
What is testing?

• Direct execution of code on test data in a controlled environment
• Principle goals:
• Validation: program meets requirements, including quality attributes.

• Other goals:
• Clarify specification: Testing can demonstrate inconsistency; either spec or

program could be wrong
• Learn about program: How does it behave under various conditions?

Feedback to rest of team goes beyond bugs
• Verify contract, including customer, legal, standards

1

Principle techniques

• Dynamic:
• Testing: Direct execution of code on test data in a controlled environment.
• Analysis: Tools extracting data from test runs.

• Static:
• Inspection: Human evaluation of code, design documents (specs and models),

modifications.
• Analysis: Tools reasoning about the program without executing it.

3

Common dynamic analyses

• Coverage
• Performance
• Memory usage
• Security properties
• Concurrency errors
• Invariant checking
• Fault localization
• Anomaly detection

4

Instrumentation: a simple example

• How might tools that compute test suite coverage work?
• One option: instrument the code to track a certain type of data as the

program executes.
• Instrument: add of special code to track a certain type of information as a

program executes.
• Rephrase: insert logging statements (e.g., at compile time).

• What do we want to log/track for branch coverage computation?

5

① if (a > 0)

② if (a > 0)

return 0

(entry)

(exit)

printf(“1:f”)
b -= 5
a -= 10

printf(“1:t”)

③ if (b > 0)

printf(“2:t”)

printf(“2:f”)

return 1

printf(“3:t”) printf(“3:f”)

6

1.int foobar(a,b) {

2. if (a > 0) {

3. printf(“1:t”);

4. b -= 5;

5. a -= 10;

6. } else {

7. printf(“1:f”);

8. }

9. if(a > 0) {

10. printf(“2:t”);

11. if (b > 0) {

12. printf(“3:t”);

13. return 1;

14. } else {

15. printf(“3:f”);

16. }

17. } else {

18. printf(“2:f”);

19. }

20. return 0;

21.}

• Test cases: (0,0), (1,0), (11,0), (11,6)
• foobar(0,0): “1:f 2:f ”
• foobar(1,0): “1:t 2:f ”
• foobar(11,0): “1:t 2:t 3:f ”
• foobar(11,6): “1:t 2:t 3:t “

Assuming we saved how many branches
were in this method when we

instrumented it, we could now process
these logs to compute branch coverage.

1.int foobar(a,b) {

2. if (a > 0) {
3. printf(“1:t ”);
4. b -= 5;
5. a -= 10;
6. } else {
7. printf(“1:f ”);
8. }
9. if(a > 0) {
10. printf(“2:t ”);
11. if (b > 0) {
12. printf(“3:t ”);
13. return 1;
14. } else {
15. printf(“3:f ”);
16. }
17. } else {
18. printf(“2:f ”);
19. }
20. return 0;
21.}

7

Profiling

• Finding bottlenecks in
execution time and
memory

8

Limitation: Dynamic analysis

• Cost
Performance overhead for recording
• Acceptable for use in testing?
• Acceptable for use in production?

Very input dependent

• Good if you have lots of tests!
• Can also use logs from live software runs that include actual user

interactions (sometimes, see next slides).
• Or: specific inputs that replicate specific defect scenarios (like

memory leaks).

10

Heisenbugs

• Heisenbugs occur because common
attempts to debug a program, such
as inserting output statements or
running it with a debugger, usually
have the side-effect of altering the
behavior of the program in subtle
ways, such as changing the memory
addresses of variables and the
timing of its execution.

https://www.testing-whiz.com/blog/heisenbug-elusive-bug

Heisenbuggy behavior

• Instrumentation and monitoring can change the behavior of a
program.
• e.g., slowdown, memory overhead.

• Important question 1: can/should you deploy it live?
• Or possibly just deploy for debugging something specific?

• Important question 2: Will the monitoring meaningfully change the
program behavior with respect to the property you care about?

12

Too much data

• Logging events in large and/or long-running programs (even for just
one property!) can result in HUGE amounts of data.

• How do you process it?
• Common strategy: sampling

13

Lifecycle

• During QA
• Instrument code for tests
• Let it run on all regression tests
• Store output as part of the regression

• During Production
• Only works for web apps
• Instrument a few of the servers

• Use them to gather data
• Statistical analysis, similar to seeding defects in code reviews

• Instrument all of the servers
• Use them to protect data

14

Summary

• Dynamic analysis: selectively record data at runtime
• Data collection through instrumentation
• Integrated tools exist (e.g., profilers)
• Analyzes only concrete executions, runtime overhead

15

Principle techniques

• Dynamic:
• Testing: Direct execution of code on test data in a controlled environment.
• Analysis: Tools extracting data from test runs.

• Static:
• Inspection: Human evaluation of code, design documents (specs and models),

modifications.
• Analysis: Tools reasoning about the program without executing it.

16

What is Static Analysis?

• Systematic examination of an abstraction of program state space.
• Does not execute code! (like code review)

• Abstraction: produce a representation of a program that is simpler to
analyze.
• Results in fewer states to explore; makes difficult problems tractable.

• Check if a particular property holds over the entire state space:
• Liveness: “something good eventually happens.”
• Safety: “this bad thing can’t ever happen.”

17

Syntactic Analysis

Find every occurrence of this pattern:

grep "if \(logger\.inDebug" . -r

public foo() {
…
logger.debug(“We have ” + conn + “connections.”);

}
public foo() {
…
if (logger.inDebug()) {
logger.debug(“We have ” + conn + “connections.”);

}
}

Type Analysis

19

Abstraction: abstract syntax tree

• Tree representation of the
syntactic structure of source code.
• Parsers convert concrete syntax into

abstract syntax, and deal with
resulting ambiguities.

• Records only the semantically
relevant information.
• Abstract: doesn’t represent every

detail (like parentheses); these can
be inferred from the structure.

• (How to build one? Take
compilers!)

• Example: 5 + (2 + 3)
+

5 +

2 3

20

Type checking

21

class X {
Logger logger;
public void foo() {
…
if (logger.inDebug()) {
logger.debug(“We have ” +

conn + “connections.”);
}

}
}
class Logger {

boolean inDebug() {…}
void debug(String msg) {…}

}

class X

method
foo

…field
logger

if stmt…

method
invoc.

logger inDebug

block

method
invoc.

logger debug parameter
…

Logger

boolean

expects boolean

Logger

Logger ->boolean

String -> void
String

void

Structural Analysis

class X {
Logger logger;
public void foo() {
…
if (logger.inDebug()) {
logger.debug(“We have ” +

conn + “connections.”);
}

}
}

class X

method
foo

…field
logger

if stmt…

method
invoc.

logger inDebug

block

method
invoc.

logger debug parameter
…

22

Summary:
Syntactic/Structural Analyses
• Analyzing token streams or code structures (ASTs)
• Useful to find patterns
• Local/structural properties, independent of execution paths

23

Tools

• Checkstyle
• Many linters (C, JS, Python, …)
• Findbugs (some analyses)

24

Linter

• is a tool that analyzes source code to flag programming errors, bugs,
stylistic errors, and suspicious constructs.

https://xkcd.com/1285/

https://xkcd.com/1285/

https://www.pylint.org/

Control/Dataflow analysis

• Reason about all possible executions, via paths through a control flow
graph.
• Track information relevant to a property of interest at every program point.
• Including exception handling, function calls, etc

• Define an abstract domain that captures only the values/states
relevant to the property of interest.

• Track the abstract state, rather than all possible concrete values, for
all possible executions (paths!) through the graph.

27

Control flow graphs
• A tree/graph-based

representation of the flow
of control through the
program.
• Captures all possible

execution paths.
• Each node is a basic block:

no jumps in or out.
• Edges represent control

flow options between
nodes.
• Intra-procedural: within

one function.
• cf. inter-procedural

1. a = 5 + (2 + 3)
2. if (b > 10) {
3. a = 0;

4. }
5. return a;

(entry)

a=5+(2+3)

if(b>10)

a = 0

return a;

(exit) 28

Data- vs. control-flow

• Dataflow: tracks abstract values for each of (some subset of) the
variables in a program.

• Control flow: tracks state global to the function in question.

29

Tools

• Dead-code detection in many compilers (e.g. Java)
• Instrumentation for dynamic analysis before and after decision

points; loop detection

30

ECE444: Software Engineering
QA 3: Quality Assurance Process, Case Studies

Shurui Zhou

QA Process Considerations

• We covered several QA techniques:
• Formal verification
• Unit testing, test driven development
• Various forms of advanced testing for quality attributes (GUI testing, fuzz

testing, …)
• Static analysis
• Dynamic analysis
• Formal inspections and other forms of code reviews

• But: When to use? Which techniques? How much? How to introduce?
Automation? How to establish a quality culture? How to ensure
compliance? Social issues? What about external components?

32

Learning Goals
• Understand process aspects of QA
• Describe the tradeoffs of QA techniques
• Select an appropriate QA technique for a given project and quality

attribute
• Decide the when and how much of QA
• Overview of concepts how to enforce QA techniques in a process
• Select when and how to integrate tools and policies into the process: daily

builds, continuous integration, test automation, static analysis, issue
tracking, …
• Understand human and social challenges of adopting QA techniques
• Understand how process and tool improvement can solve the dilemma

between features and quality

33

QA Process

15-313 Software Engineering 34

How to get developers to
[write tests|use static analysis|appreciate testers]

15-313 Software Engineering 35

36

37

Qualities and Risks

• What qualities are required? (requirements engineering)
• What risks are expected?

• Align QA strategy based on qualities and risks

Example:
Test plans linking development and testing

Sommerville. Software Engineering. Ed. 8, Ch 22

V-Model

Expensive and
time-consuming

Use cases
Projects where failures and downtimes are unacceptable (e.g.,
medical software, aviation fleet management software).

Example: SQL Injection Attacks

http://xkcd.com/327/

Which QA strategy is suitable?

Example: Scalability

43

Which QA strategy is suitable?

Example: Usability

44

Which QA strategy is suitable?

QA Tradeoffs

• Understand limitations of QA approaches
• e.g. testing vs static analysis,

formal verification vs inspection, …

• Mix and match techniques
• Different techniques for different qualities

Case Study: QA at Microsoft

15-313 Software Engineering 46

15-313 Software Engineering 49

Throughout the case studies,
look for nontechnical challenges
and how they were addressed
(social issues, process issues, …)

Microsoft's Culture

• Hiring the best developers
• “Microsoft can achieve with a few hundred top-notch developers for what

IBM would need thousands”
• Giving them freedom
• Teams for products largely independent
• Relatively short development cycles
• Version updates (eg. Excel 3->4) 1-2 month
• New products 1-4 years
• Driven by release date

• Little upfront specification, flexible for change and cutting features

Early Days (1984): Separate testing from
development
• after complaints over bugs from hardware manufacturers (eg. wrong computations in

BASIC)
• customers complained about products
• IBM insisted that Microsoft improves process for development and quality control
• Serious data-destroying bug forced Microsoft to ship update of Multiplan to 20000 users

at 10$ cost each
• Resistance from developers and some management (incl. Balmer): “developers could test

their own products, assisted on occasion by high school students, secretaries, and some
outside contractors”

• Hired outside testers
• Avoided bureaucracy of formal inspections, signoff between stages, or time logging
• Separate testing group; automated tests; code reviews for new people and critical

components

Early Days (1986): Testing groups

• “Developers got lazy”, relied on test team for QA
• “Infinite defects” - Testers find defects faster than developers can fix

them
• Late and large integrations (“big bang”) - long testing periods, delayed

releases
• Mac Word 3 desaster: 8 month late, hundreds of bugs, including

crashing and data destroying bugs; 1M$ for free upgrades
• Pressure on delivering quality grew

1989 Retreat and “Zero defects”

• see memo

Zero-Defect Rules for Excel 4

• All changes must compile and link
• All changes must pass the automated quick tests on Mac and

Windows
• Any developer who has more than 10 open bugs assigned must fix

them before moving to new features

Testing Buddies

• Development and test teams separate, roughly similar size
• Developers test their own code, run automated tests daily
• Individual testers often assigned to one developer
• Testing their private releases (branch), giving direct, rapid feedback by email

before code is merged

Testers

• Encouraged to communicate with support team and customers,
review media evaluations

• Develop testing strategy for high-risk areas
• Many forms of testing (internally called): unstructured testing, ad hoc

testing, gorilla testing, free-form Fridays

Early-mid 90s

• Zero defect goal (1989 memo)
• Milestones (first with Publisher 1.0 in 1988)
• Version control, branches, frequent integration
• Daily builds
• Automated tests (“quick autotest”) - must succeed before checkin
• Usability labs
• Beta testing (400000 beta testers for Win 95) with instrumentation
• Brief formal design reviews; selected code reviews
• Defect tracking and metrics
• Developers stay in product group for more than one release cycle

Metrics

• Number of open bugs by severity
• Number of open bugs expected to decrease before milestone
• All know severe bugs need to be fixed before release
• Severity 1 (product crash), Severity 2 (feature crash), Severity 3 (bug with

workaround), Severity 4 (cosmetic/minor)
• Metrics tracked across releases and projects

• Performance metrics
• Bug data used for deciding when “ready to ship”
• Relative and pragmatic, not absolute view
• “The market will forgive us for being late, but they won't forgive us for being

buggy”

Challenges of Microsoft's Culture

• Little communication among product teams
• Developers and testers often “not so well read in with software-

engineering literature, reinventing the wheel”
• Long underestimated architecture, design, sharing of components, quality

metrics, …

• Developers resistant to change and “bureaucracy”

Project Postmortem

• Identify systematic problems and good practices (10-150 page report)
• document recurring problems and practices that work well
• e.g.,

• breadth-first → depth-first & tested milestones
• insufficient specification
• not reviewing commits
• using asserts to communicate assumptions
• lack of adequate tools → automated tests
• instrumented versions for testers and beta releases
• zero defect rule not a priority for developers

• Circulate insights as memos, encourage cross-team learning

Process Audits

• Informal 1-week audits in problematic problems
• Analyzing metrics, interviewing team members
• Recommendations to pick up best practices from other teams
• daily builds, automated tests, milestones, reviews

The 2002
Trustworthy Computing Memo

http://news.microsoft.com/2012/01/11/memo-from-bill-gates/

Code Reviews

• Own code review tools (passaround style)
• Internal studies on how effective reviews are
• Internal tools to improve code reviews

Ball, Thomas, Vladimir Levin, and Sriram K. Rajamani. "A decade of software model checking
with SLAM." Communications of the ACM 54.7 (2011): 68-76.

SLAM/SDV (since 2000)
• Goal: Reducing blue screens, often caused by drivers
• Driver verification tool for C
• Model checking technology
• Finds narrow class of protocol violations
• Use characteristics of drivers (not general C code)
• Found several bugs in Microsoft's well tested sample drivers

• Fully automated in Microsoft compiler suite
• Available for free
• Enforcement through driver certification program

SLAM

• Compelling business case: eliminated most blue screens
• Based on basic science of model checking: originated in university

labs with public funding

15-313 Software Engineering 67

“Things like even software verification, this has been the Holy Grail of
computer science for many decades but now in some very key areas, for
example, driver verification we’re building tools that can do actual proof
about the software and how it works in order to guarantee the reliability.”
--- Bill Gates, April 18, 2002

2010: Agile

• Web-based services and C++ evolution requires faster iteration
• Embrace of agile methods
• Massive reduction of testing team (from two testers per developers

toward one): developers now expected to do their own testing

15-313 Software Engineering 68

https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/Agile20Trends20ESEM20Master.pdf

Case Study 2:
Static Analysis at Google

15-313 Software Engineering 74

Integrate Static Analysis in Review Process

• Static analysis as bots in code review tool
• Automatically applied on each commit
• Results visible to author and reviewers

• Lightweight checkers, easy to add and modify
• Feedback buttons to indicate ineffective checkers

15-313 Software Engineering 75

Sadowski, Caitlin, et al. "Tricorder: Building a program analysis ecosystem."
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.
Vol. 1. IEEE, 2015.

15-313 Software Engineering 76

15-313 Software Engineering 77

QA within the Process

15-313 Software Engineering 78

QA as part of the process

• Have QA deliverables at milestones (management policy)
• Inspection / test report before milestone

• Change development practices (req. developer buy-in)
• e.g., continuous integration, pair programming, reviewed checkins, zero-bug

static analysis before checking

• Static analysis part of code review (Google)
• Track bugs and other quality metrics

15-313 Software Engineering 79

Defect tracking

• Issues: Bug, feature request, query
• Basis for measurement
• reported in which phase
• duration to repair, difficulty
• categorization

-> root cause analysis
• Facilitates communication
• questions back to reporter
• ensures reports are not

forgotten
• Accountability

15-313 Software Engineering 80

Enforcement
• Microsoft: check in gates

• Cannot check in code unless analysis suite has been run and produced no errors (test coverage,
dependency violation, insufficient/bad design intent, integer overflow, allocation arithmetic, buffer overruns,
memory errors, security issues)

• eBay: dev/QA handoff
• Developers run FindBugs on desktop
• QA runs FindBugs on receipt of code, posts results, require high-priority fixes.

• Google: static analysis on commits, shown in review
• Requirements for success

• Low false positives
• A way to override false positive warnings (typically through inspection).
• Developers must buy into static analysis first

81

Reminder: Continuous Integration

15-313 Software Engineering 82

Automating Test Execution

Continuous Integration with
Travis-CI

Summary

• Developing a QA plan:
• Identify quality goals and risks
• Mix and match approaches
• Enforce QA, establish practices

• Case study from Microsoft
• Integrate QA in process

15-313 Software Engineering 85

Further Reading

• Cusumano, Michael A., and Richard W. Selby. "Microsoft secrets." (1997).
• Book covers quality assurance at Microsoft until the mid 90s (and much more)

• Ball, Thomas, Vladimir Levin, and Sriram K. Rajamani. "A decade of software
model checking with SLAM." Communications of the ACM 54.7 (2011): 68-76.
• An overview of SLAM at Microsoft

• Jaspan, Ciera, I. Chen, and Anoop Sharma. "Understanding the value of program
analysis tools." Companion OOPSLA. ACM, 2007.
• Description of eBay evaluating FindBugs

• Sadowski, C., van Gogh, J., Jaspan, C., Söderberg, E., & Winter, C. Tricorder:
Building a Program Analysis Ecosystem. ICSE 2015
• Integrating static analysis into code reviews at Google in a data-driven way

• Sommerville. Software Engineering. 8th Edition. Chapter 27
• QA planning and process improvement, standards

15-313 Software Engineering 86

