
ECE444: Software Engineering

Metrics and Measurement 2

Shurui Zhou

Administrivia

• No paper review assignment this week
• Milestone 3
• Group report 2%
• Individual reflection 1%
• Peer review 2%

• Please directly send me emails instead of message on Quercus

Learning Goals

• Use measurements as a decision tool to reduce uncertainty
• Understand difficulty of measurement; discuss validity of

measurements
• Provide examples of metrics for software qualities and process
• Understand limitations and dangers of decisions and incentives based

on measurements

3

4

Software Engineering: Principles, practices
(technical and non-technical) for confidently
building high-quality software.

Maintainability?

Maintainability

• How easy is identifying and fixing a fault in software? Is it possible to
identify the main cause of failure? How much effort will code
modification require in case of a fault? How stable is the system
performance while changes are being applied?

Maintainability Index (Visual Studio since 2007)

Maintainability Index calculates an index value between 0 and 100 that represents the
relative ease of maintaining the code. A high value means better maintainability.
• 0-9 = Red
• 10-19 = Yellow
• 20-100 = Green

7

https://docs.microsoft.com/en-us/visualstudio/code-
quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-
us/archive/blogs/codeanalysis/maintainability-index-
range-and-meaning

https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/archive/blogs/codeanalysis/maintainability-index-range-and-meaning

Maintainability Index (Visual Studio since 2007)

= 171
- 5.2 * log(Halstead Volume)
- 0.23 * (Cyclomatic Complexity)
- 16.2 * log(Lines of Code)

Key concerns of Maintainability Index

• There is no clear explanation for the specific derived formula.
• The only explanation that can be given is that all underlying metrics

(Halstead, Cyclomatic Complexity, Lines of Code) are directly correlated
with size (lines of code
• The set of programs used to derive the metric and evaluate it was small,

and contained small programs only.
• Programs were written in C and Pascal, which may have rather different

maintainability characteristics than current object-oriented languages such
as C#, Java, or Javascript.
• For the experiments conducted, only few programs were analyzed, and no

statistical significance was reported

Thoughts

• Metric seems attractive
• Easy to compute
• Often seems to match intuition

• Parameters seem almost arbitrary,
calibrated in single small study code (few
developers, unclear statistical significance)
• All metrics related to size: just measure lines

of code?
• Original 1992 C/Pascal programs potentially

quite different from Java/JS/C# code

http://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

http://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

Measurement for Decision Making
in Software Development

11

What is Measurement?
• A quantitatively expressed reduction of

uncertainty based on one or more
observations.

• Measurement is the empirical, objective
assignment of numbers, according to a rule
derived from a model or theory, to attributes
of objects or events with the intent of
describing them.

Software Quality Metric

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159

What software qualities do we care about? (examples)

What software qualities do we care about? (examples)
• Scalability
• Security
• Extensibility
• Documentation
• Performance
• Consistency
• Portability

• Installability
• Maintainability
• Functionality (e.g., data integrity)
• Availability
• Ease of use

What process qualities do we care about? (examples)

What process qualities do we care about? (examples)

• On-time release
• Development speed
• Meeting efficiency
• Conformance to processes
• Time spent on rework
• Reliability of predictions
• Fairness in decision making

• Measure time, costs, actions, resources,
and quality of work packages; compare
with predictions
• Use information from issue trackers,

communication networks, team
structures, etc…

Everything is measurable

• If X is something we care about, then X, by definition, must be
detectable.
• How could we care about things like “quality,” “risk,” “security,” or “public

image” if these things were totally undetectable, directly or indirectly?
• If we have reason to care about some unknown quantity, it is because we

think it corresponds to desirable or undesirable results in some way.

• If X is detectable, then it must be detectable in some amount.
• If you can observe a thing at all, you can observe more of it or less of it

• If we can observe it in some amount, then it must be measurable.

D. Hubbard, How to Measure Anything, 2010

Questions to consider.

• What properties do we care about, and how do we measure it?
• What is being measured? Does it (to what degree) capture the thing

you care about? What are its limitations?
• How should it be incorporated into process? Check in gate? Once a

month? Etc.
• What are potentially negative side effects or incentives?

Measurement is Difficult

24

The streetlight effect

• A known observational bias.
• People tend to look for something only where

it’s easiest to do so.
• If you drop your keys at night, you’ll tend to

look for it under streetlights.

• Bad statistics: A basic misunderstanding of measurement theory and
what is being measured.
• Bad decisions: The incorrect use of measurement data, leading to

unintended side effects.
• Bad incentives: Disregard for the human factors, or how the cultural

change of taking measurements will affect people.

27

What could possibly go wrong?

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1000457

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1000457

• Construct – Are we measuring what we intended to measure?
• Predictive – The extent to which the measurement can be used to

explain some other characteristic of the entity being measured
• External validity – Concerns the generalization of the findings to

contexts and environments, other than the one studied

28

Measurements validity

Correlation

• For causation
• Provide a theory (from domain knowledge, independent of data)
• Show correlation
• Demonstrate ability to predict new cases (replicate/validate)

http://xkcd.com/552/

http://www.tylervigen.com/spurious-correlations

http://www.tylervigen.com/spurious-correlations

Confounding variables

• If you look only at the coffee consumption → cancer relationship, you can get
very misleading results
• Smoking is a confounder

Coffee
consumption

Smoking

Cancer

Associations
Causal relationship

Confounding variables

• “Only 4, out of 24 commonly
used object-oriented metrics,
were actually useful in
predicting the quality of a
software module when the
effect of the module size was
accounted for.”

The McNamara fallacy

The McNamara Fallacy

• There seems to be a general misunderstanding to the effect that a
mathematical model cannot be undertaken until every constant and
functional relationship is known to high accuracy. This often leads to
the omission of admittedly highly significant factors (most of the
“intangibles” influences on decisions) because these are unmeasured
or unmeasurable. To omit such variables is equivalent to saying that
they have zero effect... Probably the only value known to be wrong…
• J. W. Forrester, Industrial Dynamics, The MIT Press, 1961

The McNamara Fallacy

• Measure whatever can be easily measured.
• Disregard that which cannot be measured easily.
• Presume that which cannot be measured easily is not important.
• Presume that which cannot be measured easily does not exist.

— Daniel Yankelovich, "Corporate Priorities: A continuing study of the new demands on business" (1972).

https://en.wikipedia.org/wiki/Daniel_Yankelovich

Discussion: Measuring Usability

50

Discussion: Usability

• Users can see directly how well this attribute of the system is worked
out.
• One of the critical problems of usability is too much interaction or too

many actions necessary to accomplish a task.
• Examples of important indicators for this attribute are:
• List of supported devices, OS versions, screen resolutions, and browsers and

their versions.
• Elements that accelerate user interaction, such as “hotkeys,” “lists of

suggestions,” and so on.
• The average time a user needs to perform individual actions.
• Support of accessibility for people with disabilities.

Measurement strategies

• Automated measures on code repositories
• Use or collect process data
• Instrument program (e.g., in-field crash reports)
• Surveys, interviews, controlled experiments, expert judgment
• Statistical analysis of sample

Metrics and Incentives

53

Goodhart’s law: “When a measure becomes a
target, it ceases to be a good measure.”

Productivity Metrics

• Lines of code per day?
• Industry average 10-50 lines/day
• Debugging + rework ca. 50% of time

• Function/object/application points per month
• Bugs fixed?
• Milestones reached?

Stack Ranking

John Francis Welch Jr.
(November 19, 1935 – March 1,
2020) was an American business
executive, chemical engineer,
and writer. He was chairman
and CEO of General Electric (GE)
between 1981 and 2001.

Incentivizing Productivity

•What happens when developer bonuses are based on
• Lines of code per day
• Amount of documentation written
• Low number of reported bugs in their code
• Low number of open bugs in their code
• High number of fixed bugs
• Accuracy of time estimates

Autonomy
Mastery
PurposeCan extinguish intrinsic motivation

Can diminish performance
Can crush creativity

Can crowd out good behavior
Can encourage cheating, shortcuts, and

unethical behavior
Can become addictive

Can foster short-term thinking

59

Temptation of Software Metrics

60

Software Quality Metric

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749159

• IEEE 1061 definition: “A software quality metric is a function whose
inputs are software data and whose output is a single numerical value
that can be interpreted as the degree to which software processes a
given attribute that affects its quality.”
• Metrics have been proposed for many quality attributes; may define

own metrics

62

Software Quality Metrics

QA badges on GitHub

https://shields.io/

External attributes: Measuring Quality

65

McCall model has 41 metrics
to measure 23 quality criteria
from 11 factors

Decomposition of Metrics

66

Maintainability

Correctability

Testability

Expandability

Faults count

Degree of testing

Effort

Change counts

Closure time
Isolate/fix time
Fault rate

Statement coverage
Test plan completeness

Resource prediction
Effort expenditure

Change effort
Change size
Change rate

• Number of Methods per Class
• Depth of Inheritance Tree
• Number of Child Classes
• Coupling between Object Classes
• Calls to Methods in Unrelated Classes
• …

67

Object-Oriented Metrics

• Comment density
• Test coverage
• Component balance (system breakdown optimality and component

size uniformity)
• Code churn (number of lines added, removed, changed in a file)
• …

68

Other quality metrics?

• Most software metrics are controversial
• Usually only plausibility arguments, rarely rigorously validated
• Cyclomatic complexity was repeatedly refuted and is still used
• “Similar to the attempt of measuring the intelligence of a person in terms of the

weight or circumference of the brain”

• Use carefully!
• Code size dominates many metrics
• Avoid claims about human factors (e.g., readability) and quality, unless

validated
• Calibrate metrics in project history and other projects
• Metrics can be gamed; you get what you measure

69

Warning

• Metrics tracked using tools and processes (process metrics like time,
or code metrics like defects in a bug database).
• Expert assessment or human-subject experiments (controlled

experiments, talk-aloud protocols).
• Mining software repositories, defect databases, especially for trend

analysis or defect prediction.
• Some success e.g., as reported by Microsoft Research

• Benchmarking (especially for performance).

70

(Some) strategies

• Set solid measurement objectives and plans.
• Make measurement part of the process.
• Gain a thorough understanding of measurement.
• Focus on cultural issues.
• Create a safe environment to collect and report true data.
• Cultivate a predisposition to change.
• Develop a complementary suite of measures.

71

Factors in a successful measurement program

Carol A. Dekkers and Patricia A. McQuaid,
“The Dangers of Using Software Metrics to (Mis)Manage”, 2002.

71

Kaner’s questions when choosing a metric
1. What is the purpose of this measure?
2. What is the scope of this measure?
3. What attribute are you trying to

measure?
4. What is the attribute’s natural scale?
5. What is the attribute’s natural

variability?

6. What instrument are you using to measure the
attribute, and what reading do you take from
the instrument?

7. What is the instrument’s natural scale?
8. What is the reading’s natural variability

(normally called measurement error)?
9. What is the attribute’s relationship to the

instrument?
10. What are the natural and foreseeable side

effects of using this instrument?

727272

• Measurement is difficult but important for decision making
• Software metrics are easy to measure but hard to interpret, validity

often not established
• Many metrics exist, often composed; pick or design suitable metrics if

needed
• Careful in use: monitoring vs incentives
• Strategies beyond metrics

73

Summary

Further Reading on Metrics

• Sommerville. Software Engineering. Edition 7/8, Sections 26.1, 27.5,
and 28.3
• Hubbard. How to measure anything: Finding the value of intangibles

in business. John Wiley & Sons, 2014. Chapter 3
• Kaner and Bond. Software Engineering Metrics: What Do They

Measure and How Do We Know? METRICS 2004
• Fenton and Pfleeger. Software Metrics: A rigorous & practical

approach. Thomson Publishing 1997

74

74

