ECE444: Software Engineering

Metrics and Measurement 2

Shurui Zhou

B:t“ The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

[BS) B5)

%), UNIVERSITY OF TORONTO

nnnnn

Administrivia

* No paper review assignment this week

e Milestone 3

* Group report 2%
* Individual reflection 1%
* Peer review 2%

* Please directly send me emails instead of message on Quercus

Learning Goals

* Use measurements as a decision tool to reduce uncertainty

e Understand difficulty of measurement; discuss validity of
measurements

* Provide examples of metrics for software qualities and process

e Understand limitations and dangers of decisions and incentives based
on measurements

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Software Engineering: Principles, practices
(technical and non-technical) for confidently
building high-quality software.

Maintainability?

The Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

&gg UNIVERSITY OF TORONTO

Maintainability

* How easy is identifying and fixing a fault in software? Is it possible to
identify the main cause of failure? How much effort will code
modification require in case of a fault? How stable is the system
performance while changes are being applied?

I\/l a I ﬂta I n a bl | |ty | n d EX (Visual Studio since 2007)

Maintainability Index calculates an index value between 0 and 100 that represents the
relative ease of maintaining the code. A high value means better maintainability.

 0-9 = Red
e 10-19 = Yellow
* 20-100 = Green

e
Code Metrics Viewer * B X
/i Analyze Solution | | o i Compare.. | Maintainability Index * Min: *| Max * < Goto Next ~
Hierarchy Maintainability Index = Cyclomatic Complexity = Class Coupling | Depth of Inheritance | Lines of Code
3 +3 checkopenfile.exe © 74 10 19 7 39
3 {) checkopenfile @ 74 10 19 7 39
3 “% Forml Qe 67 3 16 @ 7 36
8 “% Program @ 81 1 @ 3 @ 1 3
https://docs.microsoft.com/en-us/visualstudio/code-
quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-
us/archive/blogs/codeanalysis/maintainability-index-
m » | range-and-meaning

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

%’%g« UNIVERSITY OF TORON"}O

https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/archive/blogs/codeanalysis/maintainability-index-range-and-meaning

I\/l a I ﬂta I n a bl | |ty | n d ex (Visual Studio since 2007)

=171
- 5.2 * log(Halstead Volume)
- 0.23 * (Cyclomatic Complexity)

- 16.2 * log(Lines of Code)

’fﬁé The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering
+%3 UNIVERSITY OF TORONTO

Key concerns of Maintainability Index

* There is no clear explanation for the specific derived formula.

* The only explanation that can be given is that all underlying metrics
(Halstead, Cyclomatic Complexity, Lines of Code) are directly correlated
with size (lines of code

* The set of programs used to derive the metric and evaluate it was small,
and contained small programs only.

* Programs were written in C and Pascal, which may have rather different
maintainability characteristics than current object-oriented languages such
as C#, Java, or Javascript.

* For the experiments conducted, only few programs were analyzed, and no
statistical significance was reported

ard S. Rog SD}
cal & Cor } r Eng

g.. 10
% UNIVERSITY OF TORONTO

Thoughts

* Metric seems attractive * Parameters seem almost arbitrary,
calibrated in single small study code (few

* Easy to compute e =
developers, unclear statistical significance)

e Often seems to match intuition . o .
* All metrics related to size: just measure lines

of code?

* Original 1992 C/Pascal programs potentially
quite different from Java/JS/C# code

http://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

http://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

Measurement for Decision Making
in Software Development

. How 1o
What is Measurement? MEASURE
ANYTHING

* A quantitatively expressed reduction of
uncertainty based on one or more INTANGIBLES I

observations. m

 Measurement is the empirical, objective
assignment of numbers, according to a rule
derived from a model or theory, to attributes
of objects or events with the intent of
describing them.

1~

Douglas W. Hubbard

[[ics: What Do They
Software Engineering Metrics:
Measure and How Do We Know?

Cem Kaner, Senior Member, IEEE, and Walter P. Bond

"i‘i{'é The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

IEEE Std 1061™-1998 (R2009)
(Revision of IEEE Std 1061-1992)

Software Quality Metric
IEEE Standard for a Software Quality
Metrics Methodology

Sponsor

Software Engineering StandardsCommittee
of the
IEEE Computer Society

2.24 software quality metric: A function whose inputs are software data and whose output is a single
numerical value that can be interpreted as the degree to which software possesses a given attribute that
affects its quality.

Reaffirmed 21 January 2005
Approved 16 November 1999

American National Standards Institute

Abstract: A methodology for establishing quality requirements and identifying, implementing,
analyzing and validating the process and product software quality metrics is defined. The method-
ology spans the entire software life cycle.

Keywords: direct metric, metrics framework, quality factor, quality subfactor, software quality
metric

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159

Edward S. Rogers Sr. Department
lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159

What software qualities do we care about? (examples)

’fﬁé The Edward S. Rogers Sr. Department
] | of Electrical & Computer Engineering

,;;?:4 UNIVERSITY OF TORONTO

What software qualities do we care about? (examples)

* Scalability * Installability
* Security e Maintainability
* Extensibility e Functionality (e.g., data integrity)

* Documentation
* Performance

* Consistency

* Portability

* Availability
e Ease of use

’fﬁ'{t The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

What process qualities do we care about? (examples)

’fﬁé The Edward S. Rogers Sr. Department
] | of Electrical & Computer Engineering

,;;?:4 UNIVERSITY OF TORONTO

What process qualities do we care about? (examples)

* On-time release Measure time, costs, actions, resources,
* Development speed and quality of work packages; compare
* Meeting efficiency with predictions

* Conformance to processes e Use information from issue trackers,
communication networks, team

* Time spent on rework
structures, etc...

* Reliability of predictions
* Fairness in decision making

%*i‘fr,? The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

Everything is measurable

* If X is something we care about, then X, by definition, must be
detectable.

 How could we care about things like “quality,” “risk,” “security,” or “public
image” if these things were totally undetectable, directly or indirectly?

* |f we have reason to care about some unknown quantity, it is because we
think it corresponds to desirable or undesirable results in some way.

 |f X is detectable, then it must be detectable in some amount.
* |f you can observe a thing at all, you can observe more of it or less of it

 |f we can observe it in some amount, then it must be measurable.

D. Hubbard, How to Measure Anything, 2010

%*i':ff The Edward S. Rogers Sr. Department

w ectrical & Computer Engineering
C1 S

% UNIVERSITY OF TORON"}O

Questions to consider.

* What properties do we care about, and how do we measure it?

* What is being measured? Does it (to what degree) capture the thing
you care about? What are its limitations?

* How should it be incorporated into process? Check in gate? Once a
month? Etc.

* What are potentially negative side effects or incentives?

?fi},? The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Measurement is Difficult

The Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

&gg UNIVERSITY OF TORONTO

THEN WHY ARE |
You LooiNG | faEcAysE
FOR 1T HERE? | {yuE LIGHT (¢

1) s eeTTER]

MO, 1 DROPPED
IT TWo BLOCKS
POWN THE ,

{FoR MYOUARIET)‘:.. y
| I DROPPED! [+
» Ty o

Edward S. Rogers Sr. Department
lectrical & Computer Engineering

L/ UNIVERSITY OF TORONTO

The streetlight effect

* A known observational bias.

* People tend to look for something only where
it’s easiest to do so.

* If you drop your keys at night, you’ll tend to
look for it under streetlights.

‘ To;‘nputer Engineering
OF TORONTO

b '~
‘ @© ctrica
|

N

= [1Ca
;.,,gg; UNIVERSITY

What could possibly go wrong?

* Bad statistics: A basic misunderstanding of measurement theory and
what is being measured.

e Bad decisions: The incorrect use of measurement data, leading to
unintended side effects.

* Bad incentives: Disregard for the human factors, or how the cultural
change of taking measurements will affect people.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1000457

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1000457

Measurements validity

* Construct — Are we measuring what we intended to measure?

* Predictive — The extent to which the measurement can be used to
explain some other characteristic of the entity being measured

e External validity — Concerns the generalization of the findings to
contexts and environments, other than the one studied

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

Correlation

» Independent variable X and dependent variable Y

» Influenceof XonY, e.g.
» Influence of file size on error rate
» Influence of comments on understandability
» Influence of GUI on usability (speed)
» Influence of heap size on performance
» Influence of #abstract methods on #test cases

» Comparing two or more metrics

» All metrics need to be well defined separately

» Statistical relationship?

’fi"é The Edward S. Rogers Sr. Department
] | ectrical & Computer Engineering

ig« UNIVERSITY OF TORONTO

T USED TO THINK THEN I TOOK A [| SOUNDS LIKE THE
CORRELATION mpqu STATISTICS CLASS. cmss HELPED.
CAUSATION. Now I DON'T. WELL, MAYBE

THslIE

* For causation
e Provide a theory (from domain knowledge, independent of data)
* Show correlation
* Demonstrate ability to predict new cases (replicate/validate)

& The Edward S. Rog sD}
‘ofElect cal & Co } t Eng

10
!5"; UNIVERSITY OF TORONTO

Number of people who drowned by falling into a pool
correlates with

Films Nicolas Cage appeared in

Correlation: 66.6% (r=0.666004)

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
140 drownings 6 films
(%)
oo
£
5
S 120 drownings 4films £
e o
S a
N
5 . &
£ 100 drownings @ ® 2 films 9§
E ¢ ’
b=
(%]
80 drownings 0 films
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-®- Nicholas Cage =-¢- Swimming pool drownings

tylervigen.com

http://www.tylervigen.com/spurious-correlations

he Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

http://www.tylervigen.com/spurious-correlations

Divorce rate in Maine
correlates with

Per capita consumption of margarine

Correlation: 99.26% (r=0.992558)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
4.95 per 1,000
8lbs
< =
o oa
= 4.62 per 1,000 o
c 6lbs =
g)
S 8
g . S
Pl C
2 4z9per 000 e ks 3
a * a

——

3.96 per 1,000 2lbs
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-®- Margarine consumed -¢- Divorce rate in Maine

tylervigen.com

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

Confounding variables

Coffee
. < Cancer
consumption
A
] T » Associations
Smoking ———— (Causal relationship

* If you look only at the coffee consumption = cancer relationship, you can get
very misleading results

* Smoking is a confounder

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

95 UNIVERSITY OF TORON"}O

The Confounding Effect of Class Size on

CO N fO Uun d | N g Va r| 3 b ‘ es The Validity of Object-Oriented Metrics

Khaled EI Emam Saida Benlarbi
Nishith Goel
National Research Council, Canada Cistel Technology
Institute for Information Technology 210 Colonnade Road
Building M-50, Montreal Road Suite 204
Ottawa, Ontario Nepean, Ontario

Canada K1A OR6 Canada K2E 7L5

o ”On|y 4, out of 24 commonly khaled.el-emam@ittnrc.ca . {benlarbi, ngoel}@cistel.com
used object-oriented metrics,
were actually useful in
predicting the quality of a
software module when the Product |

effect of the module size was I() ot Proneness
accounted for.”

Legend
—3 Causal Relationship
<€—» Association

lectrica

omputer Engineering
OF TORONTO

& ctr
% UNIVERSITY

The McNamara fallacy

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%,a?mga UNIVERSITY OF TORONTO

The McNamara Fallacy

* There seems to be a general misunderstanding to the effect that a
mathematical model cannot be undertaken until every constant and
functional relationship is known to high accuracy. This often leads to
the omission of admittedly highly significant factors (most of the
“intangibles” influences on decisions) because these are unmeasured
or unmeasurable. To omit such variables is equivalent to saying that
they have zero effect... Probably the only value known to be wrong...

* J. W. Forrester, Industrial Dynamics, The MIT Press, 1961

%*i':ff The Edward S. Rogers Sr. Department

i | of Electrical & Computer Engineering

%, UNIVERSITY OF TORONTO

The McNamara Fallacy

* Measure whatever can be easily measured.
* Disregard that which cannot be measured easily.
* Presume that which cannot be measured easily is not important.

* Presume that which cannot be measured easily does not exist.

— Daniel Yankelovich, "Corporate Priorities: A continuing study of the new demands on business" (1972).

https://en.wikipedia.org/wiki/Daniel_Yankelovich

Discussion: Measuring Usability

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%’%\g UNIVERSITY OF TORONTO

Discussion: Usability

* Users can see directly how well this attribute of the system is worked
out.

* One of the critical problems of usability is too much interaction or too
many actions necessary to accomplish a task.

* Examples of important indicators for this attribute are:
* List of supported devices, OS versions, screen resolutions, and browsers and
their versions.
* Elements that accelerate user interaction, such as “hotkeys,” “lists of
suggestions,” and so on.
* The average time a user needs to perform individual actions.

» Support of accessibility for people with disabilities.

Measurement strategies

* Automated measures on code repositories

e Use or collect process data

* Instrument program (e.g., in-field crash reports)

e Surveys, interviews, controlled experiments, expert judgment
e Statistical analysis of sample

Metrics and Incentives

The Edward S. Rogers Sr. Department

f Electrical & Computer Engineering

&gg UNIVERSITY OF TORONTO

Goodhart’s law: “When a measure becomes a
target, it ceases to be a good measure.”

<)

3
OUR GOAL ISTO WRITE (3 =| 1 HOPE TM GONNA
BUGFREE SOFTWARE . 2 £| THIS LWRITE ME A
I'LL PAY A TEN-DOLLAR |z | DRIVES NEL MINIVAN
BONUS FOR EVERY BUG |2 i THERIGHT THIS AFTER-
YOU FIND AND FIR, 5 ¢| BEHAVIOR. NOON!
Ty v g
(9] 4 :
% £

’fi}j The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

THEN WHY ARE |
You LooiNG | faEcAysE
FOR 1T HERE? | {yuE LIGHT (¢

1) s eeTTER]

MO, 1 DROPPED
IT TWo BLOCKS
POWN THE ,

{FoR MYOUARIET)‘:.. y
| I DROPPED! [+
» Ty o

Edward S. Rogers Sr. Department
lectrical & Computer Engineering

L/ UNIVERSITY OF TORONTO

Productivity Metrics

* Lines of code per day?
* Industry average 10-50 lines/day
e Debugging + rework ca. 50% of time

* Function/object/application points per month
* Bugs fixed?
* Milestones reached?

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IIU
% UNIVERSITY e TORONTO

Stack Ranking

ard S. Rog SD}
cal & Cor n} er Engine

f ng
% UNIVERSITY OF TORONTO

John Francis Welch Jr.

(November 19, 1935 — March 1,
2020) was an American business
executive, chemical engineer,
and writer. He was chairman
and CEO of General Electric (GE)
between 1981 and 2001.

Incentivizing Productivity

* What happens when developer bonuses are based on
* Lines of code per day
* Amount of documentation written
* Low number of reported bugs in their code
* Low number of open bugs in their code
* High number of fixed bugs
e Accuracy of time estimates

?fi},? The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

PUNISHED

by
REWARDS

Can extinguish intrinsic motivation
Can diminish performance

Can crush creativity

Can crowd out good behavior

Can encourage cheating, shortcuts, and
unethical behavior
Can become addictive
Can foster short-term thinking

| AULIIUL UL IVU CUOTILESL al1u 1 71€ OLrtovLs Uur CUrLiarert reserve |

THE NEW YORK TIMES TOP 10 BESTSELLER

‘PROVOCATIVE AND FASCINATING'
MALCOLM GLADWELL

‘ENERGETIC’ ‘ ‘INSPIRING’
FINANCIALTIMES GUARDIAN

& ¢€
@ ¢ ¢

&

THE SURPRISING TRUTH
ABOUT WHAT MOTIVATES US

DANIEL H. PINK

Autonomy
Mastery
Purpose

59

Temptation of Software Metrics

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%’%\g UNIVERSITY OF TORONTO

IEEE Std 1061™-1998 (R2009)
(Revision of IEEE Std 1061-1992)

Software Quality Metric
IEEE Standard for a Software Quality
Metrics Methodology

2.24 software quality metric: A function whose inputs are software data and whose output is a single
numerical value that can be interpreted as the degree to which software possesses a given attribute that
affects its quality.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159

Reaffirmed 9 December 2009
Approved 8 December 1998

IEEE-SA Standards Board

Just a
s Reaffirmed 21 January 2005
rem I nder“‘ Approved 16 November 1999

American National Standards Institute

Abstract: A methodology for establishing quality requirements and identifying, implementing,
analyzing and validating the process and product software quality metrics is defined. The method-
ology spans the entire software life cycle.

Keywords: direct metric, metrics framework, quality factor, quality subfactor, software quality
metric

Edward S. Rogers Sr. Department
lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159

Software Quality Metrics

* |[EEE 1061 definition: “A software quality metric is a function whose
inputs are software data and whose output is a single numerical value
that can be interpreted as the degree to which software processes a

given attribute that affects its quality.”

* Metrics have been proposed for many quality attributes; may define
own metrics

?fi},? The Edward S. Rogers Sr. Department

| of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

QA badges on GitHub 10

QUALITY ASSURANCE

build 'passing Travis CI Build status

coverage [58% Coveralls Test coverage

code climate '4.0 CodeClimate Coverage & static analysis
coverage 194% CodeCov Test coverage

build 'passing Circle CI Build status

& build passing AppVeyor Build status

' bitHound |98 BitHound Static analysis & dep. mgmt

https://shields.io/

U Firefox {") Chrome & IE

2w v ssnr - ORI Saucelabs Cross-browser testing
Inch CI Documentation

{15’"% The Edward S. Rogers Sr. Deparrment
‘ lectrical & Computer Engineering

;%@ UNIVERSITY OF TORONTO

Metrics of software quality, i.e., design goals

Functional
correctness

Robustness
Flexibility
Reusability
Efficiency
Scalability

Security

17-214

Adherence of implementation to the specifications

Ability to handle anomalous events

Ability to accommodate changes in specifications

Ability to be reused in another application

Satisfaction of speed and storage requirements

Ability to serve as the basis of a larger version of the application

Level of consideration of application security

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

° .
institute for
SOFTWARE
23 RESEARCH

External attributes: Measuring Quality

Criteria

Communicativeness |

Accuracy

Consistency

Device Efficiency

Accessibility

Completeness

Structuredness

Conciseness

Device independence |

Legability

Use Factor
Usability
PrOdl{Ct / » Reliability
operation \
Efficiency
Reusability
Maintainability
Product
revision “‘R: Portability
Testability

he Edward S. Rogers Sr. Department

Electrical & Computer Engineering

Self-descriptiveness |

Traceability

METRICS

McCall model has 41 metrics
to measure 23 quality criteria
from 11 factors

NIVERSITY OF TORONTO

Decomposition of Metrics

Faults count

Correctability

Maintainability

Degree of testing

Testability

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

Expandability

Effort

Change counts

Closure time
Isolate/fix time
Fault rate

Statement coverage
Test plan completeness

Resource prediction
Effort expenditure

Change effort
Change size
Change rate

9% UNIVERSITY OF TORONTO

Object-Oriented Metrics

* Number of Methods per Class

* Depth of Inheritance Tree

 Number of Child Classes

* Coupling between Object Classes

* Calls to Methods in Unrelated Classes

’fﬁ{t The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Other quality metrics?

* Comment density
* Test coverage

 Component balance (system breakdown optimality and component
size uniformity)

e Code churn (number of lines added, removed, changed in a file)

Warning

 Most software metrics are controversial
* Usually only plausibility arguments, rarely rigorously validated
* Cyclomatic complexity was repeatedly refuted and is still used

* “Similar to the attempt of measuring the intelligence of a person in terms of the
weight or circumference of the brain”

e Use carefully!
* Code size dominates many metrics

* Avoid claims about human factors (e.g., readability) and quality, unless
validated

 Calibrate metrics in project history and other projects
* Metrics can be gamed; you get what you measure

(Some) strategies

* Metrics tracked using tools and processes (process metrics like time,
or code metrics like defects in a bug database).

* Expert assessment or human-subject experiments (controlled
experiments, talk-aloud protocols).

* Mining software repositories, defect databases, especially for trend
analysis or defect prediction.
* Some success e.g., as reported by Microsoft Research

* Benchmarking (especially for performance).

%*i‘fr,? The Edward S. Rogers Sr. Department

= | ectrical & Computer Engineering

%;@ UNIVERSITY OF TORONTO

Factors in a successful measurement program

* Set solid measurement objectives and plans.

* Make measurement part of the process.

* Gain a thorough understanding of measurement.

* Focus on cultural issues.

* Create a safe environment to collect and report true data.
* Cultivate a predisposition to change.

* Develop a complementary suite of measures.

Carol A. Dekkers and Patricia A. McQuaid,
“The Dangers of Using Software Metrics to (Mis)Manage”, 2002.

Kaner’s questions when choosing a metric

1. What is the purpose of this measure? 6. What instrument are you using to measure the
2. What is the scope of this measure? attribute, and what reading do you take from

. . the instrument?
3. What attribute are vou trving to : .
Y ying 7. What is the instrument’s natural scale?

? ; . .
measu_re. _) 8. What is the reading’s natural variability
2. What is the attribute’s natural scale? (normally called measurement error)?
s. What is the attribute’s natural 9. What is the attribute’s relationship to the
variability? instrument?

10. What are the natural and foreseeable side
effects of using this instrument?

10™ INTERNATIONAL SOFTWARE METRICS SYMPOSIUM, METRICS 2004 KANER /BOND - 1

Software Engineering Metrics: What Do They
Measure and How Do We Know?

Cem Kaner, Senior Member, IEEE, and Walter P. Bond

@8 The Edward S. Rog SD}r nt
’-* il @ Clo I,t r Engine

‘&?ﬁ UNIVERSITY OF TORONTO

Summary

* Measurement is difficult but important for decision making

e Software metrics are easy to measure but hard to interpret, validity
often not established

* Many metrics exist, often composed; pick or design suitable metrics if
needed

e Careful in use: monitoring vs incentives
 Strategies beyond metrics

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Fumrther Reading on Metrics

* Sommerville. Software Engineering. Edition 7/8, Sections 26.1, 27.5,
and 28.3

 Hubbard. How to measure anything: Finding the value of intangibles
in business. John Wiley & Sons, 2014. Chapter 3

e Kaner and Bond. Software Engineering Metrics: What Do They
Measure and How Do We Know? METRICS 2004

* Fenton and Pfleeger. Software Metrics: A rigorous & practical
approach. Thomson Publishing 1997

?fi},? The Edward S. Rogers Sr. Department

‘ of Electrical & Computer Engineering

) UNIVERSITY OF TORONTO

