
ECE444: Software Engineering

Requirements 1: Overview and Concepts

Shurui Zhou

Administrivia

Lab 1: Git&GitHub
4 activities, submit your repo url by Friday
(command line / desktop UI)

Vote for ideas: think about feasibility on collecting requirement

Milestone 1: Team workflow

Lab2-Lab5 Flask

Learning Goals for last lecture (Intro of Process)

• Recognize the Importance of process
• Understand the difficulty of measuring progress
• Use milestones for planning and progress measurement
• Understand backlogs and user stories

Learning Goals

• Explain the importance and challenges of requirements in software
engineering.
• Explain how and why requirements articulate the relationship

between a desired system and its environment.
• Identify assumptions.
• Distinguish between and give examples of: functional and quality

requirements; informal statements and verifiable requirements.
• State quality requirements in measurable ways

Overly simplified definition

Requirements say what the system will do (and not how it will do it).

Fred Brooks, on requirements

• The hardest single part of building a software
system is deciding precisely what to build.

• No other part of the conceptual work is as
difficult as establishing the detailed technical
requirements ...

• No other part is as difficult to rectify later.

A problem that stands the test of time…
A 1994 survey of 8000 projects at 350 companies found: 31%
of projects canceled before completed; 9% of projects
delivered on time, within budget in large companies, 16% in
small companies.

Similar results reported since.
Causes:

1. Incomplete requirements (13.1%)
2. Lack of user involvement (12.4%)
3. Lack of resources (10.6%)
4. Unrealistic expectations (9.9%)
5. Lack of executive support (9.3%)
6. Changing requirements and specifications (8.7%)
7. Lack of planning (8.1%)
8. System no longer needed (7.5%) .

Why is this hard?

11

Communication problem

Goal: figure out what should be built.
Express those ideas so that the correct thing is built.

What is requirement engineering?

• http://www.cs.toronto.edu/~sme/CSC340F/readings/FoRE-
chapter02-v7.pdf

What is requirement engineering?

• Knowledge acquisition – how to capture relevant detail about a system?
• Is the knowledge complete and consistent?

• Knowledge representation – once captured, how do we express it most
effectively?
• Express it for whom?
• Is it received consistently by different people?

Requirements in software projects

Requirements
Document

Project estimations
(size, cost, schedules)

Project workplan

Software prototype,
mockup

Follow-up directives

Software architecture

Call for tenders,
proposal evaluation

Quality Assurance
checklists

Project contract

Software evolution
directives

Software documentation

Acceptance test data

Implementation
directives

User manual

User and System Requirements

User Requirements
• It describes the services that the system should provide and the constrains

under which it must operate.
• We don’t expect to see any level of detail, or what exactly the system will do,

It’s more of generic requirements.
• It’s usually written in a natural language and supplied by diagrams.

System Requirements
• a more detailed description of the system services and the operational

constrains such as how the system will be used, and development constrains
such as the programming languages.
• audiences: engineers, system architects, testers, etc.

Less simplified definition – Online Shopping

• Stories: Scenarios and Use Cases
“After the customer submits the purchase information and the payment has
been received, the order is fulfilled and shipped to the customer’s shipping
address.”

• Optative statements
The system shall notify clients about their shipping status

• Domain Properties and Assumptions
Every product has a unique product code
Payments will be received after authorization

Capturing vs Synthesizing

• Engineers acquire requirements from many sources
•Elicit from stakeholders
•Extract from policies or other documentation
•Synthesize from above + estimation and invention

•Because stakeholders do not always “know what they want”*,
engineers must…

•Be faithful to stakeholder needs and expectations
•Anticipate additional needs and risks
•Validate that “additional needs” are necessary or desired

Functional & Non-Functional Requirements
• Functional Requirements
It covers the main functions that should be provided by the system.
- user requirement, they are usually descried in an abstract way.
- system requirement describe the system functions, it’s inputs, processing; how it’s
going to react to a particular input, and what’s the expected output.
• Non-Functional Requirements
These are the constrains on the functions provided by the system.
e.g., performance & security &…

Functional Requirements

• What the machine should do
• Input
• Output
• Interface
• Response to events

• Criteria:
• Completeness: All requirements are documented
• Consistency: No conflicts between requirements
• Precision: No ambiguity in requirements

• https://www.ietf.org
/rfc/rfc2119.txt

Quality/Non-functional requirements

• Specify not the functionality of the system, but the quality with which
it delivers that functionality.

• Can be more critical than functional requirements
• Can work around missing functionality
• Low-quality system may be unusable

Functional requirements and implementation bias

Requirements say what the system will do (and not how it will do it).

Why not “how”?

The World and the Machine

Michael Jackson, “The World and the Machine,”
International Conference on Software Engineering, pp.
283-292, 1995.

Three components

•Requirements (which are things in the world we
would like to achieve)
• Specifications (which are descriptions of what the

system we are designing should do if it is to meet
the requirements)
•Domain properties (which are things that are true

of the world anyway)

Pamela Zave & Michael Jackson, “Four Dark Corners of Requirements Engineering,”
ACM Transactions on Software Engineering and Methodology, 6(1): 1-30, 1997.

Pamela Zave & Michael Jackson, “Four Dark Corners of Requirements Engineering,”
ACM Transactions on Software Engineering and Methodology, 6(1): 1-30, 1997.

Only a manager can
assign access authority

Prevent access to
unauthorized personnel

“only authorized personnel get access to a building ”

Shared- and unshared actions

• Actions are environment-or machine-controlled
• Actions either:

•Shared with (belongs to, is observable by) the machine
•Unshared, and not observable by the machine

• Actions in a Turnstile: shared or unshared?
•pay
•push
•enter

Shared- and unshared actions

• Actions are environment-or machine-controlled
• Actions either:

•Shared with (belongs to, is observable by) the machine
•Unshared, and not observable by the machine

Shared- and unshared actions

World Machine

MotorRaising

HandbrakeReleased

DriverWantsToStart motor.Regime = ‘up’

handBrakeCtrl = ‘off’

errorCode = 013

Machine
phenomena

World
phenomena

Shared
phenomena

stateDatabase
updated

Some gaps must remain…

• Unshared actions cannot be accurately expressed in the machine
• People can jump over gates (enter without unlocking)
• People can steal or misplace inventory

Three components

•Requirements (which are things in the world we
would like to achieve)
• Specifications (which are descriptions of what the

system we are designing should do if it is to meet
the requirements)
•Domain properties (which are things that are true

of the world anyway)

What are specifications?

• Only be written in terms of the shared phenomena between the
machine domain and the environment
• Example: “only authorized personnel get access to a building ”
• Machine space - prevent access to unauthorized personnel
• World space - only a manager can assign access authority
• specification - when the user enters a valid password, the computer will

unlock the door

Domain properties

•help to link the specification and the requirements
•“only authorized personnel get access to a building ”
• Whether domain properties hold depends on the

context:
access control for an office environment

vs
a care home for elderly

Verification and Validation

Verification and Validation

Automotive Industry

International industry
standards for
development of
safety-critical systems

Airbus Braking System

• The Airbus A320-200 airplane has a software-
based braking system that consists of:
• Ground spoilers (wing plates extended to reduce lift)
• Reverse thrusters
• Wheel brakes on the main landing gear

“To engage the braking system, the wheels of the plane must be
on the ground.”
à Req: Reverse thrust should be enabled only when the aircraft
is moving on the runway, and disabled at all other times

Airbus Braking System
“To engage the braking system, the wheels of the
plane must be on the ground.”
à Req: Reverse thrust should be enabled only

when the aircraft is moving on the runway,
and disabled at all other times

à Spec: reverse thrust should be enabled if and
only if wheel pulses are on

2 Assumptions:
1. wheel pulses are on if and only if wheels are turning
2. wheels are turning if and only if aircraft is moving on the runway

Verification and Validation

Airbus Braking System
“To engage the braking system, the wheels of the
plane must be on the ground.”
à Req: Reverse thrust should be enabled only

when the aircraft is moving on the runway,
and disabled at all other times

à Spec: reverse thrust should be enabled if and
only if wheel pulses are on

2 Assumptions:
1. wheel pulses are on if and only if wheels are turning
2. wheels are turning if and only if aircraft is moving on the runway

Lufthansa Flight 2904 (1993)

System vs Software Requirements

• System requirements: relationships between monitored and
controlled variables
• Software requirements: relationship between inputs and outputs
• Domain properties and assumptions state relationships between

those

Quality Requirements

Quality (non-funct.) requirements

• Specify not the functionality of the system, but the quality with which
it delivers that functionality.
• Can be more critical than functional requirements
• Can work around missing functionality
• Low-quality system may be unusable

• Examples?

Here’s the thing…

• Who is going to ask for a slow, inefficient, unmaintainable system?
• A better way to think about quality requirements is as design criteria

to help choose between alternative implementations.
• Question becomes: to what extent must a product satisfy these

requirements to be acceptable?

Quality Requirement

Quality of Service Compliance Architectural Constraint Development Constraint

Confidentiality Integrity Availability

DistributionInstallationSafety Security

Usability

PerformanceReliability MaintainabilityCost

Time Space

Deadline Variability

Software
interoperability

Convenience

Interface

User
interaction

Device
interaction

Accuracy

Cost

Expressing quality requirements

• Requirements serve as contracts: they should be testable/falsifiable.
• Informal goal: a general intention, such as ease of use.
• May still be helpful to developers as they convey the intentions of the system

users.

• Verifiable non-functional requirement: A statement using some
measure that can be objectively tested.

Examples

• Informal goal: “the system should be easy to use by experienced
controllers, and should be organized such that user errors are
minimized.”
• Verifiable non-functional requirement: “Experienced controllers shall

be able to use all the system functions after a total of two hours
training. After this training, the average number of errors made by
experienced users shall not exceed two per day, on average.”

Activities of Requirements Engineering

Why, What, Who of RE

Objectives WHY
a new system?

WHAT
services?

WHO
will be responsible
for what ?

satisfy

assignment

System-to-beSystem-as-is

problems,
opportunities,
system knowledge

requirements,
constraints,
assumptions

Typical Steps (Iterative)

• Identifying stakeholders
• Domain understanding
• Requirements elicitation (interviews, …)
• Evaluation and agreement (conflicts, priorization, risks, …)
• Documentation/specification
• Consolidation / quality assurance

Target qualities for RE process

• Completeness of objectives, requirements, assumptions
• Consistency of RD items
• Adequacy of requirements, assumptions, domain props
• Unambiguity of RD items
• Measurability of requirements, assumptions
• Pertinence of requirements, assumptions
• Feasibility of requirements
• Comprehensibility of RD items
• Good structuring of the RD
• Modifiability of RD items
• Traceability of RD items

Types of RE errors & flaws

• Omission (critical error!)
• Contradiction (critical error!)
• Inadequacy (critical error!)
• Ambiguity (critical error!)
• Unmeasurability
• Noise, overspecification
• Unfeasibility (wishful thinking)
• Unintelligibility
• Poor structuring, forward reference, remorse
• Opacity

Documenting requirements

• Free unrestricted text
• Structured text
• Diagrams
• Formal specifications
• …More on this next week!

Further Reading

• Van Lamsweerde A. Requirements engineering: From system goals to
UML models to software. John Wiley & Sons; 2009. Chapter 1
• What are requirements? Steve Easterbrook. 2004

http://www.cs.toronto.edu/~sme/CSC340F/readings/FoRE-
chapter02-v7.pdf

Learning Goals

• Explain the importance and challenges of requirements in software
engineering.
• Explain how and why requirements articulate the relationship

between a desired system and its environment.
• Identify assumptions.
• Distinguish between and give examples of: functional and quality

requirements; informal statements and verifiable requirements.
• State quality requirements in measurable ways

