
Software Engineering
ECE444 (Fall2021)

Shurui Zhou
Assistant Professor

Shurui Zhou

2014 - 2020 Ph.D.
School of Computer Science
Institute for Software Research

2020 Fall – Assistant Professor

https://www.eecg.utoronto.ca/~shuruiz/
shuruiz@ece.utoronto.ca

2

Research
Interests

• Software Engineering (SE)
• SE for AI
• AI for SE
• Collaborative Software Development
• Open Source

[pronunciation: Shoo-ray Joe]

https://www.eecg.utoronto.ca/~shuruiz/

First of all:

You are not alone!
We are undertaking this
new experience together.

3

This is not normal. We understand.

• Expect:
• Feeling overwhelmed
•Many additional sources of stress
• Hard time dealing with everything...

Talk to us about accommodations of any kind

4

Simulating NORMAL in-class Experience

• Discussions and interactions are important. We'll have regular in-class discussions
and exercises
• I may call on you
• Contact me for accommodations!

5

6

Active Lecture

• Case study driven
• Discussion highly encouraged
• Contribute own experience
• Regular active in-class exercises
• In-class presentation
• Discussions over definitions

Agenda for Today

• Introduction of the course
• Introduction of Software Engineering
• Process and Team

7

Lecture Logistics during a Pandemic

8

• Live lecture on Zoom, recording for student who cannot attend in-
person lecture

• Recording for PRA lab sessions

GENERAL MEASURES
Community Check-In

• Self-screen – How are you feeling? Remember: do not come to campus if you have a fever, sore throat, cough, difficulty breathing,
runny nose, or feeling unwell. For more information: https://www.utoronto.ca/utogether/ucheck.

• Vaccination - The University of Toronto will require that all those intending to be present on our campuses be fully vaccinated
against COVID-19, in accordance with all applicable laws and regulations. For more information:
https://www.utoronto.ca/utogether/vaccines

• Hygiene – Wash hands regularly, avoid touching face, sneeze or cough into your arm, no shared surfaces or tools

• Masks – Wear a mask while in-class unless given permission to remove it by the instructor or have an accommodation/exemption.
For more information, please refer to the Policy on Face Masks: https://governingcouncil.utoronto.ca/secretariat/policies/face-
masks-policy and the Joint Provostial Guidelines on Face Masks: https://www.provost.utoronto.ca/planning-policy/joint-provostial-
and-human-resources-guideline-on-facemasks-at-the-university-of-toronto/

• Traffic Flow – Follow the designated traffic flow for entering, moving through, and exiting room

• Furniture Placement – Use designated furniture, do not move furniture without permission

COVID-19: IN-CLASS GUIDELINES

August 31, 2021

https://www.utoronto.ca/utogether/ucheck
https://www.utoronto.ca/utogether/vaccines
https://governingcouncil.utoronto.ca/secretariat/policies/face-masks-policy
https://www.provost.utoronto.ca/planning-policy/joint-provostial-and-human-resources-guideline-on-facemasks-at-the-university-of-toronto/

REMEMBER…
What we can do to keep us all
safe.

August 27, 2021

WHAT TO DO IF UNWELL?
Non- Urgent:
1. Report your sickness to your course instructor
2. Go home
3. Email U of T’s Occupational Health Nurse

(ehs.occhealth@utoronto.ca) who will conduct assessment and
contact tracing, and will provide further direction

NOTE: The University has suspended the need for a doctor’s note or
medical certificate for absences if experiencing COVID-19 symptoms.

COVID-19: IN-CLASS GUIDELINES

August 27, 2021

mailto:ehs.occhealth@utoronto.ca

Mask policy
• Instructors have to keep masks on while teaching. You can remove

your mask to sip water, i.e., remove it for short short periods, but not
the whole class. For long lectures and other types of teaching where
wearing a mask may be arduous or impede teaching, EHS will work
with divisions to process requests for exceptions in a manner that is
consistent and rapid.

12

https://www.provost.utoronto.ca/planning-policy/joint-provostial-and-human-resources-
guideline-on-facemasks-at-the-university-of-toronto/

Mask policy
• Students: For some specific components of the class and based on the

instructor’s recommendation, student(s) can temporarily remove his/her/their
mask(s)
• Student refusing to wear masks: Our expectation is that the vast majority of

students will wear masks as required (covering nose, mouth and chin without
gaps). Instructors can ask the student refusing to wear a mask to leave the
classroom.

13

https://www.provost.utoronto.ca/planning-policy/joint-provostial-and-human-resources-guideline-on-

facemasks-at-the-university-of-toronto/

Mask policy
• Students with a medical exception to wearing masks: Some students may have a

medical exception to wearing masks. If a student states they cannot wear a mask
for disability related reasons, they should be directed to the undergrad office as
soon as possible. If there is a disability related accommodation pertaining to
mask wearing, Accessibility Advisors will connect with instructors directly. We will
also be following up with U of T's environmental health and safety office as
needed.

14

https://www.provost.utoronto.ca/planning-policy/joint-provostial-and-human-resources-guideline-on-
facemasks-at-the-university-of-toronto/

2020

15

2021

16

17

Any Questions?

Learning Goals

• Learn how software is developed in a systematic way
• Learn by doing - 2 main group projects
• Web application development
• Open source excursion

• Learn the state-of-the-art research topics in software engineering
• Reading papers
• Case studies

18

Software is everywhere

19

20
https://www.youtube.com/watch?v=-dYiH5AXUCU

The software the team has used for five years to
simulate such scenarios had generated the incorrect
figures, consigning Hamilton to a second-place finish
behind Vettel’s Ferrari.

21

https://www.formula1.com/en/latest/article.software-glitch-cost-hamilton-victory-
mercedes.6VzyCYpEpauaIYsOWYCqYS.html#:~:text=A%20software%20glitch.,season%2Dopening%20race%20in%20Au
stralia.&text=The%20world%20champion%20immediately%20asked,time%20Mercedes%20had%20given%20him.

https://www.formula1.com/en/latest/article.software-glitch-cost-hamilton-victory-mercedes.6VzyCYpEpauaIYsOWYCqYS.html

22

https://www.youtube.com/watch?v=n3-ZQqU8m08&t=10s

Globally Distributed Software Development

23

Companies

bally Distributed Software Development

24

Globally Distributed Software Development

Intro of the class

Significant redesign (course structure/homework)
ECE444 (Fall2019-UofT)
+ 17-313 Software Engineering (CMU)
+ 17-214 Principles of Software Construction (CMU)
+ 17-652 Requirement Engineering (CMU)

25

See ECE444 (2020F) at
https://www.eecg.utoronto.ca/~shuruiz/teaching/ECE444-2020F/

https://www.eecg.utoronto.ca/~shuruiz/teaching/ECE444-2020F/

ECE444
2019 vs 2020à

26

Top Languages

27

https://octoverse.github.com/

Python

Ruby

https://octoverse.github.com/

Companies using Ruby on Rails

https://www.ideamotive.co/blog/40-best-ruby-on-rails-
companies-websites

https://www.ideamotive.co/blog/40-best-ruby-on-rails-companies-websites

Companies using Python

https://realpython.com/world-class-companies-using-python/

https://realpython.com/world-class-companies-using-python/

31

Project 1 (Web application Design) - Fall 2020

32

Web application Design --
Showcase (Fall 2020)

33

Web application Design --
Showcase (Fall 2020)

34

Web application Design --
Showcase (Fall 2020)

35

36

37

38

https://educationpathways.herokuapp.com/

39

40

41

42

43

Software Development Lifecycle

44

Open-Source Excursion—
Showcase (Fall 2020)

45

Open-Source Excursion—
Showcase (Fall 2020)

46

47

(Fall 2020) What do you want to learn?

0

2

4

6

8

10

12

14

16

w
eb a

pp

open so
urc

e

devops

pra
ct

ica
l e

xp
erie

nce

SE
4AI

Pro
ce

ss

te
am

w
ork

arc
hite

ct
ure

sy
st

em
 d

esig
n

pro
je

ct
 m

an
ag

em
ent

back
-e

nd

dock
er

arc
hite

cu
tr

e

desig
n p

att
ern

s

la
rg

e sc
ale

 so
ftw

are

fro
nt-

end

desig
n p

att
ern

 cl
oud a

rc
hite

ct
ure

fu
nct

io
nal p

ro
gr

am
m

in
g vs

…

Kubern
ete

s
aw

s
agi

le

ch
aos e

ngi
neerin

g
NLP AI

ru
by

dist
rib

ute
d sy

st
em

 le
gal

 im
plic

at
io

ns o
f…

Chart Title

49

50

Any Questions?

51

Syllabus and course mechanics

• https://shuiblue.github.io/UofT-ECE444/
• Tools
• Quercus: Assignment distribution, hand-in, and grades
• Git, GitHub, GitHub Classroom: code management
• Piazza: Discussion board, Q&A

https://shuiblue.github.io/UofT-ECE444/

52

Please post your questions on Piazza, not to TA’s personal email

Logistics – Lectures & PRAs

53

Lectures: Thursday 12:00-15:00 EST
PRA-1: Friday 12:00-15:00
PRA-2: Wednesday 09:00-12:00
PRA-3: Thursday 09:00-12:00

Assignment 1 – fill in the surveys

54

• To help us to tailor class and form teams

Forming Teams

• 4-5 students per team
• Criteria: Form teams whose members are diverse in ability levels [1].
• Gaining experience on generating and comparing alternative solutions and

resolving conflicts
• We will send out the list of formed teams before Monday (9/13)

55

[1] Oakley, Barbara, et al. "Turning student groups into effective teams." Journal of student centered learning 2.1 (2004): 9-34.

We will form teams rather than allowing students self-select.

Concerning about pre-assigned teams?

• Check out the Q&A
from last year on
Quercus.

56

Common interview conflict resolution questions

57

Introduction to ProcessDescribe a time you disagreed with a manager or
supervisor and how you handled the situation.

Tell me about a time you disagreed with a company
policy or rule and how you handled the situation.

How do you approach diversity in the workplace? https://ca.indeed.com/career-advice/interviewing/conflict-resolution-
interview-questions

Teaching Assistants

58

Keerthi Nelaturu keerthi.nelaturu@mail.utoronto.ca
Kunal Dewan kunal.dewan@mail.utoronto.ca
Enmeng Liu enmeng.liu@mail.utoronto.ca
Jiayi Sun jiayisaria.sun@mail.utoronto.ca
Imtihan Ahmed imtihan.ahmed@mail.utoronto.ca
Martiya Zare Jahromi martiya.zare@mail.utoronto.ca

mailto:kunal.dewan@mail.utoronto.ca
mailto:jiayisaria.sun@mail.utoronto.ca
mailto:martiya.zare@mail.utoronto.ca

Logistics -- Office Hours

59

60

Reading and Quizzes

• Reading assignments for some lectures
• Preparing in-class discussions
• Background material, case descriptions, possibly also podcast, video, wikipedia

• Short and easy online quizzes on readings, due by start of lecture

Evaluation (under review)

• Web application development (50%)
• Contribute to an open source project (30%)
• Participation in reading quizzes and lab tasks (20%)

61

62

Participation

Both quality and quantity are important,
quality more than quantity

Professionalism

• Being a professional means you should work well with others
• The best professionals are those who make those around them better
• If you feel someone is not treating you or someone else in a

professional manner, you have two options:
• If you feel you have the standing to do so, speak up!
• Reach out to the course staff, and we will meet with you privately to discuss

it, as well as preserve your anonymity

63

64

Academic Honesty

• See web page
• In a nutshell: do not copy, do not lie, do not share or publicly release

your solutions
• In group work, be honest about contributions of team members, do

not cover for others
• If you feel overwhelmed or stressed, please come and talk to us (see

syllabus for other support opportunities)

Peer evaluation for every milestone

65

Agenda for Today

• Introduction of the course
• Introduction of Software Engineering
• Process and Team

67

68

A bad code, a bug could cost more than the victory

Perhaps 89 deaths, hundreds of
serious injury lawsuits
• $1.6B class action settlement
• Jury found system defective –

Toyota “acted in reckless
disregard”

• Many of issues were SW, but
also a HW problem

69

https://www.eetimes.com/toyota-case-single-bit-flip-that-killed/

A bad code, a bug
could cost more
than the victory

https://www.eetimes.com/toyota-case-single-bit-flip-that-killed/

Supplementary material

70

https://www.youtube.com/watch?v=DKHa7rxkvK8

72

• One pilot said it was “unconscionable that a manufacturer, the FAA (Federal Aviation
Administration), and the airlines would have pilots flying an airplane without adequately training,
or even providing available resources and sufficient documentation to understand the highly
complex systems that differentiate this aircraft from prior models”

73

https://www.theverge.com/2019/5/2/18518176/boeing-737-max-crash-problems-human-error-mcas-faa https://www.seattletimes.com/business/boeing-aerospace/failed-certification-faa-
missed-safety-issues-in-the-737-max-system-implicated-in-the-lion-air-crash/

https://www.theverge.com/2019/5/2/18518176/boeing-737-max-crash-problems-human-error-mcas-faa

74

A failure of project management --
Swedish Vasa warship

Why This 17th-Century Warship Was a Disastrous Failure

75

https://www.youtube.com/watch?v=1a0PIhMpfLU

76

What happened? (Vasa Sinking)

77

• Changing shipbuilding orders
• No specifications for modified keel
• Shifting armaments requirements
• Shipwright’s death
• No way to calculate stability, stiffness,

or sailing characteristics
• Failed pre-launch stability tests

Requirem
ents

Teams
Metrics
QA

Software Engineering
What is engineering? And how is it different from

hacking/programming?

81

Producing a car/bridge
• Estimable costs and risks
• Expected results
• High quality
• Separation between plan

and production
• Simulation before construction
• Quality assurance through measurement
• Potential for automation

15-313 Software Engineering 82

Software Engineering?

15-313 Software Engineering 83

„The Establishment and use of sound
engineering principles in order to obtain
economical software that is reliable and
works efficiently on real machines.”

[Bauer 1975, S. 524]

“Software engineering is the branch of computer science that creates practical, cost-effective

solutions to computing and information processing problems, preferentially by applying scientific
knowledge, developing software systems in the service of mankind.

Software engineering entails making decisions under constraints of limited time, knowledge, and

resources. […]

Engineering quality resides in engineering judgment. […]

Quality of the software product depends on the engineer's faithfulness to the engineered artifact.
[…]

Engineering requires reconciling conflicting constraints. […]

Engineering skills improve as a result of careful systematic reflection on experience. […]

Costs and time constraints matter, not just capability. […]

84

Software Engineering for the 21st Century: A basis for
rethinking the curriculum Manifesto, CMU-ISRI-05-108

86

1968 NATO Conference on Software Engineering

• international experts on computer
software who agreed on defining
best practices for software
grounded in the application of
engineering.

87

International Conference in Software Engineering

ICSE 2015 ‘Software Engineering in Ferrari F1’

8888

ICSE 2018 ‘The Language as a Software Engineer’ (Margaret Hamilton)

Agenda for Today

• Introduction of the course
• Introduction of Software Engineering
• Process and Team

90

Introduction to Process

ECE444 Software Engineering (Fall 2021)

Learning Goals

• Recognize the Importance of process
• Understand the difficulty of measuring progress
• Use milestones for planning and progress measurement

2013

• 2M people working on 300K software projects in the US
• 1/3 - 2/3 exceed schedule and budget targets before delivery
• Of the most expensive software projects, about half will eventually be

canceled for being out of control.

https://ptgmedia.pearsoncmg.com/images/9781572316218/samplepages/9781572316218.pdf

93

https://ptgmedia.pearsoncmg.com/images/9781572316218/samplepages/9781572316218.pdf

Software projects succeed or fail based
on how carefully they are planned and
how deliberately they are executed

Process

95

How to develop software?

1. Discuss the software that needs to be written
2. Write some code
3. Test the code to identify the defects
4. Debug to find causes of defects
5. Fix the defects
6. If not done, return to step 1

96

Software Process

The set of activities and associated results that produce a software product

97

Example of Process Decisions

98

• Writing down all requirements

Example of Process Decisions
• Writing down all requirements
• Require approval for all changes to requirements

99

Example of Process Decisions

• Writing down all requirements
• Require approval for all changes to requirements
• Use version control for all changes

Example of Process Decisions
• Writing down all requirements
• Require approval for all changes to requirements
• Use version control for all changes
• Track all reported bugs
• Review requirements and code
• Break down development into smaller tasks and schedule and monitor

them
• Planning and conducting quality assurance
• Have daily status meetings
• Use Docker containers to push code between developers and operation

101

Example of Process Decisions
• Writing down all requirements
• Require approval for all changes to requirements
• Use version control for all changes
• Track all reported bugs
• Review requirements and code
• Break down development into smaller tasks and schedule and monitor

them
• Planning and conducting quality assurance
• Have daily status meetings
• Use Docker containers to push code between developers and operation

102

The word “process” was
viewed as negative...

10X Engineers
• Aka “rock-star”, “ninja”

Solo programmer https://mtlynch.io/solo-developer-year-1/
https://ketohub.io/

https://mtlynch.io/solo-developer-year-1/

110

“During the time I was at Boeing in the mid 1980s, there was a
project that had about 80 programmers working on it that was at
risk of missing a critical deadline. The project was critical to
Boeing, and so they moved most of the 80 people off that
project and brought in one guy who finished all the coding and
delivered the software on time.”

– Steve McConnell

10x of Teams

• Lotus 123 version 3
• 260 staff years
• 400,000 lines of code.

• Microsoft Excel 3.0
• 50 staff years
• 649,000 lines of code

111

https://codingsans.com/blog/recruiting-engineers

“I just wish that I had this book when I
started as a first-time manager five
years ago!”

“Becoming a great engineering leader
requires more than technical know-
how; Ron and Mickey’s book provides
a practical cookbook for the important
softer side of engineering leadership,
which can be applied to any software
development organization.”

Why Programmers Seem Unmanageable?

• Writing a new program from scratch is akin to writing a novel.
• Anyone can be a programmer
• The practices of SE have had minimal impact

“If having fun is what most programmers do, you may begin to

understand why managing programmers is so challenging.

If you are being paid to have fun, why would you want to be

managed? Being managed takes part of the fun out of the

work!” “Managing programmers is a lot like herding cats”

Why do engineers choose TO JOIN particular
teams?

Reasons grouped by clustering analysis Percent

Liked new team and/or technology (exciting, manager) 85.8%

Coworker asked me to join (new team, old team) 37.8%

Joined for better opportunities (location, domain, lack of other
options)

24.5%

Followed my manager (former or current) 14.6%

Why do engineers want to leave their teams?

Reasons grouped by clustering analysis Percent

Change is coming (technology, charter, re-org, turnover) 52.6%
Seeking new challenges or location (role, location, challenges) 39.0%
Dissatisfaction with manager (priorities, goals, person, actions) 31.6%
The grass is always greener on the other side (novelty, escape) 12.3%
Not a good fit (bored, no need for my skills) 5.3%
Poor team dynamics (dysfunctional, no career growth) 4.4%

https://rework.withgoogl
e.com/blog/five-keys-to-
a-successful-google-
team/

State of Software Development
https://codingsans.com/uploads/landing/State-of-Software-
Development-2020.pdf

What is your biggest challenge in software
development?

PROCESS IS IMPORTANT

133

Percent of Effort

TimeProject beginning Project end

100%

0%

134

Percent of Effort

TimeProject beginning Project end

100%

0%

Trashing / Rework

Productive Coding

135

Trashing / Rework

Productive Coding

Process: Cost and Time estimates, Writing Requirements,
Design, Change Management, Quality Assurance Plan,

Development and Integration Plan

Percent of Effort

TimeProject beginning Project end

100%

0%

136

Productive Coding

Trashing / Rework

Process

Percent of Effort

TimeProject beginning Project end

100%

0%

Survival Mode

• Missed deadlines -> "solo
development mode" to
meet own deadlines
• Ignore integration work
• Stop interacting with

testers, technical writers,
managers, …

137

Real world cases

Organizations that have explicitly focused on improving their
development processes have, over several years, cut their time-to-
market by about one-half and reduced their costs and defects by
factors of 3 to 10.

5 yr, cost -75%, time - 40%, defects - 90%

8 yr, cost -50%, defects - 75%

Planning

144

Task: Estimate Time

• a web application of Trip guide
(booking, scheduling, route
planning...)

Estimate in 8h days (20 work days in
a month, 220 per year)

145

Revise Time Estimate

• Remember the GIS system experience?
• Is GIS similar/different/easier/more challenging/reusable?
• How much design did you do?
• Break down the task into ~5 smaller tasks and estimate them.
• Revise your overall estimate if necessary

• 2 Types of Projects
• Projects having an accurate target, technical inquiry and deadlines.
• Projects having a general idea and no accurate visualization of further

development, like products for startups or Time & Material projects.

https://www.codica.com/blog/how-to-get-better-estimates/

https://www.codica.com/blog/how-to-get-better-estimates/

https://www.codica.com/blog/how-to-get-better-estimates/

“It is important to concentrate
on the scale of complexity, not
the amount of further work.”

https://www.codica.com/blog/how-to-get-better-estimates/

Milestones and Deliverables

• Making progress observable, especially for software
• Milestone: clear end point of a (sub)tasks
• For project manager
• Reports, prototypes, completed subprojects
• "80% done" not a suitable milestone

• Deliverable: Result for customer
• Similar to milestone, but for customers
• Reports, prototypes, completed subsystems

Project Planning
Identify

constraints

Estimate project

parameters

Define milestones

Create schedule

activities begin

Check progress

Reestimate project

parameter

Refine schedule

renegotiate

constraints
Technical review

Problem?

no

yes

Done?
yes

no

Abort?

Budget,

Personal,

Deadlines

eve
ry

2-3
 w

eeks

new

feature

requests

Gantt Diagrams

Brief intro to Scrum

Product Backlog/Sprint Backlog

• The product backlog is all the features for the product
• The sprint backlog is all the features that will be worked on for that

sprint. These should be broken down into discrete tasks:
• Fine-grained
• Estimated
• Assigned to individual team members
• Acceptance criteria should be defined

• User Stories are often used

Backlog – information radiators

Scrum meetings

• Sprint Planning Meeting
• Entire Team decides together what to tackle for that sprint

• Daily Scrum Meeting
• Quick Meeting to touch base on :

• What have I done? What am I doing next? What am I stuck on/need help?

• Sprint Retrospective
• Review sprint process

• Sprint Review Meeting
• Review Product

Further Reading

• McConnell. Software Project Survival Guide.
Microsoft Press 1998, Chapter 3 (link)
• Sommerville. Software Engineering. 8th Edition.

Addison-Wesley 2007. Chapters 5 "Project Planning"
and 26 "Software Cost Estimation"

https://ptgmedia.pearsoncmg.com/images/9781572316218/samplepages/9781572316218.pdf

Teamwork (Student Teams)
More on teams in real projects in the course

165

Expectation

• Meet initially and then regularly
• Review team policy
• Divide work and integrate
• Establish a process
• Set and document clear responsibilities and expectations
• Possible Roles: Coordinator, Scribe, Checker, Monitor
• Rotate roles every assignment

• Every team member should understand the entire solution

Dealing with problems

• Openly report even minor team issues in individual part of
the milestone report
• In-class discussions and case studies
• Additional material throughout semester
• We will attend one team meeting

Planning and In-Team Communication

• Asana, Trello, Microsoft Project, …
• Github Wiki, Google docs, …
• Email, Slack, Facebook groups, …

Project 1 – Milestone 1 Team Workflow

• The team workflow is a document that outlines team roles. It also
gives us information about organizational issues, like team meeting
times. This helps us send course staff to aid you and helps us to follow
your progress.
• The main purpose of this document is to give you some rules for team

process, management, tracking, and goal setting. As a general rule,
groups work pretty well in this course.However, any good working
group will have some measurements in place if something goes awry.

170

