 tests.

FeatureExpr.a eq a: OK, passed 100 tests.

FeatureExpr.a equals a: OK, passed 100 tests.

FeatureExpr.a equivalent a: OK, passed 100 tests.

FeatureExpr.a implies a: OK, passed 100 tests.

FeatureExpr.creating (a and b) twice creates equal object: OK, passed 100 tests.
FeatureExpr.creating (a or b) twice creates equal object: OK, passed 100 tests.
FeatureExpr.creating (not a) twice creates equal object: OK, passed 100 tests.
FeatureExpr.applying not twice yields an equivalent formula: OK, passed 100 tests.
FeatureExpr.Commutativity wrt. equivalence: (a and b) produces the same object as (b and a): OK, passed 100

+ 4+ 4+ 4+ + + + + + + 4+ 4+ 4+ + +

FeatureExpr.Commutativity wrt. equivalence: (a or b) produces the same object as (b or a): OK, passed 100 te

FeatureExpr.taut(a=>b) == contr(a and !b): OK, passed 100 tests.
FeatureExpr.featuremodel.tautology: OK, passed 100 tests.

@ The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering
gﬁ#IJNIVERSITY'OF TORONTO

Continuous Integration with
Travis-Cl e

p rails/rails @ e me eees Workers
luby on Rails erlang.worker.travis-ci.org
Recent My Repositories nodejs1.worker.travis-ci.org
php1.worker.travis-ci.org
@ diasporg/diaspora #209 Current Build History rails1.worker.travis-ci.org
rails2.worker.travis-ci.org

Duration: 19 min 26 sec, Finished: 9 minutes ago

Build © 1995 Commit f3e079e (master) ruby1.worker.travis-ci.org
o ruby2.worker.travis-ci.org
@ rubinius/rubinius #815 Finished about 6 hours ago Compare b5927b8...f3e079%¢ ruby3.worker.travis-ci.org
Duration 1 hr 33 min 32 sec Author Vijay Dev spree.worker.travis-ci.org

Duration: 16 min 28 sec, Finished: about an hour ago
Message Merge pull request #4248 from andrew/2012 Updated copyright notices for 2012
Queue: Common

© robgleeson/ed #31 ‘
Duration: 4 min 33 sec, Finished: about an hour ago Build Matrix No jobs
. Job Duration Finished Rvm Env Queue: Nodels
v
2 &8 @ 1995.1 19 min 5 sec about 6 hours ago 193 GEM=railties No jobs
Duration: 51 sec, Finished: about 2 hours ago
@ 1995.2 12 min 38 sec about 6 hours ago 1.93 GEM=ap,am,amo,ares,as
Queue: Php
© tedsuo/raaraa #48 @ 1995.3 16 min 57 sec about 6 hours ago 1.93 GEM=ar:mysq|
. . - No jobs
Duration: 1 min, Finished: about 2 hours ago @ 1995.4 12 min 55 sec about 6 hours ago 1.9.3 GEM=ar:mysq|2
@ 1995.5 12 min 34 sec about 6 hours ago 1.9.3 GEM=ar:sqlite3 Queue: Rails
@ holman/play #84)
© 1995.6 19 min 23 sec about 6 hours ago 1.9.3 GEM=ar:postgresq| No jobs

Duration: 4 min 49 sec, Finished: about 2 hours ago

Queue: Erlang
@ cren/sift.js #35

No jobs
Duration: 41 sec, Finished: about 2 hours ago

Queue: Spree

© BonzaiProject/Bonzai #19

Duration: 40 sec, Finished: about 2 hours ago

No jobs

Summary

* Developing a QA plan:
* ldentify quality goals and risks
* Mix and match approaches
* Enforce QA, establish practices

e Case study from Microsoft

* Integrate QA in process

Further Reading

e Cusumano, Michael A., and Richard W. Selby. "Microsoft secrets." (1997).
* Book covers quality assurance at Microsoft until the mid 90s (and much more)

* Ball, Thomas, Vladimir Levin, and Sriram K. Rajamani. "A decade of software
model checking with SLAM." Communications of the ACM 54.7 (2011): 68-76.

 An overview of SLAM at Microsoft

 Jaspan, Ciera, |. Chen, and Anoop Sharma. "Understanding the value of program
analysis tools." Companion OOPSLA. ACM, 2007.

e Description of eBay evaluating FindBugs

* Sadowski, C., van Gogh, J., Jaspan, C., Soderberg, E., & Winter, C. Tricorder:
Building a Program Analysis Ecosystem. ICSE 2015

* Integrating static analysis into code reviews at Google in a data-driven way

* Sommerville. Software Engineering. 8t Edition. Chapter 27
* QA planning and process improvement, standards

%*i':ff The Edward S. Rogers Sr. Department

El of Electrical & Computer Engineering

% UNIVERSITY OF TORON"}O

